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Abstract: The EU PlatformUptake project’s main goal is to investigate the usage of EU open and
partly-open platforms in active and healthy aging (AHA) and ambient-assisted living (AAL) domains,
from a software viewpoint. The aim of the project was to provide tools for a deeper interpretation
and examination of the platforms, gather user feedback, and use it to improve the state-of-the-art
approach in the AHA and AAL domains, and define instructions to enhance the platforms within
the recommended order. The emphasis is on the software viewpoint for decision makers. In this
paper, we present (i) the PlatformUptake methodology for AHA open platform assessments and its
main objectives; (ii) clustering of the analyzed platforms; and (iii) the taxonomies generated from
the text descriptions of the chosen platforms. With the use of the clustering tools, we present which
platforms could be grouped together due to their similarities. Different numbers of clusters were
obtained with two clustering approaches, resulting in the most informative two and four cluster
groups. The platforms could be rather neatly presented in this way and, thus, potentially guide future
platform structuring. Moreover, taxonomies, i.e., decision trees of platforms, were generated to easily
determine each specific platform or to find platforms with the desired properties. Altogether, the
computer comprehension of the platforms may be important additions to the human way of dealing
with the AHA platforms, influencing future design, publications, related work, and research.

Keywords: platforms; clustering; artificial intelligence; health; older people; PlatformUptake

1. Introduction

Aging “presents itself” as one the greatest trials of the twenty-first century for mankind,
in particular in the EU. One study shows that more than 20% of Europeans will reach
65 years of age or more by 2025 [1]. To solve the aging issue, the EU decided to spend
additional resources to preserve and reinforce the area of active and healthy aging. In
recent years, a substantial number of open source platforms have been developed in active
and healthy aging (AHA) and ambient-assisted living (AAL) domains (henceforth referred
to as the “AHA domain”). Such solutions present a matter of importance, interest, and
investigation of the EU project, PlatformUptake [2]. These platforms, in the context of
our project, facilitate the development of digital technology for older people and, thus,
comply with software principles, such as interoperability and modularity. They are also
successfully applied (e.g., FIWARE, MiBida) in other verticals, such as health care and
smart cities. MiBida resulted from an EU-funded project and is currently used by hospitals
in the Netherlands (as an EMR type of platform).

However, in the AHA and AAL domains for elder people, up until now, there was no
structure or similarity study between the existing platforms. Such organization of the field
provides an organized overview of the field, enabling new comprehension, better designs,
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and better decisions for IT designers, decision makers, and users and physicians, because
they easier choose the proper types of platforms.

The PlatformUptake methodology for AHA and AAL open platform evaluation pro-
vides tools for deeper interpretation and examination of the platforms, gathers user feed-
back and uses it to improve the state-of-the-art approach, and defines instructions to
enhance the platforms within the recommended order. Over the course of the project,
an open information hub was established, providing information and specification on all
existing platforms. With the task of raising more awareness on the AHA domain and
building more trust between all stakeholders, a massive open online course (MOOC) was
created and multiple events were hosted where the stakeholders had the upper hand in
decision making [2].

As part of the project, a set of chosen platforms was carefully analyzed by human
experts and described in the texts. This paper presents a computer-aided analysis of
these platform descriptions. In particular, the computer methods with the use of artificial
intelligence provide computer-generated relations among the platforms, structure, and
taxonomy. In this paper, the interesting observations provided clues to how many and
which clusters, i.e., groups of similar platforms could be consistently found and indicated
that there was a rather consistent structure from the software viewpoint. Finally, decision
trees and taxonomies, generated with artificial intelligence methods [3], helped distinguish
one platform from the other.

The remainder of the paper is as follows: the related work is presented in Section 2.
Section 3 presents the main objectives of the project, project methodology, and platforms
for older people. Clustering and taxonomies are presented in Sections 5 and 6. Finally, the
paper is concluded in Section 7 with a short recap and ideas for improvement.

2. Related Work

Several platforms specialize in various research and application topics. Their analyses
and categorizations are of key importance for their end-users as well as for developers of
new or existing platforms. Pal et al. [4] analyzed the platforms for the development of agent
systems. They analyzed various aspects, such as commercial or open-source availability,
and general or special-purpose ones. Figueroa et al. [5] compared platforms for interactive
virtual reality applications. They measured a set of parameters (e.g., distance error during
object movement) and statistically assessed the results of the compared platforms. A
comparison of IoT platforms was presented by Guth et al. [6]. It mainly focused on IoT-
specific issues, such as how to present the physical IoT devices in various platforms. Yu and
Kim [7] focused on the security of the IoT platforms by analyzing the supported security
mechanisms for authentication, data transport, etc. Ali and Abdullah [8] presented an
analysis of platforms for online processing of big data. They listed the key features required
for processing big data, such as streaming learning type and appropriated machine-learning
tools. Several taxonomies were developed, based on platform characteristics—typically
based on expert knowledge. For example, Hofer and Karagiannis [9] presented a taxonomy
for cloud computing platforms. Blaschke et al. [10] developed a taxonomy of digital
platforms.

Although a similar approach can be applied for the assessment of platforms from
various domains, it is preferable to use domain-specific platform comparisons. When com-
paring platforms for older people, Palumbo [11] considered abstraction level, programming
model, control type, interaction type, context management, and service management. Ba-
quero et al. [12] analyzed ambient intelligence frameworks in terms of their purposes,
architecture, used platform, inclusion of component supervision module, and repository
sensor handling. Madureira et al. [13] analyzed middleware platforms for active and
healthy aging by specifying a set of features that such platforms should have. Marcos-
Pablos and García-Peñalvo [14] analyzed care and assistance ecosystems by considering
the groups of ecosystems (health, monitoring, social interaction, reminder, rehabilitation),
system actors (older people, disabled, patients, relatives, regulatory parties, research, etc.),
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allowed modifications (add devices, add services, add software, modify any of them), ma-
turity (conceptualization, pilots, deployed), sensor types (if any), health-related standards
(if any), etc. Various taxonomies were also created for platforms for older people. For exam-
ple, Chiarini et al. [15] developed a taxonomy for mHealth platforms, while Beevi et al. [16]
and Byrne et al. [17] presented taxonomies of assisted living systems.

PlatformUptake differs from the modern platform analysis because it focuses on tech-
nical, contextual, and business questionnaires, aimed at developers and executives of AHA
platforms. The questionnaire answers are used to determine critical success factors for
the successful uptake of AHA platforms. The main methodology of the PlatformUptake
analysis is described in detail in [18]. In this paper, we upgraded the main project method-
ology by introducing the machine-learning-based data analysis. More precisely, we applied
k-means clustering, hierarchical clustering, principal component analysis, and decision
trees to automatically determine and semantically describe meaningful platform groups, as
well as to create platform taxonomy.

3. Methodology for AHA Platform Assessment

The focus of this study is on the software properties of EU AHA and AAL platforms.

3.1. Main Objectives

The main objectives of the PlatformUptake methodology for the AHA platform assess-
ment are [2]:

• To evaluate the progress of implementation, distribution, and advancement of open
platforms in the AHA domain with the help of a methodology.

• To establish tools for platform supporters and users for self-evaluation purposes with
which they can measure how satisfied and successful they feel with platform usage.

• To interpret the existing platforms by determining how familiar projects influence
their progress, viability, and privileges.

• To connect different members of associations and related partners with the same
vision—to share common ideas, expertise, and awareness about open platforms.

• To gather feedback from the end-users and to measure the the development and
enlargement of the current state-of-the-art models and specifications.

• To educate the end-users as much as possible in order to maximize the their experi-
ences in using the existing platforms.

3.2. Methodology

The PlatformUptake methodology for AHA platform assessment strives to study the
usage of open and semi-open platforms in the active and healthy domain and it examines
the relationship between these platforms. The methodology follows strict procedures
to identify the key ingredients for platform growth and expansion across Europe. It
achieves this by considering the feedback of the end-users and by observing the ecological
environment and stakeholder communities [2].

To study the use of open platforms for the considered methodology, data have to be
collected and processed from various European projects that use such platforms at the
core of the fundamentals. After the data are acquired, the methodology proposes evalu-
ation instructions for state-of-the-art models from numerous inter-connected platforms.
It considers specialized, institutional, commercial, and juridical facets [2].

It also provides utility tools for all associated partners in order to share the best state-
of-the-art methods, innovative solutions, and ideas to enhance the existing platforms. The
first useful utility developed during the time of the project was a new tool that allowed
platform developers and end-users to self-evaluate their experiences. The second utility
was the open information hub that allowed the user to view all information about the
platforms in one place. Finally, the establishment of MOOC allowed the stakeholders and
other interested parties to gather and share more knowledge about the open platforms [2].
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3.3. Platforms

Within the development of the methodology, 18 platforms for older people were
analyzed. The main purpose was to allow the interoperability of connected systems, such
as devices, services, and applications. The majority of them were developed with focus on
the AAL and AHA fields, while some (EkoSmart, FIWARE, INTER-IoT, sensiNact, SOFIA2)
are more general-purpose; thus, they also support other fields. These platforms were
selected from a larger set of identified relevant platforms according to the knowledge of the
members of the EU PlatformUptake project. Although the countries of their development
were not taken into account during the platform selection and analyses, the European
lineage was needed for all of them due to the focus of the EU project.

1. ACTIVAGE consists of a set of techniques, tools, and methodologies for interoper-
ability between heterogeneous IoT platforms and an open framework for providing
semantic interoperability of IoT platforms for AHA, while addressing trustworthiness,
privacy, data protection, and security [19]. The platform was developed in Italy,
Spain, France, UK, Germany, Finland, and Greece.

2. The AMIGO project develops open, standardized, interoperable middleware and
attractive user services for the networked home environment [20]. The platform was
developed in Switzerland and Italy.

3. The aim of the AmIVITAL project is to support the active and healthy aging (AHA)
domain with new ICT technologies and ambient intelligence gadgets. Such devices
allow better control for those with chronic disabilities, promote healthy lifestyles,
and provide better support for autonomous living [21]. The platform was developed
in Spain.

4. BeyondSilos aims at further spreading ICT-enabled, joined-up health and social care
for older people, by developing, piloting, and evaluating integrated services based on
two generic pathways in a multicentric approach, making extensive use of knowledge
and experience gained among early adopters of integrated E-care in Europe [22].
The platform was developed in Switzerland and Italy.

5. The purpose of the EkoSmart program is to develop a smart city ecosystem with all of
the support mechanisms necessary for efficient, optimized, and gradual integration of
individual areas into a unified and coherent system of value chains, where care for
older people is one of the core modules of the smart city, encapsulating every aspect
of older people [23,24]. The platform was developed in Slovenia by 25 partners from
academia, the medical field, and the industry.

6. The FIWARE foundation is the legal independent body providing shared resources
to help achieve the FIWARE mission by promoting, augmenting, protecting, and
validating the FIWARE technologies, as well as the activities of the FIWARE commu-
nity, empowering its members, including end-users, developers, and the rest of the
stakeholders in the entire ecosystem [25]. The platform was developed in Belgium,
Brazil, Switzerland, Germany, Spain, Finland, France, Hungary, Italy, Netherlands,
Portugal, Sweden, United Kingdom, and Colombia.

7. GIRAFF+ is a complex system that can monitor activities in the home using a network
of sensors, both in and around the home, as well as on the user’s body [26]. The
platform was developed in Sweden, Spain, Italy, Portugal, UK, and Slovenia.

8. INLIFE aims to prolong and support independent living for older people with cog-
nitive impairments, through interoperable, open, personalized and seamless ICT
services that support home activities, communication, health maintenance, travel,
mobility and socialization, with novel, scalable and viable business models, based on
feedback from large-scale, multi-country pilots. An older person wears a sensor and
the integrated system provides him/her basic care functions [27,28]. The platform
was developed in United Kingdom, Slovenia, Ireland, Austria, Netherlands, Spain,
Sweden, and Greece.

9. In the absence of global IoT standards, the INTER-IoT results allow any company to
design and develop new IoT devices or services, leveraging the existing ecosystem,



Healthcare 2022, 10, 401 5 of 21

and bringing them to market quickly [29]. The platform was developed in Spain,
Italy, Netherlands, UK, Slovenia, Poland, and France.

10. OASIS introduces an innovative, ontology-driven, open reference architecture and
platform, which enables and facilitates interoperability, seamless connectivity, and
sharing of content between different services and ontologies in all application domains
relevant to older people and beyond [30]. The platform was developed in Italy, Austria,
Belgium, Bulgaria, Switzerland, China, Greece, Spain, Germany, Netherlands, Mexico,
Romania, and United Kingdom.

11. PERSONA aims at advancing the paradigm of ambient intelligence through the
harmonization of ambient-assisted living (AAL) technologies and concepts for the
development of sustainable and affordable solutions for the social inclusion and inde-
pendent living of senior citizens, integrated in a common semantic framework [31].
The platform was developed in Switzerland and Italy.

12. REACH2020 represents a solution that seeks to prevent older people from loss of
function and a decline from being able to perform daily living activities, independently,
leading ultimately to entering long-term care [32]. The platform was developed in
Germany, Netherlands, Switzerland, Denmark, Poland, and Sweden.

13. sensiNact is a horizontal platform dedicated to IoT and is particularly used in various
smart city and smart home applications. sensiNact aims to manage IoT protocol
and device heterogeneity, and provides synchronous (on demand) and asynchronous
(periodic or event based) access to data/actions of IoT devices, as well as access to
historic data with a generic and easy-to-use API [33]. The platform was developed in
Austria, Spain, Norway, Croatia, Cyprus, and Poland.

14. SOFIA2 is an IoT enabled middleware platform that allows the interoperability of
connected systems. It is multi-language and multi-protocol, enabling the intercon-
nection of multiple devices. It provides publishing and subscription mechanisms,
facilitating the orchestration of sensors and actuators in order to monitor and act on
the environment [34]. The platform was developed in Italy, United Kingdom, Greece,
Germany, Sweden, and Spain.

15. SOPRANO designs and develops highly innovative, context-aware smart services
with natural and comfortable interfaces for older people at affordable costs, meeting
the requirements of users, family, and care providers, and significantly extends the
time one can live independently in his/her home when older [35]. The platform was
developed in Switzerland and Italy.

16. UNCAP (Ubiquitous interoperable care for aging people) makes use of solutions and
technologies developed in previous research projects to develop an open, scalable, and
privacy-savvy ICT infrastructure designed to help aging people live independently,
while maintaining and improving their lifestyles [36]. The platform was developed in
Austria, Spain, Norway, Croatia, Cyprus, and Poland.

17. universAAL enables seamless interoperability of devices, services, and applications
for IoT enabled smart environments. The platform provides the framework for com-
munication, connectivity, and compatibility between otherwise disparate products,
services, and devices [37]. The platform was developed in Italy, Austria, Denmark,
Netherlands, Croatia, Israel, Spain, Germany, Greece, and Poland.

18. The VAALID (The “Accessibility and Usability Validation Framework for AAL Inter-
action Design Process”) project aims to create new tools and methods that facilitate
and streamline the process of creation, design, construction, and deployment of tech-
nological solutions in the context of AAL, assuring that they are accessible and usable
for senior citizens. The main objective of the project is to develop a 3D-immersive
simulation platform for computer-aided design and validation of user-interaction
subsystems that improves and optimizes the accessibility features of AAL services for
social inclusion and independent living [38]. The platform was developed in Spain,
Germany, Greece, and Italy.
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4. Data Preparation

For all 18 platforms studied in the PlatformUptake project and shortly described in
Section 3.3, the text descriptions were obtained and examined with the aim of discovering
groups/clusters of platforms and platform taxonomy. Although authors of this study were
also members of the PlatformUptake project describing the platforms, the texts describing
platforms were defined by a substantially larger group and were provided as input to this
study. The texts were obtained by thorough literature search, web page examination, and
polling of designers and users alike. The obtained texts were transformed into a computer
readable form within the presented study, but nothing was added or modified to preserve
the objectivity of the study. After the attributes were extracted from the original texts,
the descriptions of the platforms were converted into numeric values of the attributes,
e.g., “yes” was converted to 10, “no” to 0, and “partial” to 5. Some features could not
be directly converted into numbers, e.g., features with string-type unordered values, e.g.,
“Any (web)”, “Windows, mobile, Symbian”, “Java”. These features were transformed with
one-hot encoding [39] into new features, e.g., “is web”, “is Windows”, “is mobile”, “is
Symbian”, “is Java”. After these transformations, 67 features were obtained.

There were also some missing data. The missing values were labeled as “none”, “not
sure what you mean exactly”, etc. For each feature, we replaced the missing values with
the mean value (see Table 1). For example, if there were ten instances (platforms) and three
of them had missing values, the missing value was the sum of genuine values divided by
the number of genuine values (7).

Table 1. An example of transforming the text description of platforms into proper values for further
analysis. “Yes” is transformed into 10, “No” to 0, “Partial” to 5, and the missing values to the mean of
the existing values in the column, which is 3.75.

Platform
All Related Web Servers Ensure Maintenance

and Correction against the Main
Known Weaknesses

Value

ACTIVAGE Yes 10
AMIGO No 0
AmIVITAL Yes 10
BeyondSilos No 0
EkoSmart No 0
FIWARE Not sure 3.75
GIRAFF+ Yes 10
INLIFE Yes 10
INTER-IoT 3.75
OASIS No 0
PERSONA No 0
REACH2020 Partial 5
sensiNact 3.75
SOFIA2 3.75
SOPRANO No 0
UNCAP Not sure 3.75
universAAL Not sure 3.75
VAALID No, not applicable 0

The 67 features obtained represent the input data for the clustering algorithms and
taxonomies. There was an exception for k-means clustering, where the 67 features were
transformed with the principal component analysis (PCA) [40] to get a low number of
features, which is more suitable for a visual presentation (e.g., with a 2D graph). PCA trans-
forms a high number of features into a low number of uncorrelated PCA components,
where each component is a linear combination of the original features [41].

The analyzed features can be semantically grouped into six categories. The first category
is closely related to the IoT (internet of things) devices. It is also related to the healthcare
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monitoring devices, for example, remote patient monitoring, glucose monitoring, heart-
rate monitoring, depression and mood monitoring, etc. Features (1) “Connectivity of
heterogeneous IoT devices”, (2) “Remote access to IoT devices”, (3) “Remote control to IoT
devices”, (4) “Remote maintenance to IoT devices”, (5) “IoT devices activity log, information
and status”, (6) “Onboard analysis, intelligent IoT device”, and (7) “Secure access to IoT
devices” belong to the IoT devices category.

The second category can be labeled as a utility category and includes helpful mech-
anisms for platform functionality. It contains features (8) “Devices lifetime management
(software updates, remove bugs, fix security vulnerabilities)”, (9) “Location support if
the device’s location is not static”, (10) “Auto-diagnostic features”, and (11) “Implements
mechanisms able to make available platform services to third parties outside the Platform”.

The third category is related to interoperability. This category is strategically important
because interoperability is one of the key fundamentals for the platforms in the AHA/AAL
domains. Features that belong to this category are (12) “Interoperability is implemented
using a semantic approach”, (13) “Interoperability is implemented using a syntactic ap-
proach”, (14) “Implements interoperability between services and functions defined inside
the platform”, (15) “Implements interoperability between devices belonging to the plat-
form”, (16) “Implements SOA web services mechanisms to access interoperability feature”,
(17) “Implements Restful web services mechanisms to access interoperability feature”,
(18) “Offers facilities to make interoperable new sub-systems, devices, applications, etc.”,
(19) “Uses existing and well known common data models to implement interoperability”,
(20) ”Security and privacy mechanisms are implemented in interoperability”, and (21)
“Results of data analytics can be shared with other data analytics algorithms using the
Interoperability feature”.

The fourth category is tied to security, protocols, encryption and permissions. Plat-
forms have to be built on the latest standards that keep them safe and secure. These features
are (22) “All the applications only request the minimum set of permissions necessary”, (23)
“The applications are registered appropriately in the Platform, and cannot be confused with
other apps”, (24) “All inputs from external sources and the user are sanitized and validated.
This includes data received via the user interface (UI), inter-process communication (IPC)
mechanisms, such as intents, custom URLs, and network sources”, (25) “No sensitive
data are shared with third parties unless it is a necessary part of the architecture”, (26)
“Data are encrypted on the network”, (27) “All the related web servers ensure maintenance
and correction against the main known weaknesses”, (28) “Protocols and cryptographic
schemes ensure end-to-end data integrity”, (29) “Communications between Platform to the
Internet are secured”, (30) “Only authorized devices can be connected to the Platform”, (31)
“Compliance with general data protection regulation (EU) 2016/679 (GDPR) (score from 1 to
5)”, (32) “Data link protocols—SodaPop”, (33) “Data link protocols—NGSI”, (34) “Data link
protocols—Data With Open mHealth, HL7 v2&3 FHIR”, (35) “Data link protocols—KNX”,
(36) “Data link protocols—web”, (37) “Management protocols”, (38) “Security protocols—
https, OAuth2”, (39) “Security protocols—Spring, HTTPS”, (40) “Security protocols—SSL”,
(41) “Security protocols—own development”, and (42) “Publish-subscribe patterns and
related protocols”.

The fifth category is reserved for data analytics. Data analytics enable the platform
providers and developers with a deeper look into the platform functionality and help them
improve the platforms. It includes (43) “Implements real-time data analytics”, (44) “Imple-
ments predictive data analytics”, (45) “Implements data analytics for anomaly detection”,
(46) “Security and privacy mechanisms are implemented for data analytics”, (47) “Some
data analytics are specific for the AHA domain”, (48) “Data analytics are included in a
Marketplace”, (49) “Data analytics are accessible using REST/SOA API calls”, (50) “Data
analytics offer GUI interfaces to display results according to the user group (caregiver,
patient, etc.)”, (51) “Implemented data analytics analyze body parameters (heartbeat, blood
pressure, etc.)”, (52) “Implemented data analytics analyze environmental parameters (tem-
perature, humidity, luminosity, etc.)”, (53)“Visualization of data”, (54) “Visualization of
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data”, (55) “Creation of analytics”, (56) “Dashboard available for each user group (care-
giver, patient, etc.)”, (57) “Provision of suggestions for better lifestyle and personalized
coaching to seniors and their relatives”, and (58) “Provision of suggestions to the caregiver
for optimal monitoring and treatment”.

Finally, the remaining category is a system properties category. It contains information
about the operating system and type of input. Features (59) “Web application or stan-
dalone”, (60) “Input—Standard’, (61) “Input—Touch”, (62) “Input—Other”, (63) “Audio
output support”, (64) “Operating systems supported (including mobile)—Java OSGi”,
(65) “Operating systems supported (including mobile)—Web”, (66) “Operating systems
supported (including mobile)—Desktop”, and (67) “Operating systems supported (includ-
ing mobile)—Android” belong to this category.

One might consider adding more user-oriented attributes, but for the original Plat-
formUptake project, the text obtained through several months of intensive source extrac-
tions were the ones that served for the input of this study. The attributes were primarily
software oriented since most of the platforms are actually meta-platforms, or they at least
enable adding practically any user-oriented functionality. These modern platforms are not
single-purpose programs, but rather sophisticated flexible software products/frameworks
tunable for a particular purpose and use in the AHA and ALL domains.

5. AHA Platform Clustering

The 18 analyzed platforms for older people were clustered with two clustering ap-
proaches. The goal of clustering is to determine how many and which groups represent
the platforms best. The applied clustering algorithms are k-means [42] and hierarchical
clustering [43].

5.1. K-Means Clustering

The k-means algorithm combines objects into a low number of clusters. Each cluster is
represented with the cluster center that is calculated as the mean of the objects that belongs
to that cluster. An object belongs to the cluster with the nearest center. As a result, k-means
clustering divides the space of objects into Voronoi cells, one for each cluster [44].

The k-means clustering for the platforms should reveal what platforms could be best
grouped into clusters. Since there are 67 features, the space is 67-dimensional. The PCA
method combines the features into a smaller number of features (most commonly two or
three) to ease visual representation. For example, if there are just two features, the instances
can be presented with a two-dimensional plane.

Clustering was performed for two to eight clusters in two ways: with and without
the standard scaler [45,46]. This scaler removes the mean value and scales the result to
unit variance, which is a common preprocessing approach for several machine-learning
algorithms [45]. Afterwards, clustering was performed and analyzed. The most informative
clusters were obtained when clustering into two and four clusters, therefore these results
are presented in Sections 5.1.1 and 5.1.2.

5.1.1. Platform Clustering into Two Clusters

Figure 1 depicts two clusters generated with the k-means method using the stan-
dardized input data. The first cluster is clearly distinguishable from the second since
cluster_1 = {x, PCA_1(x) > −2}.

Figure 2 presents another way of clustering into two clusters. This time non-standardized
input was used. The obtained clusters are the same as with the standardized input data,
with the exception of sensiNact that now belongs to cluster 2. This indicates that there is
some disagreement between the two ways of clustering regarding the sensiNact platform,
while there is an agreement about all remaining 17 platforms.

It should be noted that there are only 15 dots visible in Figure 1 and related figures
although there are 18 platforms. The reason is that four dots are overlapped at the left
down corner of the figures and, therefore, are not seen separately. These platforms are:
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AMIGO, BeyondSilos, PERSONA, SOPRANO. These four platforms are the most similar to
each other, as the first clustering results indicate. The reason for similarity is that the values
of all 67 features are identical.

Figure 1. Result of k-means with two clusters and standardized input data.

Figure 2. Result of k-means with two clusters and non-standardized input data.

The platforms are therefore neatly divided into:

• cluster 1: ACTIVAGE, EkoSmart, FIWARE, GIRAFF+, INLIFE, INTER-IoT, REACH2020,
SOFIA2, UNCAP, universAAL

• cluster 2: AmIVITAL, OASIS, VAALID, AMIGO, BeyondSilos, PERSONA, SOPRANO

sensiNact, as mentioned, is in one clustering approach in the first, and in the other
clustering approach in the second cluster; therefore, it is not clearly distinguishable by the
applied clustering approaches.

5.1.2. Platform Clustering into Four Clusters

Clustering into four classes is presented in Figures 3 and 4. Similar to two clusters,
results in Figure 3 were obtained with standardized input data, while results in Figure 4
were obtained with non-standardized input data. The following four clusters were found:

• ACTIVAGE, FIWARE, GIRAFF+, INTER-IoT, REACH2020, SOFIA2;
• AMIGO, BeyondSilos, PERSONA, SOPRANO;
• VAALID, AmIVITAL;
• EkoSmart, INLIFE, OASIS, sensiNact, UNCAP, universAAL.
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By comparing Figures 3 and 4, one difference is observed: AmIVITAL, therefore
reasonably consistent grouping is again observed by two different sets of input data.

Figure 3. Result of k-means with four clusters and standardized input data.

Figure 4. Result of k-means with four clusters and non-standardized input data.

It is possible to visually inspect the four figures (Figures 1–4) in different ways. For
example, one question is—what differences were introduced by transitioning from two to
four clusters? Another interesting analysis is whether the two main clusters could easily be
reconstructed from the four clusters. Positive answers should provide an indication that
the presented clusters are quite consistent according to the AI methods.

Figure 3 is generated with the same input data as Figure 1, but this time with the
number of clusters set to four. Cluster 1 from the two-cluster generation corresponds to
clusters 1 and 3 in the four-cluster generation. There are two exceptions, though: in the
four-cluster generation, platforms AmIVITAL and OASIS belong to the third instead of to
the second or fourth cluster, as it would in a perfect match.

The second observation is that, when comparing Figures 2 and 4, cluster 1 of the two-
cluster generation corresponds to clusters 1 and 4 in the four-cluster generation, with the
exception of sensiNact and OASIS, which are in the fourth cluster in case of the four-cluster
generation, but are in the second cluster in case of the two-cluster generation. Nevertheless,
the four clusters reasonably correspond to the two clusters. These observations are also
confirmed with Figure A1.
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5.2. Hierarchical Clustering

Another method for clustering similar objects together is hierarchical clustering.
It starts with each object being an independent cluster. Afterwards, it combines the two
most similar clusters together and repeats this step until only one cluster remains. The
resulting representation of the hierarchically organized clusters is a dendrogram [47], where
each cluster is represented by a horizontal line. The line lengths represent the differences
between the clusters—the longer the distance, the more different the clusters; the smaller
the distance, the more similar clusters.

Figure 5 shows the dendrogram for the hierarchical clustering. There are two main
clusters. One is red-colored and the other is green-colored. The same four platforms are
treated as one, since their descriptions are computer indistinguishable: AMIGO, BeyondSi-
los, PERSONA, SOPRANO. They are at the bottom of Figure 5. They also correspond to
the second cluster in Figure 4. Cluster 3 from Figure 4 consists of VAALID and AmIVITAL,
and corresponds to the other green-marked platforms in Figure 5.

Figure 5. Results of hierarchical clustering of the 18 EU AHA platforms.

If four clusters were obtained with hierarchical clustering, they corresponded to the
four clusters from Figure 4, with the only exception of EkoSmart, which switched between
the first and the fourth cluster, according to the nomenclature of Figure 4.

Another comparison shows that the two clusters obtained in hierarchical clustering
were compatible with the k-means clustering with two clusters, as presented by Figure 1,
with the exception that OASIS belonged to the other cluster.

Therefore, there is, again, quite a consistent grouping of the 18 platforms with hierar-
chical clustering (see also Figure A1).

5.3. Interpretation of Results

A heat map was utilized to illustrate why an individual platform belongs to a particular
cluster. A heat map is a graphical representation of data where values are depicted by
colors [48]. The variations of colors may be by hue or intensity, giving a reader a better
understanding of how the data varies over space. A heat map of all input data (18 platforms
and 67 features) is shown in Figure A1 (left subfigure) and a heat map of clusters from
Figures 1–5 can be seen in Figure A1 (right subfigure). Input data on the left subfigure
contains real numbers in an interval (0, 10); hence, there is a color range that varies
between pink (value 0) and green (value 10). Yellow lines on the left subfigure represent the
border between two clusters. On the right subfigure, there are five platforms that always
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correspond to cluster 1, which is a unique property of the right subplot. These platforms are
ACTIVAGE, INTER-IoT, REACH2020, GIRAFF+, FIWARE, and SOFIA2. The reason for this
can be found on the left heat map. The five platforms distinguish themselves from other
platforms because they mostly have green-colored values of features 43–59 (for feature
indexes see Section 4). Clusters 3 and 4 have common values in features 33–67, with four
exceptions: features 39, 57, 60, and 62. They are correctly classified to the corresponding
clusters in 4 out of 5 figures on the right subfigure. Clusters from Figure 5 correspond to
clusters 1 and 2 on the right subfigure. Cluster 2 has a different structure of data in features
33–59 than cluster 1 with an exception of features 39, 42, and 57.

In a similar way, we can interpret the importance of each feature to each PCA com-
ponent. Feature importance is proportional to the absolute value of the feature coeffi-
cient [49,50]. Feature contribution over PCA1 and PCA2 can be seen in Tables 2 and 3
respectively. These tables show that the first principal component (PCA1) has the highest
positive associations with feature “Implements Restful web services mechanisms to access
interoperability feature”, which belongs to an interoperability category, and several features
related to data analytics. The second component (PCA2) has large negative associations
with features belonging to categories closely related to the IoT devices, security, protocols,
encryption and permissions, and interoperability. In summary, since the PCA1 component
is the most important (PCA2 only tries to explain the variance that was not explained by
PCA1) and several features on data analytics are associated with PCA1, the use of the PCA
method suggests that the data analytics features have the highest influence on the variance
of the analyzed data.

In total, seven PCA components were calculated, but only the first two (PCA1 and
PCA2) were used for the visualization of clusters. This is because components PCA1 and
PCA2 contained the highest explained variance ratios, 0.32 and 0.14, respectively. The
remaining components had values ≤ 0.09. The total explained variance of seven PCA
components was equal to 0.8334, which is near the preferable threshold (0.8) to prevent
overfitting of the data.

Table 2. Contributions of the top 20 features to the PCA1 component, ordered descending by abso-
lute value.

Feature Contribution

Implements restful web service mechanisms to access. . . 0.1968
Implements real-time data analytics 0.1922
Security and privacy mechanisms are implemented for. . . 0.1906
Implements data analytics, analyzes body parameters. . . 0.1900
Implements data analytics, analyzes environmental parameters. . . 0.1862
Onboard analysis, intelligent IoT device 0.1849
Devices, lifetime management (software updates, remove bugs . . . 0.1833
Creation of analytics 0.1824
Implements data analytics for anomaly detection 0.1806
Secure access to IoT devices 0.1769
Data analytics offer GUI interfaces to display results according. . . 0.1760
Data analytics are accessible using REST/SOA API calls 0.1684
Visualization of data 0.1591
Web application or standalone 0.1583
All inputs from external sources and the user are sanitized. . . 0.1577
Only authorized devices can be connected to the platform 0.1530
Implements predictive data analytics 0.1519
Some data analytics are specific for the AHA domain 0.1506
Location support if the device’s location is not static 0.1477
Operating systems supported (including mobile)—Java OSGi −0.1468
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Table 3. Contributions of the top 20 features to the PCA2 component, ordered descending by
absolute value.

Feature Contribution

All applications only request the minimum sets of permissions. . . −0.2633
Offers facilities to make interoperable new sub−systems. . . −0.2511
Remote access to IoT devices −0.2451
No sensitive data are shared with third parties. . . −0.2387
Connectivity of heterogeneous IoT devices −0.2375
Data are encrypted on the network −0.2375
IoT device activity logs, information, and status −0.2304
Protocols and cryptographic schemes ensure end−to−end data. . . −0.2224
The applications are registered appropriately in the platform. . . −0.2220
Communications between the platform to the internet are secured −0.2207
Security protocols—Spring, HTTPS −0.2185
Data link protocols—SodaPop −0.2135
Remote control of IoT devices −0.2003
Only authorized devices can be connected to the platform 0.1899
Uses existing and well-known common data models. . . 0.1770
Compliance with general data protection regulations (EU). . . −0.175
Implements interoperability between devices. . . −0.1747
Audio output support −0.1700
Publish−subscribe patterns and related protocols −0.1671
Interoperability is implemented using a syntactic approach −0.1379

6. AHA Platform Taxonomy
6.1. Taxonomy

Taxonomy is the practice and science of categorization or classification based on
discrete sets. It is a hierarchical classification, in which entities are organized into groups
or types. Many taxonomies are often hierarchies in the forms of tree structures. Creating
taxonomies often corresponds to training a decision tree from the data, where each leaf
in the tree corresponds to a specific object, e.g., a specific plant species, or in our case, a
platform [51].

Figures A2 and A3 represent the generated taxonomy on the analyzed platforms,
where Figure A2 used standardized input data while Figure A3 used non-standardized
input data. Starting from the root in Figure A3 (the top of the decision tree), which
contains all the platforms, the platforms split into the left and the right nodes based on
the feature/question: “All the related web servers ensure maintenance and corrections
against the main known weaknesses ≤ 1.875?”. This procedure of splitting platforms, with
the most significant question, repeats, until ideally there is just one platform left, i.e., all
other platforms do not correspond to the set of questions, except the one. For example,
the yellow leaf corresponds only to the AmIVITAL platform and no other. Its parent node
splits platforms looking at the feature named “Operating systems supported (including
mobile)—Java OSGi”. If the value is ≤ 5, it continues over its left arrow; if the value is > 5,
it continues over its right arrow, in this case for a leaf “AmIVITAL”. Therefore, the features
(questions) leading to the yellow node, i.e., the AmIVITAL platform, are:

• All the related web servers ensure... ≤ 1.875;
• Implemented data analytics analyze environmental. . . ≤ 0.5;
• Operating systems supported (including. . . ≤ 0.5.

In a similar way, all descriptions of the platforms can be obtained from the generated
tree, best differentiating between them. The only exception is the second node from the
left, where it is not possible to distinguish between the four platforms. While the previous
features lead to all four of them, the algorithm is not able to create further questions to
differentiate between them by using additional features.

With the exception of the four platforms, AMIGO, BeyondSilos, PERSONA, SO-
PRANO, which are so similar in the description language that they are indistinguishable,
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other platforms are distinguishable, meaning that the chosen way of creating features from
the text descriptions discriminates well.

The experiments therefore confirm that it is possible to distinguish the platforms with
the exception of the four mentioned. Moreover, the experiments indicate that some features,
such as “All the related web servers ensure maintenance and corrections against the main
known weaknesses ≤ 1.875?” are highly discriminative since they most commonly appear
at the root of the generated tree.

Further experiments indicate that a taxonomy can be used to distinguish different
clusters. To accomplish this, the platform names have to be replaced with a corresponding
cluster number and used as input to the decision tree. For example, if there are four clusters,
every platform is labeled in a range (1, 4). The motivation for this approach is to show
which properties are common to the platforms belonging to the same cluster and how
clusters differentiate between each other. Figure 6 shows a decision tree for four clusters
from Figure A1, while Figure 7 shows a taxonomy for two clusters from Figure 5 (that are
in line with clusters from Figure A1). One can observe that two features can distinguish
between two clusters (see Figure 7), and four features can be used to distinguish between
four clusters (see Figure 6).

Figure 6. Taxonomy for four clusters from Figure A1.
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Figure 7. Taxonomy for two clusters from Figure 5 (in line with clusters from Figure A1).

6.2. Practical Use of Taxonomy

With the obtained clusters and taxonomies, it is possible to classify new platforms in
the AHA field. The approach presented in this paper is also applicable to other platforms
in other domains. One would just have to create descriptions of the platforms in a similar
way and then design taxonomy trees. The algorithm and a corresponding example are
as follows:

1. Choose a platform to be classified and describe the platform with features as presented
in this paper.
Example: the Insieme platform is developed within the Italian–Slovenian Interreg
project ISE-EMH [52], and it is a significantly modified derivative of the medical part
of the EkoSmart platform.

2. Classify the chosen platform with taxonomies (see Figures A2 and A3).
Example: the Insieme platform was classified according to taxonomies (Figures A2 and
A3) into EkoSmart, which was expected, but also into INLIFE, which was not expected.

3. If both taxonomies classify the chosen platform into the same platform, the result of
clustering is the same as presented in Figures 1 and 4.
Example: the classification results from taxonomies (Figures A2 and A3) differ for
Insieme; therefore, Step 3 is not relevant for Insieme.

4. If taxonomies (Figures A2 and A3) classify differently, check the clusters in Figures 1–5,
and observe the obtained results.
Example:

• In Figures 3–5, EkoSmart and INLIFE belong to the same cluster; therefore,
Insieme, at least, to a great point, belongs to cluster 1.

• In Figure 2, EkoSmart and INLIFE belong to clusters 1 and 2; therefore, Insieme
belongs to either cluster 1 or 2.

5. Provide statistics on how often the taxonomy classification falls into the same cluster,
determining the clustering of the chosen platform.
Example: the Insieme platform belongs to cluster 1 with 4/5; and with 1/5 probability
to cluster 2. It is most similar to EkoSmart and Insieme.

The result might come as some surprise because Insieme, EkoSmart, and INLIFE have
different functionalities:

• The original EkoSmart name denoted a platform for a smart city where the same-
named platform was the EkoSmart part dedicated to older people and people with
health issues, regardless of age.
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• The INLIFE platform was dedicated to older people and provided basic care support,
functionally using data from wearables.

• Insieme is a platform dedicated to people of any age. It provides info on where a user
with a medical issue can obtain quick access to institutions, videos, pages, and forums,
a kind of expert, a local “doctor Google”.

It seems that our classification algorithm has some mixed results; 4/5 of the decisions
of Insieme belong to cluster 1. Since all three platforms have the same SW designer, i.e., the
JSI team, a potential explanation is that the properties of the software of the platform play
an important role in these classifications.

7. Discussion and Conclusions

We systematically described and evaluated 18 EU chosen platforms in the AHA and
AAL domains, because they are facilitators of technology that could be used by older people
to improve the quality of their daily lives (e.g., to become more independent in their daily
lives). The need for this study stems from the early stage of this field, where no systematic
categorization or universal support tools exist. While basic AHA and AAL domains have
existed for quite some time, new generations of these platforms have provided several new
functions that were nonexistent in previous platforms, such as meta-structure, connectivity,
and interoperability, which enable integrated use. As such, they provide opportunities to
structure, cluster, and organize the platforms, which is the goal of this study.

The above approach is basically independent of the platforms studied, and could
be applied to other domains as well. However, it is of essential importance that the
descriptions of the platforms are performed in the same systematic way, objectively and
independently of the second stage, to eliminate subjectivity. In the PlatformUptake project,
the descriptions were designed on their own, as part of the EU project, without keeping
in mind that this additional study would be performed. Creating such descriptions is
a tedious task on its own since each platform is designed with its specifics, and is also
presented typically by the authors on their web pages in their own styles, wording, and
renderings, which make the descriptions non-systematic, heterogeneous, and difficult to
unify. To cope with this issue, a uniform questionnaire was designed and filled for each
platform, while polling the designers and users alike.

Based on the text descriptions of the 18 platforms, transformed into a computer
readable form, the platforms were clustered with three clustering procedures, two k-
means, and one hierarchical, and were included into two taxonomies for classification
purposes. The input was based on the features generated from the text descriptions of the
platforms. We conclude that the platforms could be clustered into two and four clusters in
the following way:

• There are four platforms with similar text descriptions that the computer-generated fea-
tures could not distinguish among them: AMIGO, BeyondSilos, PERSONA, SOPRANO.

• The split into two clusters was:

– cluster 1: ACTIVAGE, EkoSmart, FIWARE, GIRAFF+, INLIFE, INTER-IoT,
REACH2020, SOFIA2, UNCAP, universAAL.

– cluster 2: AmIVITAL, OASIS, VAALID, AMIGO, BeyondSilos, PERSONA,
SOPRANO.

• The split into four clusters was as follows:

– cluster 1: AmIVITAL, EkoSmart, INLIFE, OASIS, sensiNact, UNCAP, univer-
sAAL.

– cluster 2: ACTIVAGE, FIWARE, GIRAFF+, INTER-IoT, REACH2020, SOFIA2.
– cluster 3: AMIGO, BeyondSilos, PERSONA, SOPRANO.
– cluster 4: VAALID.

Based on this study, any AHA platform could be put into one of the observed clusters,
thus presenting a better understanding of its type.
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Clustering into two groups displayed greater consistency than clustering into four
groups, which is to be expected. Moreover, clustering determined the platforms close to
the centroids of the clusters and the ones at the borders that were sometimes clustered in
different clusters based on the clustering method applied.

The taxonomy analysis indicates that, again, the four platforms are indistinguishably
similar, and that besides the four platforms, all other platforms are distinguishable as sepa-
rate entities. Any new AHA platform can be classified according to the two taxonomies
presented in order to find the most similar existing platform. If both taxonomies lead to the
same platform, this platform enables determining the most similar cluster. If the two tax-
onomies result in two different platforms, then the conclusion about proper clusters of the
observed platform can be derived from the clusters according to the proposed algorithm.

Another derivation from this study is that some features, such as the one appearing at
the root of the taxonomies, separate the platforms into two subgroups. The most important
feature according to our analysis is: “All the related web servers ensure maintenance and
corrections against the main known weaknesses ≤ 1.875?”. This indicates that some of the
platforms provide proper support, i.e., maintenance and corrections, and that the other
group of platforms is more of an academic nature.

In summary, the presented clustering approach and taxonomies for platforms for older
people enable integration and structuring of the field of EU platforms for older people.
In future designs and implementations of the AHA platforms, one could use clustering
and taxonomies to systematically compare them to the most similar platforms and groups
of platforms.

In future work, a deeper analysis of the clustering is required. First of all, human
experts should figure out the human meaning of the clusters. At this point, the computer
methods propose clusters from 67 features, but it is possible that, for example, humans
would prefer different features for taxonomies, which is more human comprehensible.
Second, more classifications of new platforms should be provided and some statistics with
it. Third, instead of primarily relying on software attributes of platforms, semantic and
functional attributes could be applied, e.g., the practical user-oriented functions that the
platforms provide. In this case, the platforms would be grouped and ranked due to their
actual uses. However, it should also be noted that most of the platforms are actually meta-
platforms, enabling inclusion of any functionality of the elderly; therefore, the essential
properties of the platforms would be lost. There is an implicit idea to foster a background
or a framework for a potential design of a uniform EU AHA platform, whereas the practical
design is left for a potential new project.
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Appendix A

Figure A1. Heat map of input data and heat map of clusters from Figures 1–5.

Figure A2. Taxonomy generated from standardized input data.
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Figure A3. Taxonomy generated from non-standardized input data.
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