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Abstract: Globally, there is a substantial unmet need to diagnose various diseases effectively. The
complexity of the different disease mechanisms and underlying symptoms of the patient population
presents massive challenges in developing the early diagnosis tool and effective treatment. Machine
learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to
solve some of these issues. Based on relevant research, this review explains how machine learning
(ML) is being used to help in the early identification of numerous diseases. Initially, a bibliometric
analysis of the publication is carried out using data from the Scopus and Web of Science (WOS)
databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific
authors, nations, organizations, and most cited articles. The review then summarizes the most
recent trends and approaches in machine-learning-based disease diagnosis (MLBDD), considering
the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally,
in this paper, we highlight key results and provides insight into future trends and opportunities in
the MLBDD area.

Keywords: artificial neural networks; convolutional neural networks; COVID-19; deep learning; deep
neural networks; diabetes; disease diagnosis; heart disease; kidney disease; machine learning; review

1. Introduction

In medical domains, artificial intelligence (AI) primarily focuses on developing the
algorithms and techniques to determine whether a system’s behavior is correct in disease
diagnosis. Medical diagnosis identifies the disease or conditions that explain a person’s
symptoms and signs. Typically, diagnostic information is gathered from the patient’s
history and physical examination [1]. It is frequently difficult due to the fact that many
indications and symptoms are ambiguous and can only be diagnosed by trained health
experts. Therefore, countries that lack enough health professionals for their populations,
such as developing countries like Bangladesh and India, face difficulty providing proper
diagnostic procedures for their maximum population of patients [2]. Moreover, diagnosis
procedures often require medical tests, which low-income people often find expensive and
difficult to afford.

As humans are prone to error, it is not surprising that a patient may have overdiagnosis
occur more often. If overdiagnosis, problems such as unnecessary treatment will arise,
impacting individuals’ health and economy [3]. According to the National Academics of
Science, Engineering, and Medicine report of 2015, the majority of people will encounter at
least one diagnostic mistake during their lifespan [4]. Various factors may influence the
misdiagnosis, which includes:
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• lack of proper symptoms, which often unnoticeable
• the condition of rare disease
• the disease is omitted mistakenly from the consideration

Machine learning (ML) is used practically everywhere, from cutting-edge technology
(such as mobile phones, computers, and robotics) to health care (i.e., disease diagnosis,
safety). ML is gaining popularity in various fields, including disease diagnosis in health
care. Many researchers and practitioners illustrate the promise of machine-learning-based
disease diagnosis (MLBDD), which is inexpensive and time-efficient [5]. Traditional diagno-
sis processes are costly, time-consuming, and often require human intervention. While the
individual’s ability restricts traditional diagnosis techniques, ML-based systems have no
such limitations, and machines do not get exhausted as humans do. As a result, a method
to diagnose disease with outnumbered patients’ unexpected presence in health care may
be developed. To create MLBDD systems, health care data such as images (i.e., X-ray, MRI)
and tabular data (i.e., patients’ conditions, age, and gender) are employed [6].

Machine learning (ML) is a subset of AI that uses data as an input resource [7]. The use
of predetermined mathematical functions yields a result (classification or regression) that is
frequently difficult for humans to accomplish. For example, using ML, locating malignant
cells in a microscopic image is frequently simpler, which is typically challenging to con-
duct just by looking at the images. Furthermore, since advances in deep learning (a form
of machine learning), the most current study shows MLBDD accuracy of above 90% [5].
Alzheimer’s disease, heart failure, breast cancer, and pneumonia are just a few of the dis-
eases that may be identified with ML. The emergence of machine learning (ML) algorithms
in disease diagnosis domains illustrates the technology’s utility in medical fields.

Recent breakthroughs in ML difficulties, such as imbalanced data, ML interpretation,
and ML ethics in medical domains, are only a few of the many challenging fields to handle
in a nutshell [8]. In this paper, we provide a review that highlights the novel uses of ML
and DL in disease diagnosis and gives an overview of development in this field in order to
shed some light on this current trend, approaches, and issues connected with ML in disease
diagnosis. We begin by outlining several methods to machine learning and deep learning
techniques and particular architecture for detecting and categorizing various forms of
disease diagnosis.

Motivation

The purpose of this review is to provide insights to recent and future researchers and
practitioners regarding machine-learning-based disease diagnosis (MLBDD) that will aid
and enable them to choose the most appropriate and superior machine learning/deep
learning methods, thereby increasing the likelihood of rapid and reliable disease detec-
tion and classification in diagnosis. Additionally, the review aims to identify potential
studies related to the MLBDD. In general, the scope of this study is to provide the proper
explanation for the following questions:

1. What are some of the diseases that researchers and practitioners are particularly
interested in when evaluating data-driven machine learning approaches?

2. Which MLBDD datasets are the most widely used?
3. Which machine learning and deep learning approaches are presently used in health

care to classify various forms of disease?
4. Which architecture of convolutional neural networks (CNNs) is widely employed in

disease diagnosis?
5. How is the model’s performance evaluated? Is that sufficient?

In this paper, we summarize the different machine learning (ML) and deep learning
(DL) methods utilized in various disease diagnosis applications. The remainder of the
paper is structured as follows. In Section 2, we discuss the background and overview of ML
and DL, whereas in Section 3, we detail the article selection technique. Section 4 includes
bibliometric analysis. In Section 5, we discuss the use of machine learning in various disease
diagnoses, and in Section 6, we identify the most frequently utilized ML methods and
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datatypes based on the linked research. In Section 7, we discuss the findings, anticipated
trends, and problems. Finally, Section 9 concludes the article with a general conclusion.

2. Basics and Background

Machine learning (ML) is an approach that analyzes data samples to create main
conclusions using mathematical and statistical approaches, allowing machines to learn
without programming. Arthur Samuel presented machine learning in games and pattern
recognition algorithms to learn from experience in 1959, which was the first time the
important advancement was recognized. The core principle of ML is to learn from data
in order to forecast or make decisions depending on the assigned task [9]. Thanks to
machine learning (ML) technology, many time-consuming jobs may now be completed
swiftly and with minimal effort. With the exponential expansion of computer power and
data capacity, it is becoming simpler to train data-driven ML models to predict outcomes
with near-perfect accuracy. Several papers offer various sorts of ML approaches [10,11].

The ML algorithms are generally classified into three categories such as supervised,
unsupervised, and semisupervised [10]. However, ML algorithms can be divided into
several subgroups based on different learning approaches, as shown in Figure 1. Some of
the popular ML algorithms include linear regression, logistic regression, support vector
machines (SVM), random forest (RF), and naïve Bayes (NB) [10].

Figure 1. Different types of machine learning algorithms.
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2.1. Machine Learning Algorithms

This section provides a comprehensive review of the most frequently used machine
learning algorithms in disease diagnosis.

2.1.1. Decision Tree

The decision tree (DT) algorithm follows divide-and-conquer rules. In DT models,
the attribute may take on various values known as classification trees; leaves indicate
distinct classes, whereas branches reflect the combination of characteristics that result in
those class labels. On the other hand, DT can take continuous variables called regression
trees. C4.5 and EC4.5 are the two famous and most widely used DT algorithms [12]. DT is
used extensively by following reference literature: [13–16].

2.1.2. Support Vector Machine

For classification and regression-related challenges, support vector machine (SVM)
is a popular ML approach. SVM was introduced by Vapnik in the late twentieth cen-
tury [17]. Apart from disease diagnosis, SVMs have been extensively employed in various
other disciplines, including facial expression recognition, protein fold, distant homology
discovery, speech recognition, and text classification. For unlabeled data, supervised ML
algorithms are unable to perform. Using a hyperplane to find the clustering among the data,
SVM can categorize unlabeled data. However, SVM output is not nonlinearly separable.
To overcome such problems, selecting appropriate kernel and parameters is two key factors
when applying SVM in data analysis [11].

2.1.3. K-Nearest Neighbor

K-nearest neighbor (KNN) classification is a nonparametric classification technique
invented in 1951 by Evelyn Fix and Joseph Hodges. KNN is suitable for classification
as well as regression analysis. The outcome of KNN classification is class membership.
Voting mechanisms are used to classify the item. Euclidean distance techniques are utilized
to determine the distance between two data samples. The projected value in regression
analysis is the average of the values of the KNN [18].

2.1.4. Naïve Bayes

The naïve Bayes (NB) classifier is a Bayesian-based probabilistic classifier. Based on a
given record or data point, it forecasts membership probability for each class. The most
probable class is the one having the greatest probability. Instead of predictions, the NB
classifier is used to project likelihood [11].

2.1.5. Logistic Regression

Logistic regression (LR) is an ML approach that is used to solve classification issues.
The LR model has a probabilistic framework, with projected values ranging from 0 to
1. Examples of LR-based ML include spam email identification, online fraud transaction
detection, and malignant tumor detection. The cost function, often known as the sigmoid
function, is used by LR. The sigmoid function transforms every real number between 0 and
1 [19].

2.1.6. AdaBoost

Yoav Freund and Robert Schapire developed Adaptive Boosting, popularly known
as AdaBoost. AdaBoost is a classifier that combines multiple weak classifiers into a single
classifier. AdaBoost works by giving greater weight to samples that are harder to classify
and less weight to those that are already well categorized. It may be used for categorization
as well as regression analysis [20].
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2.2. Deep Learning Overview

Deep learning (DL) is a subfield of machine learning (ML) that employs multiple
layers to extract both higher and lower-level information from input (i.e., images, numerical
value, categorical values). The majority of contemporary DL models are built on artificial
neural networks (ANN), notably convolutional neural networks (CNN), which may be
integrated with other DL models, including generative models, deep belief networks,
and the Boltzmann machine. Deep learning may be classified into three types: supervised,
semisupervised, and unsupervised. Deep neural networks (DNN), reinforcement learning,
and recurrent neural networks (RNN) are some of the most prominent DL architectures
(RNN) [21].

Each level in DL learns to convert its input data to the succeeding layers while learning
distinct data attributes. For example, the raw input may be a pixel matrix in image
recognition applications, and the first layers may detect the image’s edges. On the other
hand, the second layer will construct and encode the nose and eyes, and the third layer
may recognize the face by merging all of the information gathered from the previous two
layers [6].

In medical fields, DL has enormous promise. Radiology and pathology are two well-
known medical fields that have widely used DL in disease diagnosis over the years [22].
Furthermore, collecting valuable information from molecular state and determining disease
progression or therapy sensitivity are practical uses of DL that are frequently unidentified
by human investigations [23].

Convolutional Neural Network

Convolutional neural networks (CNNs) are a subclass of artificial neural networks
(ANNs) that are extensively used in image processing. CNN is widely employed in face
identification, text analysis, human organ localization, and biological image detection or
recognition [24]. Since the initial development of CNN in 1989, a different type of CNN has
been proposed that has performed exceptionally well in disease diagnosis over the last three
decades. A CNN architecture comprises three parts: input layer, hidden layer, and output
layer. The intermediate levels of any feedforward network are known as hidden layers,
and the number of hidden layers varies depending on the type of architecture. Convolutions
are performed in hidden layers, which contain dot products of the convolution kernel with
the input matrix. Each convolutional layer provides feature maps used as input by the
subsequent layers. Following the concealed layer are more layers, such as pooling and
fully connected layers [21]. Several CNN models have been proposed throughout the years,
and the most extensively used and popular CNN models are shown in Figure 2.

Figure 2. Some of the most well-known CNN models, along with their development time frames.

In general, it may be considered that ML and DL have grown substantially through-
out the years. The increased computational capability of computers and the enormous
number of data available inspire academics and practitioners to employ ML/DL more
efficiently. A schematic overview of machine learning and deep learning algorithms and
their development chronology is shown in Figure 3, which may be a helpful resource for
future researchers and practitioner.
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Figure 3. Illustration of machine learning and deep learning algorithms development timeline.

2.3. Performance Evaluations

This section describes the performance measures used in reference literature. Perfor-
mance indicators, including accuracy, precision, recall, and F1 score, are widely employed
in disease diagnosis. For example, lung cancer can be categorized as true positive (TP) or
true-negative (TN) if individuals are diagnosed correctly, while it can be categorized into
false positive (FP) or false negative (FN) if misdiagnosed. The most widely used metrics are
described below [10].

Accuracy (Acc) : The accuracy denotes total correctly identifying instances among all
of the instances. Accuracy can be calculated using following formulas:

ACC =
Tp + TN

Tp + TN + Fp + FN
(1)

Precision (Pn): Precision is measured as the proportion of precisely predicted to all
expected positive observations.

Pn =
Tp

Tp + Fp
(2)

Recall (Rc): The proportion of overall relevant results that the algorithm properly
recognizes is referred to as recall.

Tp

Tn + Fp
(3)

Sensitivity (Sn): Sensitivity denotes only true positive measure considering total
instances and can be measured as follows:

Sn =
Tp

Tp + FN
(4)

Specificity (Sp): It identifies how many true negatives are appropriately identified and
calculated as follows:

Sp =
TN

TN + FP
(5)
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F-measure: The F1 score is the mean of accuracy and recall in a harmonic manner.
The highest F score is 1, indicating perfect precision and recall score.

F − Measure = 2 × Precision × Recall
Precision + Recall

(6)

Area under curve (AUC): The area under the curve represents the models’ behaviors
in different situations. The AUC can be calculated as follows:

AUC =
∑ Ri(Ip)− Ip((Ip + 1)/2)

Ip + In
(7)

where lp and ln denotes positive and negative data samples and Ri is the rating of the ith
positive samples.

3. Article Selection
3.1. Identification

The Scopus and Web of Science (WOS) databases are utilized to find original research
publications. Due to their high quality and peer review paper index, Scopus and WOS
are prominent databases for article searching, as many academics and scholars utilized
them for systematic review [25,26]. Using keywords along with Boolean operators, the title
search was carried out as follows:

“disease” AND (“diagnsois” OR “Supprot vector machine” OR “SVM” OR “KNN” OR
“K-nearest neighbor” OR “logistic regression” OR “K-means clustering” OR “random forest”
OR “RF” OR “adaboost” OR “XGBoost” , “decision tree” OR “neural network” OR “NN”
OR “artificial neural network” OR “ANN" OR “convolutional neural network” OR “CNN”
OR “deep neural network” OR “DNN” OR “machine learning" or “adversarial network”
or “GAN”).

The initial search yielded 16,209 and 2129 items, respectively, from Scopus and Web of
Science (WOS).

3.2. Screening

Once the search period was narrowed to 2012–2021 and only peer-reviewed English
papers were evaluated, the total number of articles decreased to 9117 for Scopus and 1803
for WOS, respectively.

3.3. Eligibility and Inclusion

These publications were chosen for further examination if they are open access and
are journal articles. There were 1216 full-text articles (724 from the Scopus database and 492
from WOS). Bibliographic analysis was performed on all 1216 publications. One investiga-
tor (Z.S.) imported the 1216 article information as excel CSV data for future analysis. Excel
duplication functions were used to identify and eliminate duplicates. Two independent
reviewers (M.A. and Z.S.) examined the titles and abstracts of 1192 publications. Disagree-
ments were settled through conversation. We omitted studies that were not relevant to
machine learning but were relevant to disease diagnosis or vice versa.

After screening the titles and abstracts, the complete text of 102 papers was examined,
and all 102 articles satisfied all inclusion requirements. Factors that contributed to the
article’s exclusion from the full-text screening includes:

1. Inaccessibility of the entire text
2. Nonhuman studies, book chapters, reviews
3. Incomplete information related to test result

Figure 4 shows the flow diagram of the systematic article selection procedure used in
this study.
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Figure 4. MLBDD article selection procedure used in this study.

4. Bibliometric Analysis

The bibliometric study in this section was carried out using reference literature gath-
ered from the Scopus and WOS databases. The bibliometric study examines publications
in terms of the subject area, co-occurrence network, year of publication, journal, citations,
countries, and authors.

4.1. Subject Area

Many research disciplines have uncovered machine learning-based disease diagnostics
throughout the years. Figure 5 depicts a schematic representation of machine learning-
based disease detection spread across several research fields. According to the graph,
computer science (40%) and engineering (31.2%) are two dominating fields that vigorously
concentrated on MLBDD.

Figure 5. Distribution of articles by subject area.

4.2. Co-Occurrence Network

Co-occurrence of keywords provides an overview of how the keywords are intercon-
nected or used by the researchers. Figure 6 displays the co-occurrence network of the
article’s keywords and their connection, developed by VOSviewer software. The figure
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shows that some of the significant clusters include neural networks (NN), decision trees
(DT), machine learning (ML), and logistic regression (LR). Each cluster is also connected
with other keywords that fall under that category. For instance, the NN cluster contains
support vector machine (SVM), Parkinson’s disease, and classification.

Figure 6. Bibliometric map representing co-occurrence analysis of keywords in network visualization.

4.3. Publication by Year

The exponential growth of journal publications is observed from 2017. Figure 7
displays the number of publications between 2012 to 2021 based on the Scopus and WOS
data. Note that while the image may not accurately depict the MLBDD’s real contribution,
it does illustrate the influence of MLBDD over time.

Figure 7. Publications of machine-learning-based disease diagnosis (MLBDD) by year.

4.4. Publication by Journal

We investigated the most prolific journals in MLBDD domains based on our referred
literature.The top ten journals and the number of articles published in the last ten years are
depicted in Figure 8. IEEE Access and Scientific Reports are the most productive journals
that published 171 and 133 MLBDD articles, respectively.
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Figure 8. Publications by journals.

4.5. Publication by Citations

Citations are one of the primary indicators of an article’s effect. Here, we have
identified the top ten cited articles using the R Studio tool. Table 1 summarizes the top
articles that achieved the highest citation during the year between 2012 to 2021. Note that
Google Scholar and other online databases may have various indexing procedures and
times; therefore, the citations in this manuscript may differ from the number of citations
shown in this study. The table shows that published articles by [27] earned the most
citations (257), with 51.4 citations per year, followed by Gray [28]’s article, which obtained
218 citations. It is assumed that all the authors included in Table 1 are among those
prominent authors that contributed to MLBDD.

Table 1. Top ten cited papers published in MLBDD in between 2012–2021 based on Scopus and
WOS database.

Author(s) Article Titles Citation

[27]
Machine learning for prediction of all-cause mortality in patients with
suspected coronary artery disease: a 5-year multicentre prospective registry
analysis

257

[28] Random forest-based similarity measures for multi-modal classification of
Alzheimer’s disease 248

[29] Effective Heart disease prediction Using hybrid Machine Learning techniques 214

[30] Deep Convolutional Neural Network based medical image classification for
disease diagnosis 155

[31] Detection of subjects and brain regions related to Alzheimer’s disease using
3D MRI scans based on Eigenbrain and Machine Learning 147

[32]
Using methods from the data-mining and machine-learning literature for
disease classification and prediction: a case study examining classification of
Heart failure subtypes

139

[33] DWT based detection of Epileptic Seizure From EEG signals using Naive
Bayes and k-NN classifiers 134

[34] Random Forest ensembles for detection and prediction of Alzheimer’s disease
with a good between-cohort robustness 129

[35] ECG Arrhythmia classification based on optimum-path forest 111

[36] Gaussian process classification of Alzheimer’s disease and mild cognitive
impairment from resting-state fMRI 107

4.6. Publication by Countries

Figure 9 displayed that China published the most publications in MLBDD, total
259 articles. USA and India are placed 2nd and 3rd, respectively, as they published 139 and
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103 papers related to MLBDD. Interestingly, four out of the top ten productive countries
are from Asia: China, India, Korea, and Japan.

Figure 9. Top ten countries that contributed to MLBDD literature.

4.7. Publication by Author

According to Table 2, author Kim J published the most publications (20 out of 1216).
Wang Y and Li J Ranked 2nd and 3rd by publishing 19 and 18 articles, respectively.
As shown in Table 2, the number of papers produced by the top 10 authors ranges be-
tween 15–20.

Table 2. Top ten authors based on total number of publications.

Author Total Article

Kim, J. 20
Wang, Y. 19

Li, J. 18
Liu, Y. 18

Chen, Y. 17
Kim, H. 16
Kim, Y. 15
Lee, S. 15
Li, Y. 15

Wang, L. 15

5. Machine Learning Techniques for Different Disease Diagnosis

Many academics and practitioners have used machine learning (ML) approaches in
disease diagnosis. This section describes many types of machine-learning-based disease
diagnosis (MLBDD) that have received much attention because of their importance and
severity. For example, due to the global relevance of COVID-19, several studies concen-
trated on COVID-19 disease detection using ML from 2020 to the present, which also
received greater priority in our study. Severe diseases such as heart disease, kidney disease,
breast cancer, diabetes, Parkinson’s, Alzheimer’s, and COVID-19 are discussed briefly,
while other diseases are covered briefly under the “other disease”.

5.1. Heart Disease

Most researchers and practitioners use machine learning (ML) approaches to identify
cardiac disease [37,38]. Ansari et al. (2011), for example, offered an automated coronary
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heart disease diagnosis system based on neurofuzzy integrated systems that yield around
89% accuracy [37]. One of the study’s significant weaknesses is the lack of a clear explana-
tion for how their proposed technique would work in various scenarios such as multiclass
classification, big data analysis, and unbalanced class distribution. Furthermore, there is
no explanation about the credibility of the model’s accuracy, which has lately been highly
encouraged in medical domains, particularly to assist users who are not from the medical
domains in understanding the approach.

Rubin et al. (2017) uses deep-convolutional-neural-network-based approaches to
detect irregular cardiac sounds. The authors of this study adjusted the loss function to
improve the training dataset’s sensitivity and specificity. Their suggested model was tested
in the 2016 PhysioNet computing competition. They finished second in the competition,
with a final prediction of 0.95 specificity and 0.73 sensitivity [39].

Aside from that, deep-learning (DL)-based algorithms have lately received attention
in detecting cardiac disease. Miao and Miao et al. (2018), for example, offered a DL-based
technique to diagnosing cardiotocographic fetal health based on a multiclass morphologic
pattern. The created model is used to differentiate and categorize the morphologic pattern
of individuals suffering from pregnancy complications. Their preliminary computational
findings include accuracy of 88.02%, a precision of 85.01%, and an F-score of 0.85 [40].
During that study, they employed multiple dropout strategies to address overfitting prob-
lems, which finally increased training time, which they acknowledged as a tradeoff for
higher accuracy.

Although ML applications have been widely employed in heart disease diagnosis,
no research has been conducted that addressed the issues associated with unbalanced
data with multiclass classification. Furthermore, the model’s explainability during final
prediction is lacking in most cases. Table 3 summarizes some of the cited publications that
employed ML and DL approaches in the diagnosis of cardiac disease. However, further
information about machine-learning-based cardiac disease diagnosis can be found in [5].

Table 3. Referenced literature that considered machine-learning-based heart disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[41] Predict coronary heart disease Gaussian NB,
Bernoulli NB, and RF Cleveland dataset Tabular Accuracy— 85.00%, 85.00%

and 75.00%

[42] Predicting heart diseases RF, CNN Cleveland dataset Tabular

RF (Accuracy—80.327%,
Precision—82%,

Recall—80%,
F1-score—80%), CNN

(Accuracy—78.688,
Precision—80%,

Recall—79%,
F1-score—78%)

[43] Heart disease classification SVM Cleveland database Tabular Accuracy—73–91%

[44] Heart disease classification Back-propagation
NN, LR Cleveland dataset Tabular Accuracy (BNN—85.074%,

LR—92.58%)

[45] ECG arrhythmia for heart
disease detection

SVM and Cuckoo
search optimized NN Cleveland dataset Tabular Accuracy (SVM—94.44%)

[46]
Intelligent scoring system for

the prediction of cardiac arrest
within 72 h

SVM Privately ownend Tabular

Specificity—78.8%,
Sensitivity—62.3%, Positive

predictive value—10%,
Negative predictive

value—98.2%

[47]
Automatically identify
5 different categories of

heartbeats in ECG signals
CNN MIT-BIH Tabular

Accuracy—94% (balance
data) Accuracy—89.07%

(imbalance data)

[48] Novel heartbeat recognition
method is presented SVM MIT-BIH Tabular

Accuracy—97.77%
(imbalance data),

Accuracy—97.08%
(noise-free ECGs)
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5.2. Kidney Disease

Kidney disease, often known as renal disease, refers to nephropathy or kidney damage.
Patients with kidney disease have decreased kidney functional activity, which can lead to
kidney failure if not treated promptly. According to the National Kidney Foundation, 10% of
the world’s population has chronic kidney disease (CKD), and millions die each year due to
insufficient treatment. The recent advancement of ML- and DL-based kidney disease diagnosis
may provide a possibility for those countries that are unable to handle the kidney disease
diagnostic-related tests [49]. For instance, Charleonnan et al. (2016) used publicly available
datasets to evaluate four different ML algorithms: K-nearest neighbors (KNN), support vector
machine (SVM), logistic regression (LR), and decision tree classifiers and received the accuracy
of 98.1%, 98.3%, 96.55%, and 94.8%, respectively [50]. Aljaaf et al. (2018) conducted a similar
study. The authors tested different ML algorithms, including RPART, SVM, LOGR, and MLP,
using a comparable dataset, CKD, as used by [50], and found that MLP performed best
(98.1 percent) in identifying chronic kidney disease [51]. To identify chronic kidney disease,
Ma et al. (2020) utilizes a collection of datasets containing data from many sources [52]. Their
suggested heterogeneous modified artificial neural network (HMANN) model obtained an
accuracy of 87–99%.

Table 4 summarizes some of the cited publications that employed ML and DL ap-
proaches to diagnose kidney disease.

Table 4. Referenced literature that considered machine-learning-based kidney disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[13] Analysis of Chronic Kidney
Disease NB, DT, and RF Chronic kidney

disease dataset Tabular Accuracy—100% (RF)

[53] Kidney disease detection and
segmentation ANN & kernel KMC

100 collected image
data of patients

Ultrasound
Image Accuracy—99.61%

[54] Classification of Chronic kidney
disease

LR, Feedforward NN
and Wide DL

Chronic kidney
disease dataset Tabular

Feedforward NN
(F1-score—99%,
Precision—97%,

Recall—99%,
and AUC—99%)

[55] Chronic kidney disease CNN-SVM Privately own dataset Tabular
Accuracy—97.67%,
Sensitivity—97.5%,
Specificity—97.83%

[56]
Detection and localization of

kidneys in patients with
autosomal dominant polycystic

CNN Privately own data Image Accuracy—95%

5.3. Breast Cancer

Many scholars in the medical field have proposed machine-learning (ML)-based breast
cancer analysis as a potential solution to early-stage diagnosis. Miranda and Felipe (2015),
for example, proposed fuzzy-logic-based computer-aided diagnosis systems for breast
cancer categorization. The advantage of fuzzy logic over other classic ML techniques is
that it can minimize computational complexity while simulating the expert radiologist’s
reasoning and style. If the user inputs parameters such as contour, form, and density,
the algorithm offers a cancer categorization based on their preferred method [57]. Miranda
and Felipe (2015)’s proposed model had an accuracy of roughly 83.34%. The authors
employed an approximately equal ratio of images for the experiment, which resulted in
improved accuracy and unbiased performance. However, as the study did not examine the
interpretation of their results in an explainable manner, it may be difficult to conclude that
accuracy, in general, indicates true accuracy for both benign and malignant classifications.
Furthermore, no confusion matrix is presented to demonstrate the models’ actual prediction
for the each class.

Zheng et al. (2014) presented hybrid strategies for diagnosing breast cancer disease
utilizing k-means clustering (KMC) and SVM. Their proposed model considerably de-
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creased the dimensional difficulties and attained an accuracy of 97.38% using Wisconsin
Diagnostic Breast Cancer (WDBC) dataset [58]. The dataset is normally distributed and has
32 features divided into 10 categories. It is difficult to conclude that their suggested model
will outperform in a dataset with an unequal class ratio, which may contain missing value
as well.

To determine the best ML models, Asri et al. (2016) applied various ML approaches
such as SVM, DT (C4.5), NB, and KNN on the Wisconsin Breast Cancer (WBC) datasets.
According to their findings, SVM outperformed all other ML algorithms, obtaining an
accuracy of 97.13% [59]. However, if a same experiment is repeated in a different database,
the results may differ. Furthermore, experimental results accompanied by ground truth
values may provide a more precise estimate in determining which ML model is the best
or not.

Mohammed et al. (2020) conducted a nearly identical study. The authors employ
three ML algorithms to find the best ML methods: DT (J48), NB, and sequential minimal
optimization (SMO), and the experiment was conducted on two popular datasets: WBC and
breast cancer datasets. One of the interesting aspects of this research is that they focused on
data imbalance issues and minimized the imbalance problem through the use of resampling
data labeling procedures. Their findings showed that the SMO algorithms exceeded the
other two classifiers, attaining more than 95% accuracy on both datasets [60]. However,
in order to reduce the imbalance ratio, they used resampling procedures numerous times,
potentially lowering the possibility of data diversity. As a result, the performance of those
three ML methods may suffer on a dataset that is not normally distributed or imbalanced.

Assegie (2021) used the grid search approach to identify the best k-nearest neighbor
(KNN) settings. Their investigation showed that parameter adjustment had a considerable
impact on the model’s performance. They demonstrated that by fine-tuning the settings,
it is feasible to get 94.35% accuracy, whereas the default KNN achieved around 90%
accuracy [61].

To detect breast cancer, Bhattacherjee et al. (2020) employed a backpropagation neural
network (BNN). The experiment was carried out in the WBC dataset with nine features,
and they achieved 99.27% accuracy [62]. Alshayeji et al. (2021) used the WBCD and
WDBI datasets to develop a shallow ANN model for classifying breast cancer tumors.
The authors demonstrated that the suggested model could classify tumors up to 99.85%
properly without selecting characteristics or tweaking the algorithms [63].

Sultana et al. (2021) detect breast cancer using a different ANN architecture on the
WBC dataset. They employed a variety of NN architectures, including the multilayer
perceptron (MLP) neural network, the Jordan/Elman NN, the modular neural network
(MNN), the generalized feedforward neural network (GFFNN), the self-organizing feature
map (SOFM), the SVM neural network, the probabilistic neural network (PNN), and the
recurrent neural network (RNN). Their final computational result demonstrates that the
PNN with 98.24% accuracy outperforms the other NN models utilized in that study [64].
However, this study lacks the interpretability as of many other investigations because it
does not indicate which features are most important during the prediction phase.

Deep learning (DL) was also used by Ghosh et al. (2021). The WBC dataset was used by
the authors to train seven deep learning (DL) models: ANN, CNN, GRU, LSTM, MLP, PNN,
and RNN. Long short-term memory (LSTM) and gated recurrent unit (GRU) demonstrated
the best performance among all DL models, achieving an accuracy of roughly 99% [65].
Table 5 summarizes some of the referenced literature that used ML and DL techniques in
breast cancer diagnosis.
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Table 5. Referenced literature that considered machine-learning-based breast cancer disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[14] Breast cancer NB, BN, RF and DT
(C4.5) BCSC Image ROC—0.937 (BN)

[66] Classification of breast density
and mass SVM Mini-MIAS, INBreast Image

Mini-MIAS:
Accuracy—99%,

AUC—0.9325

[67] Classify vector features as
malignant or non-malignant SVM IRMA, DDSM Image

IRMA: Sensitivity—99%,
Specificity—99% , DDSM:

Sensitivity—97%,
Specificity—96%

[68] Classification of breast cancers
by tumor size LR-ANN 156 Privately owned

cases Image

Accuracy—81.8%,
Sensitivity—85.4%,
Specificity—77.8%,

AUC—0.855

[69] CAD tumor Binary-LR 18 Privately owned
cases Image Accuracy—80.39%

[70] Differentiating malignant and
benign masses NB, LR-AdaBoost 246 Privately owned

image Image
Sensitivity—90%,

Specificity—97.5%,
AUC—0.98

5.4. Diabetes

According to the International Diabetes Federation (IDF), there are currently over
382 million individuals worldwide who have diabetes, with that number anticipated to
increase to 629 million by 2045 [71]. Numerous studies widely presented ML-based systems
for diabetes patient detection. For example, Kandhasamy and Balamurali (2015) compared
ML classifiers (J48 DT, KNN, RF, and SVM) for classifying patients with diabetes mellitus.
The experiment was conducted on the UCI Diabetes dataset, and the KNN (K = 1) and RF
classifiers obtained near-perfect accuracy [72]. However, one disadvantage of this work
is that it used a simplified Diabetes dataset with only eight binary-classified parameters.
As a result, getting 100% accuracy with a less difficult dataset is unsurprising. Furthermore,
there is no discussion of how the algorithms influence the final prediction or how the result
should be viewed from a nontechnical position in the experiment.

Yahyaoui et al. (2019) presented a Clinical Decision Support Systems (CDSS) to aid
physicians or practitioners with Diabetes diagnosis. To reach this goal, the study utilized
a variety of ML techniques, including SVM, RF, and deep convolutional neural network
(CNN). RF outperformed all other algorithms in their computations, obtaining an accuracy
of 83.67%, while DL and SVM scored 76.81% and 65.38% accuracy, respectively [73].

Naz and Ahuja (2020) employed a variety of ML techniques, including artificial neural
networks (ANN), NB, DT, and DL, to analyze open-source PIMA Diabetes datasets. Their
study indicates that DL is the most accurate method for detecting the development of
diabetes, with an accuracy of approximately 98.07% [71]. The PIMA dataset is one of the
most thoroughly investigated and primary datasets, making it easy to perform conven-
tional and sophisticated ML-based algorithms. As a result, gaining greater accuracy with
the PIMA Indian dataset is not surprising. Furthermore, the paper makes no mention of
interpretability issues and how the model would perform with an unbalanced dataset or
one with a significant number of missing variables. As is widely recognized in healthcare,
several types of data can be created that are not always labeled, categorized, and prepro-
cessed in the same way as the PIMA Indian dataset. As a result, it is critical to examine the
algorithms’ fairness, unbiasedness, dependability, and interpretability while developing
a CDSS, especially when a considerable amount of information is missing in a multiclass
classification dataset.

Ashiquzzaman et al. (2017) developed a deep learning strategy to address the issue
of overfitting in diabetes datasets. The experiment was carried out on the PIMA Indian
dataset and yielded an accuracy of 88.41%. The authors claimed that performance improved
significantly when dropout techniques were utilized and the overfitting problems were
reduced [74]. Overuse of the dropout approach, on the other hand, lengthens overall
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training duration. As a result, as they did not address these concerns in their study,
assessing whether their proposed model is optimum in terms of computational time
is difficult.

Alhassan et al. (2018) introduced the King Abdullah International Research Center
for Diabetes (KAIMRCD) dataset, which includes data from 14k people and is the world’s
largest diabetic dataset. During that experiment, the author presented a CDSS architecture
based on LSTM and GRU-based deep neural networks, which obtained up to 97% accu-
racy [75]. Table 6 highlights some of the relevant publications that employed ML and DL
approaches in the diagnosis of diabetic disease.

Table 6. Referenced literature that considered machine-learning-based diabetic disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[76] Diabetes and hypertension DPM Privately owned Tabular Accuracy—96.74%
[77] Type 1 diabetes RF DIABIM-MUNE Tabular AUC—0.80

[78] Diabetes classification KNN Privately owned-
4900 samples Tabular Accuracy—99.9%

[15]
Predict diabetic retinopathy and

identify interpretable
biomedical features

SVM, DT, ANN,
and LR Privately owned Tabular SVM (Accuracy—79.5%,

AUC—0.839)

[79] Diabetes classification PSO and MLPNN Privately owned Tabular Accuracy—98.73%

5.5. Parkinson’s Disease

Parkinson’s disease is one of the conditions that has received a great amount of
attention in the ML literature. It is a slow-progressing chronic neurological disorder. When
dopamine-producing neurons in certain parts of the brain are harmed or die, people
have difficulty speaking, writing, walking, and doing other core activities [80]. There are
several ML-based approaches have been proposed. For instance, Sriram et al. (2013) used
KNN, SVM, NB, and RF algorithms to develop intelligent Parkinson’s disease diagnosis
systems. Their computational result shows that, among all other algorithms, RF shows the
best performance (90.26% accuracy), and NB demonstrate the worst performance (69.23%
accuracy) [81].

Esmaeilzadeh et al. (2018) proposed a deep CNN-based model to diagnose Parkinson’s
disease and achieved almost 100% accuracy on train and test set [82]. However, there was
no mention of any overfitting difficulties in the trial. Furthermore, the experimental results
do not provide a good interpretation of the final classification and regression, which is
now widely expected, particularly in CDSS. Grover et al. (2018) also used DL-based
approaches on UCI’s Parkinson’s telemonitoring voice dataset. Their experiment using
DNN has achieved around 81.67% accuracy in diagnosing patients with Parkinson’s disease
symptoms [80].

Warjurkar and Ridhorkar (2021) conducted a thorough study on the performance of
the ML-based approach in decision support systems that can detect both brain tumors and
diagnose Parkinson’s patients. Based on their findings, it was obvious that, when compared
to other algorithms, boosted logistic regression surpassed all other models, attaining 97.15%
accuracy in identifying Parkinson’s disease patients. In tumor segmentation, however,
the Markov random technique performed best, obtaining an accuracy of 97.4% [83]. Parkin-
son’s disease diagnosis using ML and DL approaches is summarized in Table 7, which
includes a number of references to the relevant research.
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Table 7. Referenced literature that considered machine-learning-based Parkinson’s disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[84] Parkinson’s disease KMC and DT Privately owned Speech Accuracy—95.56%

[16] Parkinson’s disease subtype
classification DT, LR PPMI Tabular

Accuracy—98.3%,
Sensitivity—98.41%,

and Specificity—99.07%

[85] Parkinson’s disease
identification KNN and ANN

Parkinson’s UI
machine learning

dataset
Tabular ANN (Accuracy—96.7%)

[86] Diagnosis system for
Parkinson’s disease ANN, KMC Parkinsons dataset Speech and

sound Accuracy—99.52%

[87] identify Parkinson’s disease SVM NIHS Speech and
sound

Accuracy—83.33%, True
positive—75%, False

positive—16.67%

5.6. COVID-19

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known
as COVID-19, pandemic has become humanity’s greatest challenge in contemporary his-
tory. Despite the fact that a vaccine had been advanced in distribution because to the
global emergency, it was unavailable to the majority of people for the duration of the
crisis [88]. Because of the new COVID-19 Omicron strain’s high transmission rates and
vaccine-related resistance, there is an extra layer of concern. The gold standard for diag-
nosing COVID-19 infection is now Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR) [89,90]. Throughout the epidemic, the researcher advocated other
technologies including as chest X-rays and Computed Tomography (CT) combined with
Machine Learning and Artificial Intelligence to aid in the early detection of people who
might be infected. For example, Chen et al. (2020) proposed a UNet++ model employing
CT images from 51 COVID-19 and 82 non-COVID-19 patients and achieved an accuracy of
98.5% [91]. Ardakani et al. (2020) used a small dataset of 108 COVID-19 and 86 non-COVID-
19 patients to evaluate ten different DL models and achieved a 99% overall accuracy [92].
Wang et al. (2020) built an inception-based model with a large dataset, containing 453 CT
scan images, and achieved 73.1% accuracy. However, the model’s network activity and
region of interest were poorly explained [93] . Li et al. (2020) suggested the COVNet model
and obtain 96% accuracy utilizing a large dataset of 4356 chest CT images of Pneumonia
patients, 1296 of which were verified COVID-19 cases [94].

Several studies investigated and advised screening COVID-19 patients utilizing chest
X-ray images in parallel, with major contributions in [95–97]. For example, Hemdan et al.
(2020) used a small dataset of only 50 images to identify COVID-19 patients from chest
X-ray images with an accuracy of 90% and 95%, respectively, using VGG19 and ResNet50
models [95]. Using a dataset of 100 chest X-ray images, Narin et al. (2021) distinguished
COVID-19 patients from those with Pneumonia with 86% accuracy [97].

In addition, in order to develop more robust and better screening systems, other studies
considered larger datasets. For example, Brunese et al. (2020) employed 6505 images with a
data ratio of 1:1.17, with 3003 images classified as COVID-19 symptoms and 3520 as “other
patients” for the objectives of that study [98]. With a dataset of 5941 images, Ghoshal and
Tucker (2020) achieved 92.9% accuracy [99]. However, neither study looked at how their
proposed models would work with data that was severely unbalanced and had mismatched
class ratios. Apostolopoulos and Mpesiana (2020) employed a CNN-based Xception model
on an imbalanced dataset of 284 COVID-19 and 967 non-COVID-19 patient chest X-ray
images and achieved 89.6% accuracy [100].

The following Table 8 summarizes some of the relevant literature that employed ML
and DL approaches to diagnose COVID-19 disease.
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Table 8. Referenced literature that considered machine-learning-based COVID-19 disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[94] COVID-19 disease detection CNN Mixed dataset Image Accuracy—90%
[91] COVID-19 disease detection CNN Mixed dataset Image Accuracy—98.5%
[101] COVID-19 disease detection CNN Mixed dataset Image Accuracy—86%
[102] COVID-19 disease detection CNN Cohen’s dataset Image Accuracy—94.1%

[6] COVID-19 disease detection and image
segmentation CNN Cohen’s dataset Image and

Tabular Accuracy—95.38%

5.7. Alzheimer’s Disease

Alzheimer is a brain illness that often begins slowly but progresses over time, and it
affects 60–70% of those who are diagnosed with dementia [103]. Alzheimer’s disease
symptoms include language problems, confusion, mood changes, and other behavioral
disorders. Body functions gradually deteriorated, and the usual life expectancy is three
to nine years after diagnosis. Early diagnosis, on the other hand, may assist to avoid
and take required actions to enter into suitable treatment as soon as possible, which will
also raise the possibility of life expectancy. Machine learning and deep learning have
shown promising outcomes in detecting Alzheimer’s disease patients throughout the years.
For instance, Neelaveni and Devasana (2020) proposed a model that can detect Alzheimer
patients using SVM and DT, and achieved an accuracy of 85% and 83% respectively [104].
Collij et al. (2016) also used SVM to detect single-subject Alzheimer’s disease and mild
cognitive impairment (MCI) prediction and achieved an accuracy of 82% [105].

Multiple algorithms have been adopted and tested in developing ML based Alzheimer
disease diagnosis. For example, Vidushi and Shrivastava (2019) experimented using
Logistic Regression (LR), SVM, DT, ensemble Random Forest (RF), and Boosting Adaboost
and achieved an accuracy of 78.95%, 81.58%, 81.58%, 84.21%, and 84.21% respectively [106].
Many of the study adopted CNN based approach to detect Alzheimer patients as CNN
demonstrates robust results in image processing compared to other existing algorithms.
As a consequence, Ahmed et al. (2020) proposed a CNN model for earlier diagnosis
and classification of Alzheimer disease. Within the dataset consists of 6628 MRI images,
the proposed model achieved 99% accuracy [107]. Nawaz et al. (2020) proposed deep
feature-based models and achieved an accuracy of 99.12% [108]. Additionally, Studies
conducted by Haft-Javaherian et al. (2019) [109] and Aderghal et al. (2017) [110] are some
of the CNN based study that also demonstrates the robustness of CNN based approach
in Alzheimer disease diagnosis. ML and DL approaches employed in the diagnosis of
Alzheimer’s disease are summarized in Table 9.

Table 9. Referenced literature that considered Machine Learning-based Alzheimer disease diagnosis.

Study Contributions Algorithm Dataset Data Type Performance Evaluation

[111] Automatic diagnosis of Alzheimer’s
disease and mild cognitive impairment CNN+SVM F-FDG PET :PET Image Accuracy—74–90%

[112] Predicting transition from mild
cognitive impairment to Alzheimer’s LR, ARN, DT 1913 privately owned

cases Tabular

Accuracy—(89.52 ± 0.36%),
AUC-ROC (92.08 ± 0.12),

Sensitivity—(82.11 ± 0.42%)
and Positive predictive
value (75.26 ± 0.86%)

[113] Automatic classification of Alzheimer’s DNN+RF Tabular Accuracy—
67%

5.8. Other Diseases

Beyond the disease mentioned above, ML and DL have been used to identify var-
ious other diseases. Big data and increasing computer processing power are two key
reasons for this increased use. For example, Mao et al. (2020) used Decision Tree (DT) and
Random Forest (RF) to disease classification based on eye movement [114]. Nosseir and
Shawky (2019) evaluated KNN and SVM to develop automatic skin disease classification
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systems, and the best performance was observed using KNN by achieving an accuracy
of 98.22% [115]. Khan et al. (2020) employed CNN-based approaches such as VGG16
and VGG19 to classify multimodal Brain tumors. The experiment was carried out using
publicly available three image datasets: BraTs2015, BraTs2017, and BraTs2018, and achieved
97.8%, 96.9%, and 92.5% accuracy, respectively [116]. Amin et al. (2018) conducted a similar
experiment utilizing the RF classifier for tumor segmentation. The authors achieved 98.7%,
98.7%, 98.4%, 90.2%, and 90.2% accuracy using BRATS 2012, BRATS 2013, BRATS 2014,
BRATS 2015, and ISLES 2015 dataset, respectively [117].

Dai et al. (2019) proposed a CNN-based model to develop an application to detect
Skin cancer. The authors used a publicly available dataset, HAM10000, to experiment and
achieved 75.2% accuracy [118] . Daghrir et al. (2020) evaluated KNN, SVM, CNN, Majority
Voting using ISIC (International Skin Imaging Collaboration) dataset to detect Melanoma
skin cancer. The best result was found using Majority Voting (88.4% accuracy) [119].
Table 10 summarizes some of the referenced literature that used ML and DL techniques in
various disease diagnosis.

Table 10. Referenced literature that considered Machine Learning on various disease diagnoses.

Study Contributions Algorithm Dataset Data
Type

Performance
Evaluation

[120] Classify pediatric colonic inflammatory
bowel disease subtype RF 74 Privately owned

cases Image Accuracy—100%

[121] classification of liver diseases svm ILPD and BUPA Tabular
Accuracy—90–92%,
Sensitivity—89–91%,
F1-score—94–94.3%

[122] Hypertension LR and ANN BRFSS Tabular Accuracy—72%,
AUC > 0.77

[123] Brain tumor diagnostic CNN
Brain tumor

challenge websites
and MRI centers

Image Accuracy—90–99%

[124] Brain tumor segmentation for
multi-modality MRI RF MICCAI, BraTS

2013 Image 88% disc overlap

[125] Melanoma detection with dermoscopic
images

SVM with
color and

feature
extractor

PH2 Image Accuracy—96%

[126] Melanoma skin cancer detection NB, DT,
and KNN MED-NODE Image DT (Accuracy—82.35%)

[127] Skin cancer detection with infrared
thermal imaging

Ensemble
learning and

DL
Image

Precision—0.9665,
Recall—0.9411,

F1-score—0.9536,
ROC-AUC—0.9185

[128] Hepatocellular carcinoma InceptionV3
Genomic data

commons
databases

Image Accuracy—89–96%

[129] Identification of liver cancer

Watershed
gaussian
based DL
(WGDL)

Privately owned Image Accuracy—99.38%

[130] Hepatocellular carcinoma (HCC)
postoperative death outcomes

RF, Gradient
boosting,

Gbm, LR, DT

BioStudies
database Tabular AUC—0.803 (RF)

6. Algorithm and Dataset Analysis

Most of the referenced literature considered multiple algorithms in MLBDD ap-
proaches. Here we have addressed multiple algorithms as hybrid approaches. For in-
stance, Sun et al. (2021) used hybrid approaches to predict coronary Heart disease using
Gaussian Naïve Bayes, Bernoulli Naïve Bayes, and Random Forest (RF) algorithms [111].
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Bemando et al. (2021) adopted CNN and SVM to automate the diagnosis of Alzheimer’s
disease and mild cognitive impairment [41]. Saxena et al. (2019) used KNN and Decision
Tree (DT) in Heart disease diagnosis [131]; Elsalamony (2018) employed Neural Networks
(NN) and SVM in detecting Anaemia disease in human red blood cells [132]. One of the
key benefits of using the hybrid technique is that it is more accurate than using single
ML models.

According to the relevant literature, the most extensively utilized induvial algorithms
in developing MLBDD models are CNN, SVM, and LR. For instance, Kalaiselvi et al. (2020)
proposed CNN based approach in Brain tumor diagnosis [123]; Dai et al. (2019) used CNN
in developing a device inference app for Skin cancer detection [118]; Fathi et al. (2020) used
SVM to classify liver diseases [121]; Sing et al. (2019) used SVM to classify the patients with
Heart disease symptoms [43]; and Basheer et al. (2019) used Logistic Regression to detect
Heart disease [133].

Figure 10 depicts the most commonly used Machine Learning algorithms in disease
diagnosis. The bolder and larger font emphasizes the importance and frequency with
which the algorithms in MLBDD are used. Based on the Figure, we can observe that
Neural Networks, CNN, SVM, and Logistic Regression are the most commonly employed
algorithms by MLBDD researchers.

Figure 10. Word cloud for most frequently used ML algorithms in MLBDD publications.

Most MLBDD researchers utilize publically accessible datasets since they do not re-
quire permission and provide sufficient information to do the entire study. Manually
gathering data from patients, on the other hand, is time-consuming; yet, numerous research
utilized privately collected/owned data, either owing to their special necessity based on
their experiment setup or to produce a result with actual data [46,55,56,68,70]. The Cleve-
land Heart disease dataset, PIMA dataset, and Parkinson dataset are the most often utilized
datasets in disease diagnosis areas. Table 11 lists publicly available datasets and sources
that may be useful to future academics and practitioners.
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Table 11. Most widely used disease diagnosis dataset URL along with the referenced literature
(accessed on 16 December 2021).

Study Disease Dataset URL

[41–45,134,135] Heart disease Cleveland database https://archive.ics.uci.edu/ml/datasets/heart+disease

[13,50,51,54] Kidney disease Chronic kidney disease
dataset

https://archive.ics.uci.edu/ml/datasets/Chronic_
Kidney_Disease

[71,72,74,136] Diabetics Pima diabetic dataset https://www.kaggle.com/uciml/pima-indians-diabetes-
database

[16,81,85,86] Parkinson
disease Parkinsons Dataset https://archive.ics.uci.edu/ml/datasets/Parkinsons

[58–60] Breast cancer WDBC dataset https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Diagnostic)

[2,97] COVID-19 Covid-chest X-ray
dataset https://github.com/ieee8023/covid-chestxray-dataset

7. Discussion

In the last 10 years, Machine Learning (ML) and Deep Learning (DL) have grown
in prominence in disease diagnosis, which the annotated literature has strengthened in
this study. The review began with specific research questions and attempted to answer
them using the reference literature. According to the overall research, CNN is one of
the most emerging algorithms, outperforming all other ML algorithms due to its solid
performance with both image and tabular data [94,123,128,137]. Transfer learning is also
gaining popularity since it does not necessitate constructing a CNN model from scratch and
produces better results than typical ML methods [47,91]. Aside from CNN, the reference
literature lists SVM, RF, and DT as some of the most common algorithms utilized widely
in MLBDD. Furthermore, several researchers are emphasizing ensemble techniques in
MLBDD [127,130]. Nonetheless, when compared to other ML algorithms, CNN is the most
dominating. VGG16, VGG19, ResNet50, and UNet++ are among of the most prominent
CNN architectures utilized widely in disease diagnosis.

In terms of databases, it was discovered that UCI repository data is the preferred
option of academics and practitioners for constructing a Machine Learning-based Disease
Diagnosis (MLBDD) model. However, while the current dataset frequently has shortcom-
ings, several researchers have recently relied on additional data acquired from the hospital
or clinic (i.e., imbalance data, missing data). To assist future researchers and practitioners
interested in studying MLBDD, we have included a list of some of the most common
datasets utilized in the reference literature in Table 11, along with the link to the repository.

As previously indicated, there were several inconsistencies in terms of assessment
measures published by the literature. For example, some research reported their results
with accuracy [45]; others provided with accuracy, precision, recall, and F1-score [42]; while
a few studies emphasized sensitivity, specificity, and true positive [67]. As a result, there
were no criteria for the authors to follow in order to report their findings correctly and
genuinely. Nonetheless, of all assessment criteria, accuracy is the most extensively utilized
and recognized by academics.

With the emergence of COVID-19, MLBDD research switched mostly on Pneumonia
and COVID-19 patient detection beginning in 2020, and COVID-19 remains a popular
subject as the globe continues to battle this disease. As a result, it is projected that the
application of ML and DL in the medical sphere for disease diagnosis would expand
significantly in this domain in the future as well. Many questions have been raised due to
the progress of ML and DL-based disease diagnosis. For example, if a doctor or other health
practitioner incorrectly diagnoses a patient, he or she will be held accountable. However,
if the machine does, who will be held accountable? Furthermore, fairness is an issue in
ML because most ML models are skewed towards the majority class. As a result, future
research should concentrate on ML ethics and fairness.

https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Parkinsons
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://github.com/ieee8023/covid-chestxray-dataset
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Model interpretation is absent in nearly all investigations, which is surprising. Inter-
preting machine learning models used to be difficult, but explainable and interpretable
XAI have made it much easier. Despite the fact that the previous MLBDD lacked suffi-
cient interpretations, it is projected that future researchers and practitioners would devote
more attention to interpreting the machine learning model due to the growing demand for
model interpretability.

The idea that ML alone will enough to construct an MLBDD model is a flawed one.
To make the MLBDD model more dynamic, it may be anticipated that the model will need
to be developed and stored on a cloud system, as the heath care industry generates a lot of
data that is typically kept in cloud systems. As a result, the adversarial attack will focus on
patients’ data, which is very sensitive. For future ML-based models, the data bridge and
security challenges must be taken into consideration.

It is a major issue to analyze data if there is a large disparity in the data. As the
ML-based diagnostic model deals with human life, every misdiagnosis is a possible danger
to one’s health. However, despite the fact that many study used the imbalance dataset to
perform their experiment, none of the cited literature highlights issues related to imbal-
ance data. Thus, future work should demonstrate the validity of any ML models while
developing with imbalanced data.

Within the many scopes this review paper also have some limitations which can be
summarized as follows:

1. The study first searched the Scopus and WOS databases for relevant papers and then
examined other papers that were pertinent to this investigation. If other databases like
Google Scholar and Pubmed were used, the findings might be somewhat different.
As a result, our study may provide some insight into MLBDD, but there is still a great
deal of information that is outside of our control.

2. ML algorithms, DL algorithms, dataset, disease classifications, and evaluation metrics
are highlighted in the review. Though the suggested ML process is thoroughly
examined in reference literature, this paper does not go into that level of detail.

3. Only those publications that adhered to a systematic literature review technique
were included in the study’s paper selection process. Using a more comprehensive
range of keywords, on the other hand, might lead to higher search activity. However,
our SLR approach will provide researchers and practitioners with a more thorough
understanding of MLBDD.

8. Research Challenges and Future Agenda

While machine learning-based applications have been used extensively in disease
diagnosis, researchers and practitioners still face several challenges when deploying them
as a practical application in healthcare. In this section, the key challenges associated with
ML in disease diagnosis have been summarized as follows:

8.1. Data Related Challenges

1. Data scarcity: Even though many patients’ data has been recorded by different hospi-
tals and healthcare, due to the data privacy act, real-world data is not often available
for global research purposes.

2. Noisy data: Frequently, the clinical data contains noise or missing values; therefore,
such kind of data takes a reasonable amount of time to make it trainable.

3. Adversarial attack: Adversarial attack is one of the key issues in the disease dataset.
Adversarial attack means the manipulation of training data, testing data, or machine
learning model to result in wrong output from ML.

8.2. Disease Diagnosis-Related Challenges

1. Misclassification: While the machine learning model can be used to develop as a
disease diagnosis model, any misclassification for a particular disease might bring
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severe damage. For instance, if a patient with stomach cancer is diagnosed as a
non-cancer patient, it will have a huge impact.

2. Wrong image segmentation: One of the key challenges with the ML model is that the
model often identifies the wrong region as an infected region. For instance, author
Ahsan et al. (2020) shows that even though the accuracy is around 100% in detecting
COVID-19 and non-COVID-19 patients, the pre-trained CNN models such as VGG16
and VGG19 often pay attention to the wrong region during the training process [2].
As a result, it also raises the question of the validity of the MLBDD.

3. Confusion: Some of the diseases such as COVID-19, pneumonia, edema in the chest
often demonstrate similar symptoms; in these particular cases, many CNN models
detect all of the data samples into one class, i.e., COVID-19.

8.3. Algorithm Related Challenges

1. Supervised vs. unsupervised: Most ML models (Linear regression, logistic regression)
performed very well with the labeled data. However, similar algorithms’ performance
was significantly reduced with the unlabeled data. On the other hand, popular
algorithms that can perform well with unlabeled data such as K-means clustering,
SVM, and KNNs performance also degraded with multidimensional data.

2. Blackbox-related challenges: One of the most widely used ML algorithms is con-
volutional neural networks. However, one of the key challenges associated with
this algorithm is that it is often hard to interpret how the model adjusts internal
parameters such as learning rate and weights. In healthcare, implementing such an
algorithm-related model needs proper explanations.

8.4. Future Directions

The challenges addressed in the above section might give some future direction
to future researchers and practitioners. Here we have introduced some of the possible
algorithms and applications that might overcome existing MLBDD challenges.

1. GAN-based approach: Generative adversarial network is one of the most popular
approaches in deep learning fields. Using this approach, it is possible to generate
synthetic data which looks almost similar to the real data. Therefore, GAN might
be a good option for handling data scarcity issues. Moreover, it will also reduce the
dependency on real data and also will help to follow the data privacy act.

2. Explainable AI: Explainable AI is a popular domain that is now widely used to explain
the algorithms’ behavior during training and prediction. Still, the explainable AI
domains face many challenges; however, the implementation of interpretability and
explainability clarifies the ML models’ deployment in the real world.

3. Ensemble-based approach: With the advancement of modern technology, we can
now capture high resolutions and multidimensional data. While the traditional
ML approach might not perform well with high-quality data, a combination of sev-
eral machine learning models might be an excellent option to handle such high-
dimensional data.

9. Conclusions and Potential Remarks

This study reviewed the papers published between 2012–2021 that focused on Machine
Learning-based Disease Diagnosis (MLBDD). Researchers are particularly interested in
some diseases, such as Heart disease, Breast cancer, Kidney disease, Diabetes, Alzheimer’s,
and Parkinson’s diseases, which are discussed considering machine learning/deep learning-
based techniques. Additionally, some other ML-based disease diagnosis approaches are
discussed as well. Prior to that, A bibliometric analysis was performed, taking into account
a variety of parameters such as subject area, publication year, journal, country, and identi-
fying the most prominent contributors in the MLBDD field. According to our bibliometric
research, machine learning applications in disease diagnosis have grown at an exponential
rate since 2017. In terms of overall number of publications over the years, IEEE Access,
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Scientific Reports, and the International Journal of advanced computer science and ap-
plications are the three most productive journals. The three most-cited publications on
MLBDD are those by Motwani et al. (2017), Gray et al. (2013), and Mohan et al. (2019).
In terms of overall publications, China, the United States, and India are the three most
productive countries. Kim J, the most influential author, published around 20 publications
between 2012 and 2021, followed by Wang Y and Li J, who came in second and third
place, respectively. Around 40% of the publication are from computer science domains and
around 31% from engineering fields, demonstrating their domination in the MLBDD field.

Finally, we have systematically selected 102 papers for in-depth analysis. Our overall
findings were highlighted in the discussion sections. Because of its remarkable performance
in constructing a robust model, our primary conclusion implies that deep learning is the
most popular method for researchers. Despite the fact that deep learning is widely applied
in MLBDD fields, the majority of the research lacks sufficient explanations of the final
predictions. As a result, future research in MLBDD needs focus on pre and post hoc
analysis and model interpretation in order to use the ML model in healthcare.

Physical patient services are increasingly dangerous as a result of the emergence
of COVID-19. At the same time, the health-care system must be maintained. While
telemedicine and online consultation are becoming more popular, it is still important to
consider an alternate strategy that may also highlight the importance of in-person health
facilities. Many recent studies recommend home-robot service for patient care rather than
hospitalization [138].

Many countries are increasingly worried about the privacy of patients’ data. Many
nations have also raised legal concerns about the ethics of AI and ML when used with
real-world patient data [139]. As a result, rather of depending on data gathering and
processing, future study could try producing synthetic data. Some of the techniques that
future researchers and practitioners may be interested in to produce synthetic data for the
experiment include generative adversarial networks, ADASYN, SMOTE, and SVM-SMOTE.

Cloud systems are becoming potential threats as a result of data storage in it. As a
result, any built ML models must safeguard patient access and transaction concerns. Many
academics exploited blockchain technology to access and distribute data [140,141]. As a
result, blockchain technology paired with deep learning and machine learning might be a
promising study subject for constructing safe diagnostic systems.

We anticipate that our review will guide both novice and expert research and prac-
titioners in MLBDD. It would be interesting to see some research work based on the
limitations addressed in the discussion and conclusion section. Additionally, future works
in MLBDD might focus on multiclass classification with highly imbalanced data along with
highly missing data, explanation and Interpretation of multiclass data classification using
XAI, and optimizing the big data containing numerical, categorical, and image data.
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