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Abstract: This paper targets a major challenge of how to effectively allocate medical resources in
intensive care units (ICUs). We trained multiple regression models using the Medical Information
Mart for Intensive Care III (MIMIC III) database recorded in the period between 2001 and 2012. The
training and validation dataset included pneumonia, sepsis, congestive heart failure, hypotension,
chest pain, coronary artery disease, fever, respiratory failure, acute coronary syndrome, shortness of
breath, seizure and transient ischemic attack, and aortic stenosis patients’ recorded data. Then we
tested the models on the unseen data of patients diagnosed with coronary artery disease, congestive
heart failure or acute coronary syndrome. We included the admission characteristics, clinical pre-
scriptions, physiological measurements, and discharge characteristics of those patients. We assessed
the models’ performance using mean residuals and running times as metrics. We ran multiple
experiments to study the data partition’s impact on the learning phase. The total running time of our
best-evaluated model is 123,450.9 mS. The best model gives an average accuracy of 98%, highlighting
the location of discharge, initial diagnosis, location of admission, drug therapy, length of stay and
internal transfers as the most influencing patterns to decide a patient’s readiness for discharge.

Keywords: cardiovascular diseases; discharge; Electronic Health Records; intensive care units;
machine learning

1. Introduction

Factors such as blood pressure, high cholesterol levels and the adoption of bad habits
including smoking and highly fat-saturated foods led to double the number of patients with
cardiovascular diseases in the period between 2000 and 2019 compared to 1990, according
to the American Hospital Association’s (AHA) report published in 2020 [1]. In 2017, the
Kaiser Family Foundation Analysis of the Organization for Economic Co-operation and
Development (OECD) [2], reported that the United States of America (USA), compared
to other developed countries, has fewer medical resources (2.6 practicing physicians and
2.8 beds per 1000 population compared to 5.2 and 7.4 in Austria, 4.3 and 8 in Germany, per
1000 population, respectively). On the other hand, data published by the AHA in 2018 [3]
indicates there are a total of 5256 registered community hospitals in the United States of
which 2704 (more than 51%) deliver intensive care services with a total of 96,596 Intensive
Care Unit (ICU) beds. In total, 68,558 of these beds are dedicated to adults (46,795 medical-
surgical, 14,445 for cardiac care and 7318 for other ICU needs), 22,901 for neonatal care,
and 5137 are pediatric ICU beds. Geographically, the distribution is mainly in metropolitan
areas with 74% of ICU beds followed by 17% in micro-Politian areas and 9% in rural areas.
Such disparities arise from a lack of study, biased data, or a misunderstanding of the
healthcare ecosystem. In its 2018 report, the Health Systems for Prosperity and Solidary
by the World Health Organization (WHO) [4] mentioned financial crisis, political choices,
variations in epidemiology and social preferences or variations in efficiency as the main
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reasons why some countries would not invest in the healthcare system. As for the uncertain
nature of hospitals’ ecosystems, static planning of these medical resources seems to be an
inconvenient solution. In the literature, many studies have been attracted by the complexity
of such issues. Thus, most of these studies put on the surface the importance of dynamic
predictions when trying to be one step ahead of ecosystem changes [5–8].

In the course of solving resource allocation problems in uncertain environments, such
as ICUs, researchers focused on two points: (1) the huge possibility of using increasingly
leveraged clinical data captured from Electronic Health Records (EHR) systems. (2) The
need to predict patient outcomes as a step toward an efficient decision-making tool.

In fact, severity score systems were developed to predict a patient’s outcome and to
compare quality-of-care and stratification for clinical trials [9]. The development of scoring
systems involves a complex combination of clinical acumen and advanced statistical tech-
niques. These scoring systems must be rigorously assessed in terms of accuracy, reliability,
and methodological rigor before being introduced into clinical practice [10]. Most of them
were first derived from a database of patients and their various physiological measurements
during their ICU stay. Used databases are retrospectively analyzed to find which of the
selected variables are the most predictive for a chosen outcome. The testing of a model on
such a validation cohort cannot be considered to represent independent validation. The
sample size and randomization process used to select this cohort from the starting database
makes it inevitable that the development and validation samples perform interchangeably.
However, in an upgraded special article, a group of internationally recognized clinical
experts suggested that severity of illness scores should not be considered as a transition con-
dition from ICU to lower acuity care wards. Instead, they specified that such prioritization
identifiers might be used to assess high-risk populations after discharge and not their readi-
ness to be transferred [11]. In fact, a review of multiple studies revealed that cardiovascular
patient health status was evaluated from four main angles: (1) their cardiovascular disease
history, the demographic and socio-economic factors [12–14], etc. (2) Their health status
before and after medical interventions [15,16]. (3) The main psychological and behavioral
factors interfering with their medical condition [17–19]. (4) Using the patient’s health status
as a predictor for future outcomes such as mortality [20,21]. Taking these factors combined,
it seems that even studies that focus on scoring system types, case studies, and guidelines
for using such risk assessment tools [22–24] can come to the conclusion that severity score
systems cannot be used to predict patients’ discharge.

On the other hand, a new trend in learning methods or machine learning developed
in and for technology and healthcare industries offers tremendous potential to enhance
medical research and clinical care, especially as providers increasingly employ EHR.

There are many areas that can benefit from the application of machine learning tech-
niques in the medical field, mainly diagnosis and outcome prediction.

In fact, many studies, such as [25], showed that MIMIC-III specific machine learning
models using only 10 clinical variables outperformed nine commonly used severity scoring
methods. However, other related studies [26,27] have also shown that machine learning
models outperform severity scores in predicting in-hospital mortality. Furthermore, devel-
oping health system specific prediction models using machine learning enables continuous
improvements of the model by including more training data (as more data becomes avail-
able), adding new clinical or laboratory variables to the model, or re-training the model
using newly-developed machine learning algorithms.

Following this axis and trying to explore new ways to use machine learning other than
simulation and modeling in medicine, we developed multiple machine learning models to
predict patients’ readiness for discharge who are admitted to ICUs. In other words, when
a patient is admitted to ICU, they can be transferred to a lower care unit or sent home
after receiving the necessary treatment and staying in the hospital for a period. The goal
here is to predict the length of stay in one and only one ward in ICU, any other transfer is
considered a discharge. In fact, accurate discharge prediction will enable decision-makers
(healthcare providers in most cases) to have a clearer vision of future actions and prevent
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subsequent readmissions. We made sure to eliminate redundant elements and normalized
measures, as the MIMIC-III is collected using CareVue and MetaVision clinical information
systems. Our approach, based on correctly imputed missing elements in our dataset, uses
different algorithms to compare the performance of different configurations of these models.
In fact, these models will predict patients that are more likely to be discharged among
other patients. The performance of our model is assessed using a Root Mean Square Error
(residual mean) with respect to related characteristics: selection of variables and weights,
used variables (age, origin, chronic health status, physiology, and acute diagnosis) and
size of the validation population. Such a study is meant to identify the impact of drug
therapy, type and time of admission, and processed transfers from non-ICU wards and
an ICU’s cardiology department on the patient’s readiness for discharge. Moreover, to
discover new opportunities using a variety of machine learning techniques other than
previously mentioned machine learning models, or discrete event simulations that have
studied resource allocation problems [28], to provide the percentage of patients that meet
the discharge criteria and features learned in the model’s training process. This might
help physicians to prioritize inspections—to assess discharge—to specific patients. The
deployment of such models will aid in the decision-making process of healthcare workers
by improving the prediction of premature deaths, making medical decisions about high-
risk patients more efficient, evaluating the effectiveness of new treatments, and detecting
changes in clinical practices. The rest of the paper is organized into two main sections. The
first represents a literature review of main studies in the same scope, followed by a context
and mathematical description of patients’ flow, then by the implementation, results, and
discussion of these results compared to the available state of the art literature. We end the
paper with a conclusion.

2. Literature Review

Discharge planning is, by consensus, suffering from a lot of variability in the clinical
decision-making processes. Most ICUs do not use written patient discharge guidelines.
Clinicians have rather little secure evidence upon which to base any decision about dis-
charge location. Such ambiguity can lead to poor management of patients, which can
result in premature discharge and, subsequently, death or readmission. This has been a
factor in the motivation to create critical care outreach teams and triage models to improve
discharge outcomes.

In fact, many studies have tried to determine the factors that can predict the length
of stay, or discharge in general, where patients are limited to a certain health condition
or group of health conditions [29,30]. We found many models with varying degrees of
data specification and accuracy. In the paper [31], hospital records were analyzed to
determine if any factors could predict hospital Length Of Stay (LOS) and readmission after
colorectal resection through linear regression. The data used in this study is a combination
of databases from the National Cancer Registry (NCR) and the Hospital In-Patient Enquiry
Scheme (HIPE), which contains records of patients in Ireland. STATA (statistical software
for data science) was used to determine the best variables for logistic regression using
a combination of likelihood ratio tests. For the LOS, it was determined that age, higher
levels of co-morbidities, and marital status were associated with an increased LOS. Another
study analyzed hospital records to identify the predictors of an increased LOS after Acute
Exacerbation of Chronic Obstructive Pulmonary Disease (AECOP) [32]. A multivariate
logistic regression model was created to assess the predictors of early discharge in a period
longer than 11 days. The results from the aforementioned study show that being admitted
between Thursday and Saturday, having high PaCO2, low serum albumin level, or having
heart failure, diabetes, or stroke are the most important predictors of a very long LOS. The
LOS of patients with cardiac problems was the focus of [33], which is one of the few that
employs machine learning techniques. The patient data was retrieved over a five-year
period from a hospital in Iran that specializes in treating and researching cardiovascular
conditions. Thirty-six different attributes were included per row and three different models
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were run on the same data: decision tree, neural network, and support vector machine.
Out of the three, the support vector machine approach outperformed the two other models,
with the diagnosis ICD-9 (International Statistical Classification of Diseases ninth version)
code (this provides an internationally standardized code per disease), the diastolic blood
pressure (blood pressure in the arteries between heartbeats) and age being the three most
prominent input variables (highest relative weight). In the paper [34], a retrospective
review of a database was conducted to determine the predictive factors for hospital stay
and mortality. An analysis was performed on a database from the Cleveland Clinic who had
undergone noncardiac surgery within a five-year period along with measurements of Mean
Arterial Pressure (MAP), Bispectrality Index (BIS), and Minimum Alveolar Concentration
(MAC). Through logistic regression, it was found that a “triple-low” value of MAP, BIS,
and MAC were strongly correlated with an extended LOS.

In fact, simulation has been extensively used to evaluate the impact of resource
availability and the organizational settings on healthcare outcomes quality and the costs
related to medical interventions and patients’ stay [35,36]. There are several methods
of simulation but most commonly they are classified into four main categories: Monte
Carlo [37,38], Discrete Event Simulation [39,40], System Dynamics [41,42], and Agent Based
Simulation [43,44]. Some of the very important advantages of using these simulation
techniques are: 1. The ability to perform “what if” analysis that evaluates the performance
of the system in different scenarios, considering many types of input data and model
parameters as well as identifying critical points related to the system’s bottlenecks [45].
While 2. is the ability to perform these scenarios in different time windows [46]. As a
result, simulation is useful when a problem exhibits significant uncertainties that require
stochastic analysis.

Indeed, several studies have been conducted on the application of simulation as an
effective tool to improve processes in healthcare systems to minimize healthcare costs and
increase the satisfaction of patients [47].

The main problems in the healthcare system that are addressed for emergency patients
based on simulation and modeling knowledge are resource allocation, and patient flow
problems, while for non-elective patients it is mostly scheduling and bed assignment [48–51].
Many studies have been conducted to optimize processes and patient flow in the healthcare
systems [52–56]. The optimized patient flow is defined as a high patient throughput, low
patient waiting times and short LOSs, while keeping staff utilization rates high and reducing
staff idle time. The increasing cost of providing high-quality health care has made hospital
administrators minimize resources while still striving to provide the service with the desirable
quality. Many studies [57] find simulation modeling attractive since it can estimate the
operational characteristics of a complex system as well as monitoring the results of changes
in planning and resource allocation prior to implementation, which minimizes the financial
risks for decision makers. According to the field of study of this thesis, the literature review
of the Discrete Event Simulation (DES) in validation-simulation studies is classified into two
categories including patient flow and resource allocation.

However, it does not seem possible to elaborate on a universal, conclusive procedure
for matching the most suitable simulation technique to a specific problem.

On the other hand, there are relatively few studies on discharge prediction in a critical
care setting: they are exclusively focused on discharge readiness [58,59] or they are designed
to predict a specific discharge destination [60]. For example, [61] used demographic, ICU
admission, and ICU clinical data measured during the first 24 h of ICU admission to develop
a predictive algorithm for the early identification of ICU patients with a high probability
of discharge to a long-term acute care hospital. The study found that their predictive
algorithm can accurately predict the likelihood of patients’ discharges. In addition, [62]
investigated the relationship between vitamin D status at ICU admission and the home
or non-home discharge destination for critically ill surgical patients. They suggested that
vitamin D levels may impact patient-oriented outcomes in ICU, and it might be a modifiable
risk factor for the discharge destination.
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Alternatively, the prediction of patients’ discharge from ICU can be expanded to focus
on the characteristics of the patients admitted—many tools have been developed to support
discharge planning. Mainly, these tools try to predict the likelihood of complications during
hospitalization. Furthermore, these tools try to predict functional adverse outcomes, which
can pose serious difficulties during the discharge process [63]. Most of these tools are
appropriate for patients admitted for medical conditions, and the majority of those are
condition-independent and can be widely applied.

For all these reasons, more data are needed about those factors already present before
proper intervention and that is associated with a longer LOS or a discharge with the need for
additional care, and that can be investigated in the early phases of the treatment trajectory.
The aim of this study was to investigate those factors in a large sample of patients, in
order to better understand what can be done to predict, as early as possible, which patients
will need personalized and more demanding discharge planning, and possibly to suggest
general items suitable for this prediction in general care departments for patients with
cardiovascular diseases.

3. Context and Methods

The determination of appropriate medical resource distribution in healthcare facilities
is a very challenging task as it must be coordinated at three different levels [64]. At the
macro-allocation level, patterns of this distribution are drawn by legislation, government
funding mandates and healthcare insurance plans. At the organizational level, policies, clinical
practice guidelines and protocols decide how resources might be allocated to make maximum
use of limited resources. However, at a micro-allocation level, it is a physician’s mission to
decide whether a treatment or an investigation is in a patient’s best interest or not [65,66].

3.1. Mathematical Context

In every patient’s discharge, the bed’s occupancy distribution is evaluated. Having
more visibility on when and how to discharge patients give hospitals’ policymakers and
physicians in ICUs more flexibility and the ability to draw admission patterns, face ad-
mission peaks and manage general wards and lower medical care units more effectively.
Moreover, and more importantly, to deliver medical care to the maximum number of
patients by reducing the LOS and increasing admission rates. Figure 1 represents the
generic guiding flow map divided into two main units: admission flows and the ICUs’ In
and Out flows. The model presented in Figure 1 has been evaluated and validated using
Non-Homogenous Discrete Time Markovian Chains [67].

In ordinary circumstances, a patient in a critical condition might be admitted directly
from the emergency room, be a planned admission, or from internal wards in which he or
she was admitted as a non-critical case, then needed intensive medical care.

We have developed a model that aims to provide a generic representation of a hos-
pital’s internal flows [68]. The aforementioned is based on discrete Markov chains and
is validated using real-world data. The following is, therefore, intended to prove how it
is important to optimize the number of inspections using machine learning techniques.
This goes along with shortening the LOS but also to take into consideration the patient’s
condition. In a more illustrative image, the mathematical model we are representing
here will guide the usage of our dataset. This means that, at every step of the flow, we
will take parameters that might impact the patient’s readiness for discharge at the end of
their treatment.
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Figure 1. Flow dynamic in ICUs.

Let χk,j,t(t) be the number of admitted patients of pathology
k = {coronary artery disease, congestive heart f ailure, acute coronary syndrome} admitted
as j = {Emergency, Elective, internal ward} department after spending t time in the hospi-
tal. Ok,j,t represents the overflowing patients from both the external and internal admissions
of previously named pathologies. This overflow is calculated considering the patients in
hospital and still not served, and scheduled patients not arriving in time. In our model, we
consider that all causes leading to overflow can result in very long diagnosis times.

At a given time window, we consider W{1 . . . q} as the number of ICUs wards. We
define the bed occupancy function as representing if a ward q is occupied by a patient of
pathology or condition type k.

Uq,k =
number o f patients o f pathology k allocated to ward q

total number o f beds in ward q
(1)

Let Fk = ωk −∑k Uq,k be the number of free beds in ward q. The Dq,k(.) reflects the
bed’s distribution in a given time interval and ωk is the number of beds in ward k.

Dq,k =


 U11 · · · U1M

...
. . .

...
UM1 · · · UMM

, (F1, F2, . . . , FM)

 (2)

where (U11, U22, . . . , UMM|k = q) is the number of patients with primary hospitalizations.
We also define αk and βq,k as the primary and secondary hospitalizations’ rate repre-

sented in Equations (3) and (4), respectively:

αk ≡ αq,k =
∑q,k(k=q) Uq,k

∑q,k Dq,k
(3)

βq,k =
∑ Dq,k −∑ Uq,k −∑q Fq

∑q,k Dq,k
(4)
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Based on the work presented in [43], we can conclude that the distribution of the
newly arriving patient to the different wards follows the process shown below:{

χk,j,t ∗ αk i f Fk > 0 f or k ∈ M
χk,j,t ∗ βq,k i f Fk = 0 and Fq 6=k > 0 f or q ∈ M

(5)

In the matrix above, a newly arriving patient is allocated to the preferred ward in cases
where there exists a free bed. Otherwise, the patient is oriented to another ward that may
serve a similar service as shown in Figure 1.

We define in the following, that the time spent by a patient of type k as an inpatient in
ward q is denoted τk

q,k.

We also define Qn
q,k as the number of patients of type k in ward q right after the nth

inspection. We can assume that the inspection and discharge patterns can be described by
the same distribution and are the same from an operational perspective. The dynamics of
such distribution can be cited as follows: Qn+1

q,k (αk = 1) = Qn
q,k + (1−∑kεM βq,k) ∗

(
χk,j,t

)n+1
)− ξn+1

q f or every k

Qn+1
q,k (αk < 1) = Qn

q,k + (1− αk) ∗
(

χk,j,t

)n+1
− ξn+1

k

(6)

where ξn+1
q is the number of patients discharged in the (n + 1)th inspection and

ΓN = ∑N
n=0, ∀q,∀k ξn+1

q (7)

In the same way, a decision to discharge a patient takes into account the patient’s
pathology, condition and the period already spent as an inpatient. The main goal of
expressing the number of inspections per period is to relate this factor with the service rate
and occupancy function. Thus, in used data, we will have to divide the 24 h into specific
intervals and set a mean number of inspections. This will help derive a discharge rate per
period, which will provide visibility to how many primary and secondary hospitalizations
are made and how many patients to admit.

3.2. Data Description

In our study, we used the MIMIC-III, which contains de-identified health-related data
of more than 40,000 patients with more than 50,000 hospitalizations in the ICUs of the Beth
Israel Deaconess Medical Center in Boston, Massachusetts, in the period between 2001 and
2012. The data in the MIMIC-III is divided into 26 tables, each one comprises a specific type
and flow of data such as demographics, vital signs measurements, laboratory test results,
procedures, medications, caregiver notes, imaging reports and discharge mortality.

The tables are linked by primary identifiers such as subject-ID, hadm-ID and ICUStay-
ID. The recorded measurements are provided by Philips and iMDSoft tools used in CareVue
and MetaVision clinical information systems, respectively [69].

The de-identification of patients was incorporated in accordance with the Health
Insurance Portability and Accountability Act (HIPAA) standards and the federal code of
the USA. It included the removal of the eighteen identification data elements defined by
the HIPAA such as patient name, phone number, address, and dates such as the date of
birth, date of admission, etc. In the following, we calculated the age of the patients and
used their associated dates in an intervals-based approach by which dates are shifted into
the future, between 2100 and 2200, in a manner to preserve the intervals [70,71].

For reasons of having the highest mortality rates [72,73] and being responsible for the
utilization of a significant proportion of healthcare resources [74], we managed to solely
use data related to adult patients with specific types of pathologies as shown in Figure 2.
The current study basically includes 4402 admissions and a total of 4226 patients, as some
patients are admitted more than once with different admission identifiers. In total, 2804 of
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them were admitted to the emergency room, 1466 were elective patients, and 132 were
admitted as urgent. Of the total number, 2808 were diagnosed with coronary artery disease,
1315 with congestive heart failure, and 279 with acute coronary syndrome while admitted to
ICUs and before receiving any prior treatments. Table 1, below, resumes the patients’ related
data, input characteristics, outcome characteristics and actual measurements performed.

Figure 2. MIMIC III dataset generation process.

Table 1. Baseline patients’ characteristics and outcome measures.

Overall Population
Characteristics

Dead at Discharge
Characteristics

Alive at Discharge
Characteristics

Average age 65 73 64

Sex (% men) 53% 54% 57%

Admission type:
Emergency 2804 226 2577

Elective 1466 14 1451
Urgent 132 11 121

Type of ICU:
Coronary artery disease 2808 54 2753
Congestive heart failure 1315 175 1140

Acute coronary syndrome 279 22 257
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Table 1. Cont.

Overall Population
Characteristics

Dead at Discharge
Characteristics

Alive at Discharge
Characteristics

Average heart rate (bpm) 80 100–110 60–100

Average respiratory rate (cpm) 21 12–20 ≤12 or ≥20

Prescription drugs:
Cholesterol lowering

medications 12.83% 0.14% 99.86%

ACE inhibitors 14.62% 0.38% 99.62%
Bronchodilators 10.66% 0.47% 99.53%

Diuretics 9.1% 1% 99%
Insulins 7.85% 1.04% 98.96%

Anticoagulants 7.42% 0.8% 99.2%
Electrolytes 13.22% 0.66% 99.34%

Beta blockers 7.2% 1.78% 98.22%
Antiplatelet agents and DAPT 3.46% 3.58% 96.42%

Anti-histamines 3.44% 0.53% 99.47%
Quinolone antibiotics 3.2% 1.42% 98.58%

Nitrates 2.63% 1.21% 98.79%
Peptides 1.36% 1.01% 98.99%

Glucose elevating agents 1.63% 5.88% 94.12%
Antidysrhythmics 0.89% 4.6% 95.4%

Calcium channel blockers 0.35% 3.95% 96.05%
Sulfonic acid 0.15% 6.06% 93.94%

Hospital length of stay 2.9 days 3.1 days 2.7 days

3.3. Preprocessing

Coronary artery disease is a condition where the coronary arteries are narrowed or
blocked causing chest pain, congestive heart failure or/and an acute coronary syndrome
condition. Such a blockage in the blood supply to the heart muscle area, or ischemia,
can cause heart tissues to die within a few minutes. To relieve pain by reducing the
heart’s workload, and to prevent chest pain and acute coronary symptoms from happening,
doctors usually use nitrates, beta blockers, calcium channel blockers, ACE inhibitors, statins,
antiplatelet and anticoagulants drugs, respectively (and sometimes combined) to reverse
coronary artery narrowing or to open a blocked artery. Although, on the one hand, heart
failure is a disorder related to the heart’s inability to follow the body’s demands in terms
of blood flow, congestion of blood and regular beating; this condition is often caused
by cardiac causes such as coronary artery disease, myocarditis, heart valve disorders, as
well as some non-cardiac causes such as high blood pressure, anemia, kidney failure and
others. The treatment of such a condition may, thus, include diuretics and nitrates to
relieve symptoms related to the pain such as angiotensin, ACE inhibitors, beta blockers
and aldosterone antagonists to help the treatment to succeed.

In the process of understanding the physiological parameters of patients, we noticed
that some of these parameters are recorded at a lower frequency compared to others, such
as non-invasive blood pressure. Such missing data we could handle using invasive blood
pressure, which was continually monitored. In other cases, missing data were replaced
by the median of the concerned variable such as the LOS. We also extracted informative
patterns from patients’ physiological data and the chronological order of events between
admission and discharge. Those features were first identified from MIMIC-III admission,
chart events, ICU stays and prescription tables based on their known logistic and clinical
relevance to our target endpoints. We determined the univariate importance of each feature
with respect to the target variable. Such a technique enabled us to make our dataset easier
to interpret and to understand how data is distributed within this specific population of
patients as it addresses the interrelations between the different timing and physiological
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features and discharge decisions. Figure 3 represents the feature selection based correlation
of chronological features related to the time when patients were admitted and discharged
from ICUs, in addition to the importance of the features related to prescriptions and
physiological patterns.

Figure 3. Cont.



Healthcare 2022, 10, 966 11 of 23

Figure 3. Feature selection of informative features. (a,b) represent the correlation between drug
dosage and type, and time of discharge, respectively. Figure (c) is the time that marks the end of
a specified drug therapy. (d,e) are the chronological timing of admission to ICUs, and their actual
discharge time.

As shown in Figure 3a,b, the use of metoprolol, vancomycin, 0.9% sodium chloride,
insulin, heparin, 5% dextrose (noting that it is also abbreviated as D5W in the MIMIC-III
database), iso-osmotic dextrose, ondansetron ODT, phenytoin, piperacillin-Tazobactam-NA
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are used to prevent heart attacks by lowering blood pressure, preventing the formation of
blood clots, and fighting bacterial infections. Although a constant rate of admissions to the
emergency department and surgery is more likely to be followed by a peak in discharges,
as might be noticed, admission and discharge from ICUs follow the patterns of global
admission—the more admissions increased, the more ICU admissions and discharges
increased and decreased, respectively (Figure 3c,d).

On the other hand, the starting and ending dates are more likely to be constant, which
means that patients of similar pathology take similar durations under a given description.
Drugs such as cholesterol lowering medications, insulins, ACE inhibitors, diuretics, beta
blockers, glucose elevating agents and calcium channel blockers and their combinations
designed, in most cases, for arrhythmia, artery disease, coronary disease, chest pain and
hypotension have the highest patients’ early discharge probability. In the dataset files, there
is no indication of an undesirable event experienced by a patient related to drug therapy
that interferes with achieving the desired goal of such therapy.

4. Results and Implementation

Severity of illness is a composite of the magnitude of the acute disease, the patient’s
physiological reserve, and the concurrent level of treatment and organ system support. Of
these three variables, the physiological reserve is the most difficult to quantify and modify.

It is generally assessed using functional capacity, co-morbid disease, and age. Loss of
functional capacity is an important predictor of frequent hospitalizations and death, and
co-morbid disease impacts ICU and hospital outcomes [75].

In our study, feature importance reflects how useful and valuable every single attribute
was when building the decision to discharge a patient. This importance is calculated for
each attribute in our dataset, by which all attributes are ranked and compared to each
other. Every single importance index is calculated by the average training loss reduction
gained when using a feature for splitting. As noticed in Figure 3, the discharge location,
ICU admission related diagnosis, admission location, drug, out-time (at which patients
are transferred from the ICU unit to a recovery ward or to home), frequency of the given
drugs, ICU stay ID (which reflects if a patient has an ICU admission history), start date (the
date on which drug therapy started), LOS (length of stay), end date (the day in which the
drug therapy ended), subject ID (which reflects, if associated with different admission ID, a
patient’s readmission), the admission date, and the times by which the patient is admitted
to ICU are the most informative features. As a consequence, we are using these features
as input for our models. Missing values of numerical data are imputed using a basic
algorithm of decision trees, while categorical data are encoded and linearly regularized.
We experimented with eight models to identify the most suitable one. We have also set
the decision tree’s regression as the baseline to estimate performance. Further, three of
these models: 1. AVG blender; 2. Advanced Generalized Linear Regression Model; and
3. Efficient Neural Network, are ensembles of other models. Due to their iterative nature,
Gradient Boosted models are almost guaranteed to overfit the training data, given enough
iterations. Table 2 represents the tuning parameters of the baseline models, while all the
other models are sophisticated forms of them. Any other parameters not mentioned in the
table are left in their default values.

Table 2. Parameters of models.

Decision Trees Gradient Boosted Models

Criterion: Entropy Number of estimators: 2000
Max depth: 10 Learning rate: 0.3
Splitter: Best Criterion: MSE

Max features: log2 Min sample leaf: 2
Min samples leaf: 4 Min samples split: 5

Min samples split: 10
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Figure 4 details the dynamics of the different algorithms used in our approach:

Figure 4. Architecture of the proposed approach.

The overall workflow used for building the predictive models in the present work is
illustrated in Figure 4. We have used Python 3.9 as a programming language to build our
models. We used Pandas [76], NumPy [77], SciPy [78], TensorFlow [79], and time [80]. To
ensure that our results are not biased towards a specific learning algorithm and to minimize
the risk of over-fitting, we have implemented a set of machine learning predictors. To
achieve the best performance, it was necessary to find the best hyper-parameters for each
algorithm. A grid-search was conducted to find the best parameters for each model. A
grid-search combines all possible combinations in a parameter grid where one defines the
possible values for each hyper-parameter. In other words, it provides an exhaustive method
to evaluate the combinations of all hyper-parameters.

The best possible parameter settings found using grid-search for each algorithm are
presented in Table 2:
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These methods were used to predict the discharges in a week. To study the impact
of the data partition on the models’ performance, we conducted four experiments on
different data partition configurations. The configurations and results after simulations are
summarized in Table 3.

Table 3. Performance comparison summary between RM values, accuracy, and prediction
time metrics.

Linear
Regression Trees Regression Mixed (Blenders)

Exp 1

Model LR * TR1 * TR2 * TR3 * TR4 * B1 * B2 * B3 *

Accuracy % 0.89 0.783 0.917 0.761 0.726 0.98 0.935 0.961

RM

Validation
(18%) 0.00682 0.18 0.00399 0.01714 0.01353 - - -

Cross
Validation

(36%)
0.00575 0.09 0.00261 0.00953 0.01357 - - -

Holdout
(72%) 0.00539 - 0.00173 0.00521 0.00312 0.0012 0.00158 0.00058

Prediction time (mS) 5627.83 3734.79 6914.43 22,443.8 17,452.56 123,450.9 123,800 69,376.8

Exp 2

Accuracy % 0.88 0.77 0.91 0.77 0.756 0.978 0.91 0.956

RM

Validation
(18%) 0.00679 0.18 0.00399 0.01714 0.01353 - - -

Cross
Validation

(36%)
0.00571 0.09 0.00261 0.00953 0.01357 - - -

Holdout
(80%) 0.00512 - 0.00159 0.00503 0.00298 0.0012 0.00147 0.00054

Prediction time (mS) 5628.01 3699.45 6999 23,166.4 20,514.6 123,551 132,500 70,015.2

Exp 3

Accuracy % 0.89 0.78 0.914 0.76 0.754 0.937 0.914 0.915

RM

Validation
(18%) 0.00659 0.18 0.00373 0.01694 0.0112 - - -

Cross
Validation

(46%)
0.00551 0.085 0.00191 0.00958 0.01057 - - -

Holdout
(72%) 0.00512 - 0.00159 0.00503 0.00298 0.80319 0.00147 0.00054

Prediction (mS) 5568 4697 7859 23,894.2 25,735.02 215,693 151,236 78,020

Exp 4

Accuracy % 0.89 0.781 0.925 0.709 0.781 0.95 0.965 0.89

RM

Validation
(25%) 0.00614 0.1 0.00329 0.01658 0.01123 - - -

Cross
Validation

(36%)
0.00541 0.09 0.00261 0.00953 0.01357 - - -

Holdout
(72%) 0.00481 - 0.00148 0.00493 0.00298 0.000001 0.9947 0.00054

Run time for 100
Predictions (mS) 5750 3610.9 6990 32,548 24,590.4 133,511 15,039.3 699,081

* LR: Auto-tuned stochastic Gradient Descent Regression * TR1: Decision Tree; * TR2: Extreme Gradient Boosted
Trees Regression with Early Stopping * TR3: Gradient Boosted Greedy Trees Regression with Early Stopping *
TR4: Light Gradient Boosted Trees Regressor with Early Stopping. * B1: Advanced Generalized Linear Regression
Model (GLRM); * B2: Efficient Neural Network (ENET); * B3: AVG Blender.

The model achieved an optimized training accuracy value of 0.98 and a mean
residual = 0.0004 when all selected features and an advanced generalized linear regression
model were used. In Figure 5, below, the discharge location, diagnosis, admission location,
drug, out-time (day of the month), prod-strength, day (in a month) in which drug therapy
starts, length of stay, (day in the month) in which drug therapy ends, admission time,
admitted for the first time or not, time (in the day) in which a patient is admitted to an ICU,
and the time in which the patient is supposed to be discharged to a general ward are the
most relevant features, with 99.97%, 88%, 74%, 72%, 68%, 65%, 40%, 39%, 38%, 30%, 28%,
28% and 23% of the weights associated to all attributes in accordance with their importance
in the training phase, respectively. This approach works by monitoring the performance of
our models and automatically selecting the inflection point where performance on the test
dataset starts to decrease while performance on the training dataset continues to improve.
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Figure 5. MIMIC III: training results.

As mentioned previously, the figure above represents spots or prediction areas within
which a given discharge readiness estimation is given. The spots are estimated using the
Regressor Fit algorithm. Patients readmitted to emergency within 6 months of their first
admission, patients with respiratory failure, and patients with low rates of multi-vitamins
are the patients more likely to stay longer in hospital. In addition to this, the discharge
location—home, or to a long-term care facility—is a key predictor in deciding if a patient
can be discharged or not. Figure 6 represents the mean residuals obtained for each model.

In general, mixed or ensemble algorithms outperformed the other models. Firstly,
in terms of performance, where advanced generalized linear regression, efficient neural
network, and AVG blenders showed an accuracy of more than 90%. Secondly, in terms of
robustness, where in multiple data partitions, these models also showed great results. The
recapitulation of these results is presented in Table 3.

It can be seen in Figure 5 that by delaying the prediction somewhat into the admission
time, a better prediction can be made. This result is in line with the hypothesis that
complementing the data from the emergency service with the data collected at the ward
would increase performance. Important features, such as suspected diagnosis and planned
transfer to other wards, are added at this stage and this type of specific information can be
valuable, especially when combined with all of the lab parameter values. For the admission
stage, the balanced probability to be discharged ranges from 0.6 to 0.62. These results were
in line with the ones obtained in previous LOS studies. The fact that the patient group used
in this dataset was quite broad shows that there is a potential for these machine learning
algorithms to be used in more generalized settings in hospitals. Patients using certain types
of drugs, such as Hydralazine are more likely to be discharged after 5 days of admission.
Earlier research has usually very specific limitations on patient type, such as diabetes or
brain surgery patients, while this project focused on a certain hospital clinic and considers
interference from outside factors. One of the limiting factors was low precision for the
long-staying class (i.e., patient contacts staying longer than 3 days). At the discharge stage,
this value ranged from 0.4 to 0.48. Such low precision would make it troublesome to use
the prediction in a real system.
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Figure 6. Residuals of different models (yellow represent expected outputs and blue ground-
truth output).

5. Discussion

In general, most discharge guideline reports published by the WHO [81], the Society of
Critical Care Medicine (SCCM) [82] or the AHA [83], published between 2016 and 2018, list
the following discharge criteria for ICU patients: stable hemodynamic parameters, stable
respiratory status and airway patency, oxygen requirements not more than 60%, intra-
venous inotropic support and vasodilators are no longer necessary, cardiac dysrhythmias
are controlled, neurologic stability with control of seizures, patients who require chronic
mechanical ventilation resolved, and patients with tracheostomies who no longer require
frequent suctioning. Discharge planning is multi-factorial and a succession of consecutive
parts. One of these parts is the patient’s readiness for discharge. The assessment of such
treatment transition enables a provider to estimate the patient’s and family’s ability to
leave the original medical care institution and to move to a home health phase or to a
lower intensity care area. A readiness for discharge from an ICU assessment requires the
evaluation of the patient’s physiological stability, cognitive and psychomotor ability to
carry out self-management regimens, social support availability and permanent access
to healthcare systems [84]. Assessing the patient’s readiness for discharge from an ICU
is a necessary task for the patient’s care and the equitable usage of the ICU’s available
resources. In both cases, for ICU-Emergency admitted patients or ICU-Elective patients
(postoperative monitoring and medical interventions), the determination of discharge line
between intensive care and recovery care may withdraw occupancy rates of ICU beds.
Discharge criteria enable a triage-based decision; allowing patients to leave ICUs if not
necessarily needed, and by increase the rate of readmission.

Both admission and discharge involve a change of location with the potential for
gaps in communication that may result in diminished and discontinuous care. There
is growing research evidence showing that the outcomes of intensive care are affected
by the timing of admission and discharge decisions, which in turn, are influenced by
resource availability in the ICU and probable inexpert care on the ordinary wards [85].
Admission to the ICU from 00:00–07:00 h, and at weekends is associated with a higher
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mortality, as is discharge from the ICU to the ordinary ward at night [86]. Readmission to
intensive care is associated with a hospital death rate 2–10 times that of non-readmitted
patients [87] and can be mitigated by intensive care outreach in the form of intensivist-led
rapid response teams [88]. Of the high-risk surgical patients admitted to intensive care in
28 European countries, 43% of deaths occurred after discharge to the ordinary ward [89],
which suggests there are potential opportunities to look at again with regards to the way
in which a patient’s readiness for discharge is assessed. Unintentional discontinuation of
chronic medications is also common following discharge from the ICU and is associated
with adverse patient outcomes. Decisions to admit patients to ICU or to discharge them to
the ward are determined by the severity of their illness.

Our approach can be used in two different pathways. Firstly, to identify patients
who are most likely to be discharged in each day per week and give them an uncertainty
rate. Following these recommendations, hospital staff can prioritize these patients to
be inspected, and then discharge them as early as possible so that other patients can be
admitted to ICUs. Secondly, the possibility of ranking patients into mild and moderate
severity while discharged. This allows the hospital to prioritize who and when to run the
remaining tasks for patients on the discharge list. Despite the many advantages of our
approach, it is important to highlight that the performance of our models may improve
with a larger dataset in terms of accuracy but may exponentially decrease in terms of
execution time.

A range of different tools and methods have previously been proposed, as shown in
the comparative Table 4, with the aim of improving ICU discharge practice. These tools
range from criteria for evaluating discharge readiness [90,91], to guidelines for discharge
planning and education [92].

Predictive models based on very large patient numbers capture more population
information than the individual clinician can acquire in a lifetime; however, the clinician
will know more about the individual patient than any of these models can. For this reason,
predictive systems may inform clinical judgement, but cannot replace it. Triage protocols
to maximize the use of scarce resources in high seasonality periods have been modelled
prospectively and retrospectively [93], demonstrating theoretical value in releasing inten-
sive care beds by denying admission to those categorized as being too well or too sick to
benefit. Several models have been developed to inform safe and timely ICU discharge deci-
sions. Simple univariate risk factors include prolonged LOS, unstable vital signs (including
tachypnea or tachycardia) and poor pulmonary function. For example, [94] have modelled
post-ICU mortality and ICU readmission using data from more than 700,000 patients,
incorporating admission diagnosis, severity of illness, laboratory values, and physiological
variables in the last 24 h of the ICU stay. The Stability and Workload Index for Transfer
score [95], and a model developed in France [96], have similar predictive precision for ICU
readmission. Others have identified the potential for important reductions in mortality had
triage models been used to avoid premature ICU discharge.

Table 4. Results and Benchmarking.

Ref Methods and Approach Dataset Metrics and Results Scoring of Recommendation
Strength

[97]

Focus: prognostication of
clinical outcomes in ICUs.

Methods: multivariate
imputation by chained

equations for missing data
imputation. Adaboost, parRF
(parallel implementation of a

random forest),
SVMRadialWeights (SVM with
radial basis function kernel and

class weights), avNNet
(averaged Neural Network) and

deep NN as classifiers.

Critical Care Health
Informatics Collaborative

(CCHIC) data infrastructure
(22,514 intensive care

admissions of which 21,911
were used in the study; 90.8%

of them were alive at
discharge.)

On day 2 (AUC):
parRF: 0.853 simple and 0.857 cumulative.

avNNet: 0.864 simple and 0.879 cumulative.
Adaboost: 0.862 simple and 0.879

cumulative. svmRadialWeights: 0.849
simple and 0.884 cumulative. DeepNN:

0.881 simple and 0.895 cumulative

Larger data improves model’s
performance.



Healthcare 2022, 10, 966 18 of 23

Table 4. Cont.

Ref Methods and Approach Dataset Metrics and Results Scoring of Recommendation
Strength

[98]

Focus: mortality prediction,
LOS prediction and ICD-9 code

group prediction.
Methods: SAPS-II (Simplified
Acute Physiology Score) and
SOFA. Super learner models,

RNN and FFN.

Medical Information Mart for
Intensive Care III (MIMIC-III)

(v1.4)

SuperLearner-I: AUROC = 0.8448 and
AUPRC = 0.4351.

SuperLearner-II: AUROC = 0.8701 and
AUPRC = 0.4991.

FFN: AUROC = 0.8496 and
AUPRC = 0.4632.

RNN: AUROC = 0.8544 and
AUPRC = 0.4519.

MMDL: AUROC = 0.8664 and
AUPRC = 0.4776.

Scoring methods: 0.8035 AND 0.7322 for
AUROC (SAPS-II and SOFA respectively),
AUPRC: 0.3586 for SAPS-II and 0.3191 for

SOFA.

Larger data improves model’s
performance.

[99]

Focus: prediction of final
diagnosis and clinical outcomes.

Methods: universal language
model fine-tuning for text

classification (ULMFiT)

Medical Information Mart for
Intensive Care III (MIMIC-III)

Accuracy: 80.3% for diagnosis top10, 80.5%
procedure top10, 70.7% diagnosis top50,

63.9% procedures top50.

Larger data improves model’s
performance.

[100]
Focus: in-hospital mortality
prediction. Methods: deep

learning networks.

Medical Information Mart for
Intensive Care III (MIMIC-III)
(42,818 hospital admissions of

35,348 patients)

Mortality prediction: AUROC: 0.9178 with
data of all sources (AS) and 0.9029 with
chart data (CD). PRAUC: 0.6251 for AS,

0.5701 for CD.
LOS prediction: AUROC: 0.8806 for AS and
0.8642 for CD. PRAUC of 0.6821 and 0.6575,

respectively with AS and CD.

Larger data improves model’s
performance.

[101]

Focus: ICUs discharge
prediction. Methods: random

forest (RF) and logistic classifier
(LC).

Bristol Royal Infirmary
general intensive care unit

(GICU) (1870 intensive care
patients) and 7592 from

MIMIC-III.

On the MIMIC dataset: AUROC(RF):0.8859,
AUROC(LC): 0.8726. Accuracy (RF): 0.8531
and accuracy (LC): 0.8494. sensitivity (RF):

0.9049 and sensitivity (LC) is 0.9001.

Larger data improves model’s
performance.

[102]

Focus: prediction of discharge
location in ICUs. Methods:

National Early Warning Score
(NEWS/NEWS 2)

Surgical, coronary, cardiac
surgery recovery, medical and
trauma surgical intensive care

patients with single
admission in ICUs in a US

hospital.

The NEWS AUROC (95% CI): all patients
0.727 (0.709–0.745); Coronary Care Unit

(CCU) 0.829 (0.821–0.837); Cardiac Surgery
Recovery Unit (CSRU) 0.844 (0.838–0.850);
Medical Intensive Care Unit (MICU) 0.778
(0.767–0.791); Surgical Intensive Care Unit

(SICU) 0.775 (0.762–0.788); Trauma Surgical
Intensive Care Unit (TSICU) 0.765

(0.751–0.773).

Larger data improves model’s
performance.

[103]
Focus: risk scoring in ICUs.

Methods: attentive deep
Markov model (AttDMM).

MIMIC-III with 53,423 ICU
stays. AttDMM with AUROC of 0.876. Not specified

[104]

Focus: ICU readmission
prediction after 24 to 72 h of

discharge.
Methods: fuzzy modeling and

tree search feature selection
technique.

MIMIC II (data of 4 different
ICUs 26,655 patients, of

which 19,075 are adults; 38%
of the adult patients stayed at
the medical ICU (MICU), 27%

at the surgical ICU (SICU),
20% at the cardiac surgery
recovery unit (CSRU) and

15% at the critical care unit
(CCU))

AUROC of 0.76 and p-value of 0.006 with
sequential forward selection. AUROC of

0.68 and p-value under 0.05 with sequential
backward elimination.

Not specified

[105]
Focus: length of stay prediction

in ICUs. Methods: neural
network (random forest)

MIMIC-III (31,018 chosen
data points) Accuracy of 80%. Larger dataset might improve

the model’s performance.

Our model

Preprocessing: Regularized
Linear Processing, Ordinal

encoding of categorical
variables, Tree based Algorithm.

Prediction tools: Auto-tuned
stochastic Gradient Descent
Regression, Decision Tree,

Extreme Gradient Boosted Trees
Regression with Early Stopping,
Gradient Boosted Greedy Trees
Regression with Early Stopping,

Light Gradient Boosted Trees
Regression with Early Stopping,
Advanced Generalized Linear

Regression Model (GLRM),
Efficient Neural Network

(ENET), AVG Blender

MIMIC-III

{18% 1, 36% 2, 72% 3}: Accuracy = 98%,
RESIDUAL MEAN = 0.000001, Prediction

time: 123,450.9 mS.
{18% 1, 36% 2, and 80% 3}: Accuracy: 97.8%,
RESIDUAL MEAN = 0.000001, Prediction

time: 123,551mS.
{18% 1, 46% 2, 72% 3}: Accuracy: 93.7%,

RESIDUAL MEAN = 0.000319, Prediction
time: 215,693 mS.

{25% 1, 36% 2, 72% 3}: Accuracy = 96.5%,
RESIDUAL MEAN = 0.00147 and

Prediction time: 15,039.3 mS.
1: Validation, 2: Cross validation, 3: Holdout

Larger dataset improve
model’s performance
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6. Conclusions and Perspectives

To optimize hospitals’ resources and maximize service quality, we presented a method
to handle CVD patients’ discharge from ICUs using their physiological data and history of
treatments, and on the learning capacity of ML algorithms. Firstly, we included physiologi-
cal, hospital internal transfers associated with patients and prescriptions in their treatments
from the MIMIC-III ICUs database recorded in the period between 2001 and 2012. The
database contains de-identified, health-related data of more than 40,000 patients with more
than 50,000 hospitalizations. The used dataset includes pneumonia, sepsis, congestive
heart failure, hypotension, chest pain, coronary artery disease, fever, respiratory failure,
acute coronary syndrome, shortness of breath, seizure, transient ischemic attack, and aor-
tic stenosis that have the same ICU admission, flow mutation and prescription patterns.
Multiple ML algorithms were used to compare the effectiveness of each model. We ran
multiple experiences on the processed dataset to study the importance of the dataset’s
size in every learning phase of our models. We tested our models using data related to
4226 cardiovascular disease patients. As a result, we achieved a better accuracy perfor-
mance of 0.98 and an RM (Residual Mean) = 0.0004 using advanced generalized linear
models, which included stochastic and trees regression. These results encourage future
work that will include studying the impact of such a decision support tool on internal
logistics and post-discharge outcomes. All methods need prospective validation.

Furthermore, the dataset available in this project contained a lot of information that
was not included in the training and testing data due to the amount of feature engineering
it would have required. As the whole pipeline, from raw data to polished flat-table
format, had to be implemented, not all possible information could be extracted due to time
limitations. This is one of the most interesting points to explore in similar projects in the
future. The dataset contained copious amounts of time-series data from different lab tests,
and it would be very interesting to develop more features connected to trends present in
these types of data. Only statical features were used in this project, but if features could
be extracted that reflect how, for example, a vital parameter has varied over time, this
could prove very valuable to the ML models as trends are very important when clinicians
evaluate patients. It would, therefore, be interesting to explore the feature engineering
aspects of this dataset more extensively, not only for the time-series data.
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