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Abstract: In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and
Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and
industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have
given many patients access to advanced personalized healthcare, which has improved their well-
being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies
such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to
the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from
a conventional hub-based system to a more personalized healthcare management system (HMS).
However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously
in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-
effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity
of connected wearable devices, the multidimensionality of data generated, and high demand for
interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper
presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT,
AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and
findings on the deployment of these emerging technologies in healthcare are investigated, as well as
key enabling factors, noteworthy use cases, and successful deployments. This survey also examined
essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and
Blockchain, as well as the critical concerns that must be addressed to enhance the application of these
emerging technologies in the HMS.

Keywords: wearables; sensors; internet of things; artificial intelligence; blockchain; healthcare

1. Introduction

The advancement of information technology (IT) has resulted in significant improve-
ments in health care services, particularly in remote health monitoring [1]. One of the
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primary purposes of employing physical sensor networks is to focus on disease prevention
and early identification of high-risk disease disabilities [2]. Today, smart technologies and
sophisticated instruments (such as smart wireless and wearable sensors) have substan-
tially risen for rapid monitoring and control of patients’ situations via prompt access and
continuous assessment of patients’ vital health signs [3].

The capacity of such smart devices to store and transport data is critical in several
forms of healthcare or medical care (for example, telemedicine) [4]. Wearable sensors are
primarily used to observe and track patients’ health problems and status, and a variety of
other health-related functionalities [1,2]. In other words, the vital health signs represent the
patient’s physiological status, organ activity, and illness progression. The assessment of
these indicators has a significant influence on disease prevention, diagnosis, treatment, and
nursing care [5]. These health data, if assessed accurately and promptly, might provide a
useful reference for efficient and high-quality medical care. Many smart devices, Internet
of Things (IoT), and artificial intelligence (AI)-based technologies have been designed and
developed to enhance prompt and continuous assessment of patient’s health status and
applicable healthcare sub-systems.

Smart devices, specifically wearable sensors, have attracted a lot of attention in the
last decade, mostly in the healthcare field. Such devices seek to derive therapeutically
important health-related data from physical (body) indicators such as heart rate (HR), blood
pressure (BP), body temperature, respiration rate, and body motion [6]. That is, basic health
information is derived and shared using applicable wearable sensors and wearable sensor
networks. Wearable sensor networks (WSNs) are made up of a variety of health-related
sensors [2]. Such networks’ sensors are put on various regions of the body, and these
sensors may be worn or implanted on the patient’s body. Each of these sensors has unique
criteria for identifying and recording symptoms (health-related data) [2,5,6]. However,
due to many diseases and impairments, patient monitoring continuity for prompt medical
intervention and delivery is pivotal [2,3]. As a result, using WSNs to monitor patients is a
key area of deployment of smart wearable technology in the healthcare domain.

Furthermore, the successful alliance of AI and healthcare has morphed into improved
patient healthcare in areas ranging from hospital productivity [7] and patient safety [8]
to quality medical treatment [9]. AI as a tool and/or technology is used to analyze and
visualize patient data for adequate healthcare administration [10]. Much of the research
on the influence of AI on medical outcomes has been beneficial and encouraging [11]. For
example, health professionals and patients are increasingly utilizing and managing medical
applications and medical-based games [12] not only to remotely monitor patients but also as
evidence-based medicine [13]. This phenomenon is observed in both doctors and patients
alike. The adoption of AI in healthcare gives credence to patient empowerment and a more
equitable dialogue between doctors and patients. A practical example is the use of cloud
computing with AI to enhance access to health data and the administration of medical
resources [3,14]. In terms of data, patients’ health data are required to tailor specific patient
treatment and it can be further utilized for disease prediction and healthcare policymaking
through big data analytics (BDA) [15]. The IoT as a tool can be paired with AI-based
technologies or platforms to further improve and promote quality healthcare delivery [16].
The success of IoT in various application domains serve as indicator for its acceptance
and integration with wearable sensors and AI technologies for quality healthcare delivery.
Wearable sensors are used as objects or components in IoT and are controlled via the
communication links such as Bluetooth, Wi-Fi and in recent time, the Internet.

With the introduction of IoT in healthcare, in which things (in this case sensors) can
communicate and analyze data [17], the collection of basic health-related data can be partly
or wholly automated, reducing the strain placed on doctors for continuous profiling of
health examination data. Furthermore, IoT processes and stores data on a distributed
platform [18]. The usage of this platform allows for the development and deployment of
machine learning (ML) techniques [19,20] to anticipate the problems with patient health
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status and to manage hospital/medical resources by projecting future patient needs [4].
Figure 1 presents a practical overview of an IoT-ML-based healthcare delivery system.
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Figure 1. A high-level illustration of the IoT-ML-powered healthcare delivery system [21].

The synergy among smart wearable sensors, IoT, AI, and Blockchain technologies in
HMS is investigated and presented in this research work. Findings from this investiga-
tion will further promote and support the application/adoption of IT in predictive and
personalized HMS. Existing health-based concepts such as electronic health (eHealth) [22],
mobile health (mHealth) [23], or ubiquitous health (uHealth) [24] have reported successful
automation healthcare systems. Primarily, these concepts (mHealth, eHealth and uHealth)
successfully utilized ubiquitous and mobile computing technologies [10] to monitor patient
health at any time and from any location [25]. Moreover, there is a paradigm shift or a
conceptual transition from a reactive to a predictive and personalized HMS [23,24].

Hence, this research work investigates and analyzes existing literature on using smart
wearable sensors, IoT, AI, and Blockchain technologies in HMS. Specifically, a thorough
review of the application of these emerging technologies (sensors, IoT, AI, and Blockchain)
singly and collectively in HMS is explored. The primary contributions of this research work
are aptly stated as follows:

• A unique taxonomy that highlights the application of wearable sensors, IoT, AI and
Blockchain, in HMS is presented. This taxonomy showcases the strategic steps of the
Sensor-IoT-AI-Blockchain-based healthcare system.

• A broad assessment of the deployment of wearable sensors, IoT frameworks, diverse
AI techniques and the application of Blockchain technology in the HMS is presented.

• Open research issues that affect the application of these emerging technologies (Sensor-
IoT-AI-Blockchain) in HMS are identified.

This paper is divided into ten sections as illustrated in Figure 2. Section 2 discusses the
state-of-the-art related works on HMS. Section 3 discusses the taxonomy of this study based
on the Sensor-IoT-AI-Blockchain-based healthcare system. Similarly, Section 4 presents the
methodology while Section 5 focuses on wearable sensors and their application in HMS.
Sections 6–8 detailed the use of IoT, AI and Blockchain technology for HMS with their
respective enablers and barriers. Section 9 highlights open research challenges and present
future research directions. Lastly, detailed conclusions from the investigation are presented
in Section 10.
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2. Related Works

In this section, associated surveys, and literature on the use of sensors, IoT, AI, and
Blockchain in HMS are presented and discussed. This assessment is critical to highlight
the inadequacy of thorough evaluations and to indicate the merits and shortcomings of
applicable methodologies taxonomically and logically.

2.1. Related Studies on the Application of Sensors, IoT, AI, and Blockchain Technologies in HMS

Kamruzzaman, et al. [26] reviewed the application of Internet-of-Medical-Things
(IoMT), AI and Edge computing for healthcare delivery in ubiquitous environments. They
posited that the aforementioned technologies could assist in the proper monitoring and
management of healthcare systems. It was reported that due to the escalation of popu-
lation and diseases, it is worryingly strenuous for medical staff to adequately attend to
patients with relative medical issues. Also, they posited that the introduction of emerging
technologies such as AI techniques can solve these rising issues. Yang, et al. [27] reviewed
smart HMS and different kinds of sensor components utilized within their respective IoT
framework. They categorized and analyzed existing applicable studies based on their
leverage of device-based techniques and device-free techniques. They concluded that dif-
ferent combinations of these techniques can be creatively applied to complement existing
HMS. Karatas, et al. [28] investigated the application and problems of big data analytics
(BDA) as an instance of AI technique. Their review showed that BDA constitutes a vital
place in the technology provided in HMS. Alshamrani [29] investigated the applicability
and deployment of health Internet of things (H-IoT) based systems in smart cities. In
addition, they further assessed HMS-affiliated technologies to create a standpoint on health
monitoring using various wearable sensors.

Krishnamoorthy, et al. [30] addressed current communication paradigms such as
wireless networks, emphasizing their importance and applicability with emerging tech-
nologies such as AI and Blockchain in advancing HMS. They conducted a comparative
analysis of several architectural solutions, taking into account their benefits, drawbacks,
and quality-of-service needs. Li, et al. [31] in their study, presented a detailed evaluation of
the utilization of AI techniques in HMS. Additionally, the strengths and shortcomings of
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current methodologies, as well as other research obstacles, were discussed. Sworna, Islam,
Shatabda and Islam [21] developed a distinct taxonomy from an IoT-ML context to help
researchers in future research directions on HMS. Similarly, Tunc, et al. [32] discussed the
recent advances in smart HMS. Specifically, a thorough review of IoT, AI, fog computing,
and Blockchain as emerging technologies in smart healthcare is presented. Also, Naha-
vandi, et al. [33] reviewed current applications of wearable sensors based on AI techniques.
Literature on the application of ML approaches for medical analysis is examined. Also,
use-cases with the combination of IoT and wearable sensors in HMS were discussed.

Qadri, et al. [34] designed an H-IoT framework for disease detection, disease mon-
itoring and assistive living system. The proposed framework was based on prominent
technologies such as Blockchain, AI and software-defined networks (SDN). Al-Dhief,
et al. [35] offered a general assessment of current IoT and ML techniques used in HMS
and demonstrated a voice pathology monitoring system. Some unresolved difficulties and
challenges related to the IoT framework in healthcare were also highlighted. Qayyum,
et al. [36] focused on the security and privacy problems of AI technologies in HMS. As a
solution, an ML pipeline and a classification of alternative methods that assure the security
and robustness of AI-based health systems were suggested. Karthick and Pankajavalli [37]
presented an overview of the deployment of Human H-IoT (H2IoT) application areas;
examined sensing devices and data transmission methods utilized in H2IoT; and discussed
problems, privacy, security, and threats in H2IoT. Santos, et al. [38] examined research on
online monitoring, detection, and assistance for cardiovascular disease diagnosis. Further-
more, they investigated how to handle security concerns and suggested a standard to assist
in developing a cardiovascular monitoring system. Amin and Hossain [39] explored H-IoT
applications implemented in edge computing systems. Their research aims to assess current
and developing edge computing concepts and approaches for ubiquitous healthcare, as well
as to identify the expectations and problems of various application scenarios. Their study
also provides a thorough examination of the state-of-the-art AI-based approaches used for
edge computing. A similar review was conducted by Alshehri and Muhammad [40] in
which they conducted an extensive review on IoT and IoMT-based edge computing HMS.

Dhanvijay and Patil [41] examined wireless communication-based health applications
with attention to the network’s configuration, infrastructure, and deployments in healthcare.
They examined privacy and security problems in their work and identified certain research
needs. Habibzadeh, et al. [42] reviewed the applicability of HIoT in healthcare from
the clinical point of view. They depicted HIoT from the viewpoint of three of its key
components which are sensing, data transmission and deduction. Mutlag, et al. [43] offered
a thorough analysis of the fog computing paradigm in IoT-based healthcare systems. Also,
Ray, et al. [44] explored the relevance of edge computing in IoT-based healthcare systems
and illustrated several edge-IoT-based healthcare framework use cases. They introduced
a revolutionary edge-IoT-based framework for healthcare in their research work. Dang,
et al. [45] examined the current trends of IoT-based healthcare systems, as well as emerging
technologies such as BDA and cloud computing in healthcare applications, were explored.
Furthermore, a detailed assessment of IoT privacy and security problems was performed.

Cui, et al. [46] provided an overview of the use of AI (ML techniques) in IoT. They
presented a detailed overview emphasizing current advances in ML for IoT and outline
several IoT applications. They posited that the deployment of ML techniques in IoT al-
lows deep insights and construction-efficient intelligent IoT applications. Alam, et al. [47]
went on to investigate the major application-based needs derived from the insights of
communication-based concepts in HIoT. In addition, many scenarios were utilized to illus-
trate certain upcoming technologies and standards employed in this industry. In addition,
certain predicted trends and difficulties for the prospect of HIoT were identified. Sharma
and Singh [48] focused on the deployment of IoT and AI (ML) in diabetes detection and
prediction. They presented the applicable concepts and research approaches to diagnosing
diabetes and proposed viable frameworks for its detection and prediction. Also, Babu and
Shantharajah [49] investigated the use of AI (ML and BDA) and IoT platforms in healthcare.
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They extensively discussed the advances of ML and BDA in driving actionable insights
from health data generated by IoT health-based platforms. In the end, they proposed
a unique BDA framework for health data. Sughasiny and Rajeshwari [50] provided a
thorough analysis of the significance of AI (ML and BDA) in the health sector.

Farahani, et al. [51] addressed the migration and advancement of HIoT from clinic-
based healthcare to HMS. This was achieved with the deployment of multiple wearable
sensors and fog computing. The suggested approach transformed the conventional HMS
into a more intelligent (smart) HMS. In a similar study, Darwish, et al. [52] developed
a cloud IoT-health paradigm by combining cloud computing with the IoT paradigm.
Sethi and Sarangi [53] presented an overview of advanced methodologies, technologies,
protocols, and applications in IoT infrastructure; examined computing techniques; and em-
phasized communication technologies in detail. Qi, et al. [54] conducted a comprehensive
study of IoT-enabled HMS. They highlighted essential enabling technologies for IoT and
contemporary healthcare applications, as well as research obstacles. Tokognon, et al. [55]
developed a framework for an HMS system utilizing IoT and BDA elements; they also
detailed several communication technologies and protocols for monitoring HMS.

Yuehong, et al. [56] reviewed the deployment of IoT in healthcare as well as described
the intelligentization trajectory and continuous research prospects in healthcare delivery.
In other words, the implementation techniques and approaches spanning knowledge and
resource management are analyzed. Capraro [57] investigated the use of sensors, IoT and
AI in healthcare delivery. The study focused on how AI (in this case BDA) can be used to
enhance healthcare while minimizing healthcare costs. It was indicated that the successful
integration of sensors, IoT, and AI will not only reduce the costs of medical care but also
enhance and promote the availability of data for actionable insights for effective healthcare
delivery. Similarly, Azzawi, et al. [58] examined IoT and AI in healthcare delivery with
attention to its security mechanism. Specifically, a new authentication platform for IoT
technologies using Elliptic Curve Cryptography (ECC) method was suggested. In another
study, Sakr and Elgammal [59] explored the use of sensors, IoT, data storage mechanisms
and AI for quality healthcare services. They developed a data-driven framework, SMART
HEALTH, for health analytics and its functionalities in healthcare delivery. Also, Hossain
and Muhammad [60] combined sensors, and cloud data infrastructure with IoT technolo-
gies for medical services. The proposed H-IoT framework was mainly for monitoring
continuous healthcare delivery by using ECG and sensors data for seamless access by
healthcare practitioners. Romero, et al. [61] suggested an IoT approach based on the inte-
gration of AI and sensors for Parkinson’s disease diagnosis and monitoring. They stated
that the growing technicality and acceptance of IoT and wearable sensors in healthcare
delivery appears to facilitate an intelligent means of providing ubiquitous medical services
to a large population and elevating the technical status of conventional healthcare systems.
In addition, Mathew and Pillai [62] discussed the applicability and issues faced by AI
(BDA) for deriving insights from health data. Yeole and Kalbande [63] highlighted the
many IoT enabling technologies and practices in healthcare delivery particularly for infants,
adolescents, terminal diseases, acute clinic services, operating rooms, and prescription
dispensers. Their study is based on the premise of enhancing the effectiveness of healthcare
delivery systems while minimizing healthcare expenses. Dimitrievski, et al. [64] investi-
gated and gave an overview of the Ambient Assisted Living systems (AALs). Their survey
is primarily based on the use and processing of ambient sensor data from IoT devices for
activity recognition or classification in HMS.

Islam, et al. [65] explored advancements in IoT-based healthcare technology and
examines cutting-edge approaches to IoT-based HMS. Specifically, several IoT security
and privacy elements, such as security criteria, threat models, and attack taxonomies were
analyzed. Furthermore, an intelligent collaborative security model to reduce security
risk was proposed and insights on how emerging technologies such as big data, ambient
intelligence, and wearables can be leveraged in a health care context with some avenues
for future research on IoT-based health causation. A similar study was posited by [66].
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Li, Lu and McDonald-Maier [66] presented a one-stop perspective and overview of the
background of Ambient Assisted Living (AAL) research, particularly technology and
methodologies for cognitive aided ageing in the home setting. They highlighted successful
case studies and solutions that have been implemented. Yang, et al. [67] in a broader
perspective examined state-of-the-art information technology (IT) solutions for improved
healthcare and suggested workable insights on how IT advances affect healthcare practices.
Wahaishi, et al. [68] proposed an agent-based architecture that permits ad-hoc system setups,
highlighting tactics for achieving real-time smart monitoring in SmartHealth settings
with a privacy-based communication mechanism to preserve individuals’ identity while
exchanging sensory information.

2.2. Comparison of Existing Literature with This Study and Motivation

In this section, this survey is compared with the existing surveys and literature as
depicted in Table 1. Part of the contribution of this survey is that it examines the identified
concepts highlighted in Table 1 using different cases. Several studies have reported these
concepts singly or in pairs [15,26,31–34,40,43,44,52]. Nonetheless, this survey combined
and examined all these concepts as a distinct taxonomy (See Figure 3). In other words,
the primary distinction between this study and the other existing literature as shown in
Table 1 is that we developed a new taxonomy with the notion of Sensor-IoT-AI-Blockchain-
healthcare. As illustrated in the taxonomy, the highlighted concepts and subareas are
discussed in depth throughout this study.

Table 1. Comparison of this survey with existing related survey papers.

Year Reference Taxonomy Sensors IoT Artificial
Intelligence Blockchain Covered

Year

2015 Islam, Kwak, Kabir, Hossain and
Kwak [65] No No Yes No No Not stated

2015 Li, Lu and McDonald-Maier [66] No Yes No No No Not stated

2015 Yang, Li, Mulder, Wang, Chen, Wu,
Wang and Pan [67] No Yes No No No Not stated

2015 Wahaishi, Samani and Ghenniwa [68] No No Yes No No Not stated

2016 Yeole and Kalbande [63] No No Yes No No Not stated

2016 Yuehong, Zeng, Chen and Fan [56] No No Yes No No Not stated

2016 Capraro [57] No No Yes Yes No Not stated

2016 Azzawi, Hassan and Bakar [58] No No Yes Yes No Not stated

2016 Sakr and Elgammal [59] No No No Yes No Not stated

2016 Romero, Chatterjee and
Armentano [61] No Yes Yes Yes No Not stated

2016 Mathew and Pillai [62] No No No Yes No Not stated

2016 Dimitrievski, Zdravevski, Lameski
and Trajkovik [64] No No Yes No No Not stated

2016 Hossain and Muhammad [60] No No Yes No No Not stated

2017 Sethi and Sarangi [53] Yes No Yes No No Not Stated

2017 Qi, Yang, Min, Amft, Dong and
Xu [54] No Yes Yes Yes No Not Stated

2017 Farahani, Firouzi, Chang, Badaroglu,
Constant and Mankodiya [51] No No Yes No No Not Stated

2017 Darwish, Hassanien, Elhoseny,
Sangaiah and Muhammad [52] No No Yes No No Not Stated
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Table 1. Cont.

Year Reference Taxonomy Sensors IoT Artificial
Intelligence Blockchain Covered

Year

2017 Tokognon, Gao, Tian and Yan [55] No No Yes No No Not Stated

2018 Cui, Yang, Chen, Ming, Lu and
Qin [46] No No Yes Yes No Not Stated

2018 Alam, Malik, Khan, Pardy, Kuusik
and Le Moullec [47] No No Yes No No Not Stated

2018 Sharma and Singh [48] No No Yes Yes No Not Stated

2018 Babu and Shantharajah [49] No No Yes Yes No Not Stated

2018 Sughasiny and Rajeshwari [50] No No No Yes No Not Stated

2019 Mutlag, Abd Ghani, Arunkumar,
Mohammed and Mohd [43] Yes No Yes No No 2007–2017

2019
Habibzadeh, Dinesh, Shishvan,

Boggio-Dandry, Sharma and
Soyata [42]

No Yes Yes No No Not Stated

2019 Dang, Piran, Han, Min and Moon [45] No No Yes No No 2015–2019

2019 Dhanvijay and Patil [41] No No Yes No No Not Stated

2019 Ray, Dash and De [44] Yes No Yes No No Not Stated

2020
Santos, Munoz, Olivares, Rebouças

Filho, Del Ser and de
Albuquerque [38]

No No Yes Yes No 2015–2028

2020 Amin and Hossain [39] Yes No Yes Yes Yes Not Stated

2020 Alshehri and Muhammad [40] Yes No Yes Yes No 2014–2020

2020 Qadri, Nauman, Zikria, Vasilakos
and Kim [34] No No Yes Yes Yes Not Stated

2020 Karthick and Pankajavalli [37] Yes Yes Yes No No Not Stated

2020 Al-Dhief, Latiff, Malik, Salim, Baki,
Albadr and Mohammed [35] No No Yes Yes No Not Stated

2020 Qayyum, Qadir, Bilal and
Al-Fuqaha [36] No No No Yes No Not Stated

2021 Krishnamoorthy, Dua and Gupta [30] Yes No Yes No No Not Stated

2021 Li, Chai, Khan, Jan, Verma, Menon
and Li [31] Yes No Yes Yes No 2016–2020

2021 Sworna, Islam, Shatabda and
Islam [21] Yes Yes Yes Yes No Not Stated

2021 Tunc, Gures and Shayea [32] No No Yes Yes Yes Not Stated

2021 Nahavandi, Alizadehsani, Khosravi
and Acharya [33] No Yes No Yes No Not Stated

2022 Kamruzzaman, Alrashdi and
Alqazzaz [26] No No Yes Yes No 2016–2021

2022 Yang, Wang, Jiang, Guo, Cheng and
Chen [27] No No Yes No No Not Stated

2022 Karatas, Eriskin, Deveci, Pamucar
and Garg [28] No No No Yes No Not Stated

2022 Alshamrani [29] No No Yes Yes No Not Stated

2022 This study Yes Yes Yes Yes Yes 2015–2022
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Another novel addition is that, unlike previous survey papers, we gathered research
publications in line with the suggested classification and its sub-classifications. We then
organized the whole survey papers around that, demonstrating different kinds of wearable
and ambient sensors with their application in HMS. A thorough analysis was conducted
to discover several kinds of sensors utilized in HMS for a range of ailments and observed
findings are summarized and presented. In addition, actuators and development boards
are discussed as part of IoT infrastructure. Another important feature of this study is
the distinctive explanation of the application of AI and Blockchain technologies with the
Sensor-IoT-AI-Blockchain-based HMS. To the best of our knowledge, such a presentation
and categorization of the AI and Blockchain sections are novel in comparison to existing
survey papers [36]. All these significant enhancements make this study detailed and
balanced when compared to other surveys.

3. Taxonomy

In this section, we propose a taxonomy for research in Sensor-IoT-AI-Blockchain-based
HMS, identifying four critical concepts/layers as depicted in Figure 1. The taxonomy’s
primary objective is to investigate the deployment of Sensor-IoT-AI-Blockchain in HMS.

The starting point of the taxonomy is the sensors. Sensors are devices that generate
output signals to detect physical phenomena. In other words, sensors are used for data
collection in an environment or domain of interest. An instance of such a domain is the
healthcare sector where sensors are used to gather health-related data (actively or passively)
from a patient. These data are either transmitted to another sensor or analyzed. An example
of sensors used in healthcare is the medical sensor. Medical sensors are specially designed
and deployed to measure and monitor a patient’s vital signs such as heart rate (HR),
oximeter, pressure, glucose, temperature, Electrocardiogram (ECG), Electroencephalogram
(EEG) and so on.

The next component is the IoT architecture. IoT is a web of smart and self-configuring
things (devices) that can communicate with each other using a communication link or
network (in this case the Internet). It is essentially a cyber-physical system or a network
of networks consisting of different kinds of devices (sensors). It is worth noting that
sensors can be discussed as a component of the IoT architecture since it is primarily used
for data collection from an environment. However, the IoT architecture is beyond the
communication of connected devices. Actuators, development boards, communication
and storage infrastructure are components of IoT architecture. Actuators are employed
to impact continuous alterations in the surrounding. The temperature controller of an
air conditioner is a typical example of an actuator. Also, development boards are used
to design the system to collect, process, and transport data to various sorts of systems.
Arduino, Raspberry Pi, Intel Edison, and so on, are examples of the development board.

The third component is AI. The concept of AI as used in the healthcare domain is
presented in Section 7. In this survey, AI is broadly divided into core ML and BDA. The
essence of this categorization is to generate a broader conceptual view of the applicability
of AI in HMS. Details on ML and its characteristics may not be sufficient to portray the
adequacies of AI in healthcare. Hence, the category of BDA is added to show how the
humongous data generated from IoT-based HMS are being analyzed and converted into
actionable insights. Different sub-categories of ML such as Supervised, Unsupervised,
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Semi-Supervised, and Reinforcement ML techniques in healthcare are investigated. Also,
BDA technologies concerning HMS are discussed in detail.

At the same level as AI is Blockchain technology (Fourth component). It is somewhat
of a new concept that has not been wholly and extensively utilized in HMS. Blockchain is a
shared, immutable ledger that facilitates the process of recording transactions and tracking
assets in a business network. In other words, Blockchain technology is a decentralized,
distributed, and public digital ledger that is utilized for saving the transaction in various
nodes. Therefore, any third person involved cannot alter records because every block has a
cryptographic value of the previous block and itself. One of the prominent applications of
Blockchain in HMS is in the creation of a shared archive of health-related data for doctors
and patients independent of their electronic diagnosis, improving safety and privacy,
investing fewer resources in the medical staff and more money in patient care.

Details on the applications of each of the components in HMS have been added to
their respective sections to aid readability and ease of understanding of this study.

4. Methodology

This survey employed the PRISMA method for the selection of research papers to be
included in this study.

4.1. Inclusion and Exclusion Criteria

This research systematically attempts to explain the necessity for and use of emerging
technologies (Sensor-IoT-AI-Blockchain) in the present healthcare domain, offering a de-
tailed assessment of these technologies as well as the prior techniques and methodologies
engaged in the current scenario to assist the system [69,70].

Particularly, this survey contains publications and survey papers that are directly
linked to sensors, IoT, AI and Blockchain deployment in HMS. This gives insights into
hundreds of the publications included in this study, as well as the methodology used in
existing studies.

In this study, the paper selection criteria procedure is separated into three subsections:
keyword selection, inclusion and exclusion, and the final findings generated utilizing these
approaches. Details on these selection criteria are presented in the following sub-sections.

4.1.1. Selection of Keywords

A comprehensive search for research articles was undertaken in various well-known
databases, including IEEE, Science Direct, PubMed, Wiley, Taylor and Francis and oth-
ers. Keywords such as sensors, wearable sensors, biosensors, IoT, AI, ML, Blockchain,
healthcare, telemedicine, and e-health were used to search the articles in the aforemen-
tioned databases.

4.1.2. Inclusion

The research included only articles published from 2015 to 2022, with the remainder
being eliminated. These selected articles were chosen for review after being reviewed
with the abstract as the focal point and papers particularly stating the use of wearable
technology, IoT, AI, and Blockchain and its relevance to this study. This research contains
the analysis of research articles, current review papers, technical notes, and other materials
grouped in a systematic sequence linked to recent advances in wearable sensors, IoT, AI,
Blockchain and HMS.

4.1.3. Exclusion

During the search for research articles, there are some strong criteria for exclusion
of papers which includes duplication of papers, language (English language only), and
irrelevant papers (subject and material). Papers were also removed if they had no connec-
tion to wearable technology and offered previously published material on the same subject.
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Also, case series and reports, short communications, editorial notes, and other materials
were excluded.

4.2. Quality Assessment and Data Extraction

It is vital to remember that the number of articles, including surveys relevant to the
healthcare domain, has been expanding, with many academics attempting to add to the
literature. However, such studies (reviews or surveys) are prone to some flaws, including,
increasingly, nonrandomized intervention studies. Authors must be able to identify high-
quality reviews or surveys. Many ways for analyzing individual aspects of feedback have
been devised, but there are few systematic instruments for critical assessment [71].

In this respect, the PRISMA technique is used in this research to evaluate the quality
of the chosen articles and guarantee that the articles included in the review are of high
quality. Furthermore, the PRISMA technique is used to critically examine the material
important to each of the chosen papers [71]. Publications were selected utilizing the
inclusion and exclusion criteria, including the year of publication (as established by the
PRISMA checklist). Figure 4 depicts the PRISMA method for this survey.
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Consequently, following the thorough assessment of 2606 articles gathered from
multiple sources (IEEE, Science Direct, Wiley, Google Scholar, EBSCO, PubMed, Taylor
and Francis, Emerald and JSTOR) in the first stage, 1244 articles were removed due to
duplication across the selected repositories. A further 1088 articles were excluded based
on the considered publication year of the articles and 35 articles were removed due to
inaccessibility, relevance, and quality of some of the articles. In the end, 189 articles are
selected after full review and assessments.

5. Sensors

Sensing is a technology that is employed in practically every element of hospital-based
care, from the most basic device such as a thermometer to complicated precision-based
equipment. For example, digital image sensor technologies are regularly employed technol-
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ogy to give medical professionals with many insights into each patient’s health status [72].
These sensors have been significant in revolutionizing diagnostic medicine. Such informa-
tion, in particular, enables doctors to detect regions of damage or abnormalities, perform
microsurgical procedures, and analyze the outcome of a procedure [73]. In obstetric
treatment, for example, ultrasonography allows the physician to follow and analyze the
growing foetus and identify any foetal or other anomalies that may damage the mother’s
or baby’s health [74]. Pathologists also use modern sensing technologies in hospital labs
to conduct haematology, immunology, biochemistry, histopathology, and microbiology
activities. Sensors may also play an important part in medical therapy. They can, for
example, identify events such as missing heartbeats. Furthermore, they can be utilized
in improving the medication administration procedure by selecting the best moment to
administer medicine [6,75].

Examples of significant sensor application areas in HMS include [41]:

• Medical Imaging: The charge-coupled device (CCD) and other applicable sensor
devices are widely used for medical imaging [45]. These devices are used to gather
still or moving images inside the patient. A prime application is the Smart Pills for
gastrointestinal imaging [40]

• Screening and Diagnostics: Ocular and metabolic sensors are employed in diagnostics
and bedside testing [72]. Besides, metabolic sensors can be used to detect medicines,
protein expression, viral infection, and endocrine systems in biological fluids or speci-
mens [42].

• Movement and Trajectories: Wearable sensors such as accelerometers and gyroscopes
can be used to assess balance and fall risk, as well as monitor the effect of medical
therapies. Motion sensors are used to evaluate prosthetic limb replacements. They are
also used in stroke therapy to monitor the progress of certain physical activities.

• Physiological: With the aid of an applicable sensor, vital health signs related to the
physiology of a patient such as HR and BP can be monitored [39].

In general, sensors can be categorized into wearable and ambient (environmental sensors).

5.1. Wearable Sensors

Wearable sensors are beginning to appear, offering patients with cheap and unin-
terrupted evaluation of medical symptoms independent of place and health status. It is
expected that 5 million of these sensors would be marketed by 2018 [6]. Wearable sensors,
which are becoming more convenient and unobtrusive, are critical in assessing a patient’s
health or well-being without interfering with their everyday routines. By inserting the
sensors in various areas of the body, the sensors can monitor a range of vital signs likewise a
patient’s behaviour and mobility. Ultimately, minimal power, condense and cheap devices
and current IT infrastructure are paving the way for cheap, discreet, and lifelong wearable
sensors. The LifeShirt, for example, is a multi-sensor extended HMS for gathering and ana-
lyzing the health data of a patient [76]. It captures continuous patient data instead of data
fragments, that are generally obtained through periodic doctor’s physical examinations.
Table 2 presents a further categorization of wearable sensors into inertial sensors, location
sensors, physiological sensors, and image sensors with applicable examples.

This sub-section presents and analyses research articles on the deployment of wearable
sensors in healthcare. Studies such as [44,77–86] addressed the deployment of wearable
sensors in healthcare.
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Table 2. Categorization of Wearable Sensors.

Type of Sensor Subcategories Examples

Wearable sensors

Inertial sensors

Accelerometer

Gyroscopes

Pressure sensors

Magnetic field sensors

Location sensors

Global Positioning System (GPS)

Blood pressure cuff

Electrocardiogram (ECG)

Physiological sensors

Spirometer

Esophagogastroduodenoscopy (EDG)

Galvanic Skin Response (GSR)

Image sensors SenseCam

Literature on Wearable Sensors in Healthcare

Ray, Dash and De [86] proposed a portable and low-cost galvanic skin response (GSR)
device that amplifies, captures and processes GSR data in smart e-healthcare applications.
The GSR device evaluates a patient’s degree of behaviour and movements which is analyzed
and presented on the patient’s devices. Bhatia and Sood [79] developed a smart HMS for
real-time medical analysis of its users based on an ML approach. The suggested HMS
works by aggregating data from its user via smart wristbands for the prediction of health
status risks using an artificial neural network (ANN). The results of the experiments reveal
that the proposed HMS is effective in analyzing patient’s health status. Azimi, Pahikkala,
Rahmani, Niela-Vilén, Axelin and Liljeberg [78] designed a customized robust decision-
making approach for providing medical options. They experimented on pregnant women
who wore wristbands to monitor their maternal health and proved that their approach is
effective in monitoring maternal health state. Also, Yang, Zhou, Lei, Zheng and Xiang [77]
suggested a compact wearable gadget for long-term ECG signal detection with low cost
and high performance. Similarly, Wu, Wu, Redoute and Yuce [80] designed a wearable
sensor-based system to detect falls by analyzing the change in body temperature and
heart rate. Niitsu, Kobayashi, Nishio, Hayashi, Ikeda, Ando, Ogawa, Kai, Nishizawa and
Nakazato [83] proposed an environmentally friendly and high-performance self-powered
disposable supply-sensing biosensor platform employing an organic biofuel cell for big
data-based healthcare applications in IoT. Hallfors, Alhawari, Abi Jaoude, Kifle, Saleh, Liao,
Ismail and Isakovic [85] described the characterization, manufacture, and effectiveness of
wearable IoT-based sensors constructed from graphene oxide (rGOx). It was observed that
the rGOx performed well in terms of noise level for ECG signal amplitudes. Furthermore,
the experimental findings demonstrated the recommended architecture’s great sensitivity
and predictability. Esmaeili, et al. [87] suggested an effective lightweight device that
classifies patients’ health data based on a priority algorithm and provides emergency
assistance with little delay. Muthu, et al. [88] created an IoT-connected wearable sensor
with ML to forecast illnesses, notify patients, and deliver therapies. Huifeng, et al. [89]
developed IoT-based wearable sensors with an integrated ML support that continuously
gathers health metrics and track activity to evaluate sports performance and the health of
the patient. Wu, Wu, Qiu, Redouté and Yuce [82] created a small wearable sensor patch that
measures vital signs such as body temperature and allows remote monitoring of a patient’s
health status. However, regardless of the successful deployments of these wearable devices
as reported in these studies, security and privacy problems are still a problem.
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5.2. Ambient Sensors

Ambient or environmental sensors are utilized to detect and measure physical en-
vironmental changes. Air pollution is responsible for the worsening of various physical
health conditions including asthma and lung cancer [90]. Temperature, humidity, and air
pollution can all be measured using these ambient sensors. Table 3 illustrates an extended
categorization of ambient sensors into further divisions and tags with examples.

Table 3. Categorization of Ambient Sensors.

Type of Sensor Subcategories Examples

Ambient sensors

Environmental sensors
Thermometer

Hygrometer

Binary sensors

Window contact

Door contact

Light switch

Remote control switch

Location sensors Infra-red

Physiological sensors
Zigbee

Active Radio Frequency Identification (RFID)

Tags
RFID tags

Near Field Communication (NFC) tags

Literature on Ambient Sensors in Healthcare

This sub-section presents and analyses research articles on the application of ambient
sensors in healthcare.

Vilela, et al. [91] developed a fog-assisted health monitoring system for real-time
applications and demonstrated its excellent performance and security in a hospital setting.
However, interoperability across heterogeneous devices was a significant problem in their
study. Ray, et al. [92] developed a non-invasive, low-power, and cost-effective sensor system
for monitoring intravenous (IV) fluid bag levels in real-time in e-healthcare applications.
Caregivers may use this application to check the status of the IV fluid bag on the web page
to determine whether it was about to run out. Furthermore, Elsts, et al. [93] proposed a
multi-modal platform called SPHERE and employed it in smart home applications to cut
power consumption and costs associated with monitoring people in residential settings.
SPHERE’s network design accommodated both software and hardware needs, according to
the authors. Also, Chen, et al. [94] suggested three techniques to optimize packet size and
power management choices in e-health WSNs. The performance, latency, dependability,
and longevity of these three methods were compared.

5.3. Commonly Deployed Sensors in Healthcare

The most significant components of the wider HMS are the health sensors. They
are used to detect various health issues and to record health data. Health sensors are
sometimes referred to as biosensors since they are placed on or inside the body to read
vital signs (health data). Under the auspices of an IoT-enabled ubiquitous healthcare
environment, many kinds of health sensors are developed to detect different kinds of vital
signs in the patient body. The operation of these gadgets may differ depending on their
use. Hence, a variety of biosensors that assist ubiquitous healthcare systems are covered in
the following subsections.
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5.3.1. Blood Pressure (BP) Sensor

The purpose of measuring blood pressure (BP) is to quantify the force that travels
through the blood channels against the artery wall. Typically, a sphygmomanometer is
used for measuring BP. If the flow of blood in the artery is normal, the BP is normal.
If blood flow is impeded by any cause, BP rises. High BP may lead to serious health
complications [95]. The BP measuring procedure finds two pressure points within the
blood channels: one when the heart is beating (systolic) and another whilst the heart is at
rest between two heartbeats (diastolic). Today, various standard BP testing techniques are
accessible. The “gold standard” is a mercury sphygmomanometer. The digital manometer
measures BP using an electronic pressure sensor and is based on the oscillometric concept;
the values are shown digitally on a display [96]. This technique of measuring BP is simple
and may be linked to a smart hub, such as a smartphone, to support a comprehensive
healthcare system.

5.3.2. Body Temperature (BT) Sensor

Body temperature (BT) is one of the most crucial indicators of a patient’s physiological
status and the average human BT is about 37 ◦C. A high BT may be a common symptom of
most illnesses or insufficient blood flow owing to circulatory shock [97]. A healthy person’s
BT value may also change somewhat depending on the time of day and the location of
the measurement on the body. As a result, while measuring the BT, caution must be
taken to properly calibrate the temperature measurements. Wearable BT sensors are often
utilized in the ubiquitous healthcare setting and are put on the body. Sensors placed on
the body have a temperature that is roughly 5 ◦C cooler than the body’s core temperature.
Due to their higher sensitivity and accuracy, thermistor-based sensors are chosen for BT
monitoring in wearable and other non-invasive technologies [95]. The resistance of a
thermistor varies with temperature changes. The resistance of one form of a thermistor,
known as a positive temperature coefficient (PTC) type, increases as the temperature
rises. The resistance decreases with decreasing temperature in the other category, which is
known as a negative temperature coefficient (NTC) type thermistor. The BT sensors can
be deployed in different ways depending on the mode of operation. For instance, the BT
sensor can be attached to clothes like in the case of wearable fabric for babies that uses
conductive textile wires for its BT sensor [98]. Also, LM35 is another wearable BT sensor
that is based on integrated circuits (ICs). The BT sensors can be placed on the patient’s skin
for periodic temperature assessment.

5.3.3. Electrocardiography (ECG) Sensor

Electrocardiography (ECG) is one of the oldest and simplest diagnostics for determin-
ing important information about a patient’s cardiovascular system [95]. An ECG depicts the
electrical impulses of the cardiac muscles in reaction to electrical discharge on graph paper.
Various procedures may be used to perform an ECG. Wet ECG, in which electrodes are
placed on the chest, arms, hands, and legs, is a traditional technique that employs a unique
kind of conductive gel that acts as a conducting medium for electrical impulses from the
body to the electrodes. Long-term usage of wet ECG has downsides such as patient allergies
owing to contact with metal electrodes and gel, or surface degradation of electrodes leading
to a decrease in signal quality [99]. Regular assessment of the ECG signals can assist in
identifying abnormal signs and arrhythmias in high-risk individuals [96,100]. In such cases,
an alteration from primary ECG readings can be detected, and adequate medical care can
be given to such a patient. In today’s ubiquitous HMS, such a system is achievable in which
patients may go about their everyday routines while being continually assessed for ECG
signals. Another approach to measure ECG is to deploy the Capacitively Coupled ECG.
CC-ECG is a way of obtaining an ECG signal without physical contact with the patient [95].
In this procedure, a tiny layer of insulator separates the human body from a metal plate
electrode, resulting in the formation of a capacitor. The electrodes may be attached to a
fabric that is worn by the individual who requires continuous monitoring of ECG readings.
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To enable a ubiquitous healthcare environment, the CC-ECG sensor-based ECG may be
built to be portable and compact, as well as wireless. To extend battery life, low-power
components such as idle mode, low-power wireless protocol, and so on are used.

5.3.4. Electroencephalogram (EEG) Sensor

The electroencephalogram (EEG) is a method for measuring the electrical impulses
of a person’s brain using tiny electrodes placed at various sites on the scalp [101]. It
is a non-invasive procedure that may be used on patients, healthy adults, and children
repeatedly with no dangers. Nerves activating in the brain produce electrical impulses
with amplitudes in the microvolt (mV) range and frequencies ranging from 8 Hz to 50 Hz.
EEG is employed in a wide range of medical and non-medical scenarios. Assessing brain
activity; detecting regions of interest after a head laceration, seizure, tumour, and so on;
researching sleep disorders and physiology [102], and so on are some of the medical uses.
Among nonmedical uses, EEG is utilized for the psychological training of athletes, assisting
them in improving attention and effectively managing stress or weariness. EEG may also
be utilized to investigate cognitive processes, decision-making, driver awareness, and
so on [103].

5.3.5. Pulse Oximeter

The amount of oxygen in the blood is an essential characteristic of the human body.
The human body may struggle to function correctly if the oxygen level is insufficient,
and very low oxygen levels may strain the heart and brain. A blood-oxygen saturation
level reveals the proportion of haemoglobin molecules in arterial blood that is saturated
with oxygen in comparison to their maximal possible absorption value. Under typical
circumstances, the oxygen saturation level is more than 89%. A pulse oximeter is a device
for measuring the blood-oxygen saturation level [104]. The pulse oximeter calculates the
proportion of haemoglobin bound to oxygen based on the quantity of red and infrared light
absorbed. Sensors may be put on the earlobe or the toe in addition to the fingertip. In the
ubiquitous monitoring environment, the sensor unit’s signals interface with a miniature
processing unit, which then transmits the data to the healthcare unit through wireless
methods such as WLAN, and so on [105].

5.3.6. Heart Rate (HR) Monitor

The human heart oversees pumping oxygenated blood and nutrients to various regions
of the body as well as collecting deoxygenated blood that contains carbon dioxide. A cardiac
cycle is defined as the stages involved in converting deoxygenated blood to oxygenated
blood in the lungs and pumping it via the aorta by the heart [106]. The frequency of the
cardiac cycle known as the heart rate (HR) is measured in beats per minute (BPM). HR
is a critical indicator to determine a patient’s mental and physical wellness. HR for an
average healthy adult varies between 60 BPM and 100 BPM. A low HR value typically
indicates improved cardiovascular health, heart fitness and effective heart function. A
patient with poor physical fitness typically has a high HR value. HR can be measured
using a variety of ways one of the least is the intrusive and near-infrared light often
used in popular procedures [107]. The sensor configuration is like the pulse oximeter
described in the preceding section and operates on the same principles. Wrist wearable
HR monitors that can connect to the internet through mobile phones for data storage and
further data analysis by doctors are now widely available and accessible for promoting
prompt healthcare delivery [106].

5.3.7. Motion and Activity Sensor

Physical exercise is a key factor in maintaining a healthy body and physique. Further-
more, a patient’s mobility is a crucial component that must be closely watched throughout
the rehabilitation time in a hospital. A pedometer, actometer, or accelerometer are the most
common sensors used to assess a patient’s movements and physical activity. A pedometer
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detects the action of hands-on-hips to tally each step. A GPS receiver may also be used to
calculate the distance travelled by a person. Actometers may measure acceleration and
intensity of movement. A recent study indicates that identifying diverse body positions
such as sitting, lying, and walking [108] is also achievable to provide a novel ambulatory
assessment method, particularly for senior (aged) patients. To detect such positions, little
kinematic sensors are implanted on the person’s chest. Furthermore, the sensors have
aided in the identification of the postural transition between standing, sitting, lying, and
locomotion activities when standing.

5.4. Challenges and Open Issues of Sensors in Healthcare

Wearable sensors are often accessible nowadays in the form of smartwatches that may
link to smartphones. Wearables are projected to appear in a variety of forms intended for
specific uses in the future. In the future, it is expected that wearable sensors can assist
humans in carrying out their responsibilities. The present crop of wearable technologies
is far from flawless. Although the sensing technologies are amazing, they are not yet
mature enough. Multiple hurdles must be overcome before the full potential of wearable
sensing technology may be realized. Some of the issues that wearable sensing technologies
encounter are covered briefly in the following subsections.

5.4.1. Data Collection

A notable difficulty of wearable sensors is data collection. The wearable device
determines the quality, quantity, resolution, and other aspects of the collected data. Factors
such as spatial resolution, temporal resolution, and data resolution may all influence data
quality and quantity [72]. It is difficult to collect data from sensor users in an efficient way.
Before it can be used in clinical trials, raw data must be pre-processed. To that aim, the
measured values from various devices must be harmonized, as well as their error and
statistical outliers eliminated. The data are ready to be utilized by data analytics once they
have been pre-processed. ML, a form of AI, is often used in data processing solutions for
wearable data [109]. Obtaining high-quality labelled data from sensors takes time and it
usually involves specialist knowledge or the assistance of the wearable user in categorizing
such data [110].

5.4.2. Data Transmission

It is critical to provide an energy-efficient approach for transmitting data (collected by
sensors) for further processing. The introduction of faster connectivity technologies, such
as 5G and beyond are beneficial for prompt data transmission, however, these connectivity
technologies could lead to an increase in data creation which will require proper and
adequate planning for processing and storage. Due to data processing delay and high
pressure on network performance, relying only on a centralized data storage system is
not a solution. Distributed computing may minimize latency by relocating processing to
the network’s nodes. However, there are still challenges with the development of node
device software and hardware that must be addressed to satisfy the distributed computing
demand [111].

5.4.3. Security and Privacy

Enforcing privacy, security, and trustworthiness while wearing wearable sensors
remains a difficulty [6]. The wearables’ major characteristic is constant sensing and data
collecting. As described in Mamdiwar, Shakruwala, Chadha, Srinivasan and Chang [74],
most current wearables can gather data on the user’s location, physical activity level,
and mental health. From the user’s perspective, this data may be deemed sensitive,
therefore protecting their privacy is critical. There is currently no comprehensive solution to
handle all the possible security and privacy issues posed by wearable sensors, thus further
research and development is necessary to enhance the security and privacy elements of
wearable devices.
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5.4.4. User Acceptance

The acceptance of wearable technology by target end-users is directly proportional to
their success. User adoption is particularly difficult in medical and industrial applications.
In all other cases, user adoption is a question of personal preference. Wearables, on
the contrary, are more of a need than a choice in the medical and industrial spheres.
Patients in the medical field may experience pain and stress because of using diverse
medical equipment. This is mostly due to the wearable devices’ complexity and excessive
intrusiveness. Some employees in the industrial sector may not grasp the usefulness and
purpose of monitoring wearable devices and may oppose utilizing them.

5.4.5. Scalability and Interoperability

The exact localization of wearable devices is critical in many applications of wearable
technology. Given that wearables are often resource-constrained, attaining adequate ac-
curacy in localization is difficult. As a result, it is necessary to improve the localization
quality of wearable devices while working with limited processing resources. Wearable
devices, regardless of technology, must be able to interact with one another. This kind of
device-to-device (D2D) communication between wearable devices with varying computing
capabilities (e.g., low-end, and high-end devices) is a means toward the decentralized
implementation of many smart systems. Recall that a single wearable gadget does not
have much to give because of its scant resources. However, with proper management and
D2D connectivity, as well as the combined computing power of numerous wearables, they
may be combined to complete difficult jobs. Furthermore, to fully benefit from the IoT,
end-to-end solutions for seamless integration of wearable objects must be developed. One
of the major issues is integrating new systems with current ones.

5.4.6. Resource Constraints

Providing new services and reaching out to new people necessitates the development
of enhanced wearable functions. Adding additional functions, on the other hand, increases
the power consumption of already resource-constrained wearables. Due to constrained
resources, the quality of the final wearable product may not always be fulfilled. As a result,
one of the most fundamental difficulties of wearable sensors is limiting energy consumption
while attaining desired performance.

6. IoT Framework

This section discusses the second component (That is, IoT) in the taxonomy. At first, a
description of an IoT framework for HMS is presented. Thereafter, each section of the IoT
framework about HMS is further discussed.

The primary concept in support of deploying IoT and its mechanisms in healthcare is
twofold: (1) hesitation from patients to physically see medical doctors; and (2) real-time
medical assistance/attention to patients. As a result, ubiquitous healthcare devices are
utilized to prompt people’s responses to bodily ailments. There is no one generalized
design for IoT that researchers can agree on. IoT frameworks were offered in a variety
of ways by various researchers. The most fundamental IoT architecture comprises three
layers: sensing, network, and application. It provides the core notion of IoT in a very brief
way, which is inadequate for research purposes. As a result, we provide a four-layer design
in which the Network Layer is further subdivided into the Communication Layer and the
Network Storage Layer.

6.1. IoT Layers

The IoT layers can be broadly categorized into 4 layers namely the Sensing Layer,
Communication Layer, Network Storage Layer and Application Layer.

The sensing layer is positioned in the layer closest to the patient. This layer oversees
data collection. It is made up of multiple wearable sensors that patients carry or wear and is
intended to monitor a patient’s health status [112]. Figure 5 depicts many sensors integrated
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to detect physiological data from the human body, such as ECG, EEG, GPS, BT, BP, glucose
measurement, and so on. Studies such as Tabassum, et al. [113] and Magaña-Espinoza,
et al. [114] successfully utilized smartphones to gather data from the human body. In the
Communication layer, the sensor data gathered are transported to the network storage
level using different protocols and technologies. Several protocols, including ZigBee, Wi-Fi,
Bluetooth, NFC, RFID, and others, are used at this level, depending on the kind of sensor
and data. The Network Storage Layer is the third layer of the IoT framework. The advances
in IoT technology have increased the number of users, which has increased the amount
or size of data. This problem inspired the concept of IoT cloud-based architecture. In
general, this layer is in charge of storing and handling vast amounts of data. It also aids in
reducing the strain on a sensor device [77]. The Application Layer is primarily about data
visualization. It mostly employs application-based services to gather actionable insights
from the vast sensor data (health data). It enables easy access to data saved on the IoT
cloud server and it aids the doctors, nurses, and patient’s families to track a patient’s
health status. If a patient’s health state deteriorates, devices at the application layer can
send appropriate messages to the stakeholders. In general, several use cases, such as a
smart home monitoring system, a smart city system, a smart transportation system, activity
recognition system, disease prediction and so on [21] can serve as the application units in
the IoT framework.
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Aside from sensors, some other devices such as actuators and development boards are
also integral to the IoT framework. Therefore, the following subsections explain actuators
and development boards as IoT components.

6.2. Actuators

An actuator is a device that can affect the surroundings. It transforms electrical energy
into a different kind of energy. To put it another way, an actuator works contrary to a sensor.
It accepts electrical energy as input and converts it into physical activity. In IoT solutions,
actuators come in a variety of forms, such as automated light on/off in a smart home system.
A “Home Service Robot,” for example, may be utilized to provide healthcare services [115].

Actuators that cause motion are categorized into three types based on their operation:
electrical, hydraulic, and pneumatic actuators. Hydraulic actuators enable mechanical
motion by using fluid or hydraulic power. Pneumatic actuators employ compressed air
pressure, whereas electrical actuators use electricity. Consider a smart home system, which
is made up of several sensors and actuators. These actuators are used to lock and unlock
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doors, turn on and off lights and other electrical appliances, inform users of potential
hazards through alarms or alerts, and manage the temperature of a house (via a thermostat).
A complex example of an actuator used in IoT is a digital finger, which is used to turn
on/off switches (or anything that needs little motion) and is operated wirelessly.

6.3. Development Boards

Development boards are referred to as the heart of IoT and they primarily work
following the needs of the system or application. These boards can often be regarded
as small gadget that functions similarly to a computer but with one task/process at a
time. Development boards are primarily used to receive, monitor, analyze, and record
sensor data from patients. These data can be forwarded to the storage/cloud server for
additional analysis and processing. Many devices (sensors) may be immediately connected
to a development board to create a complicated system that monitors several vital signs.
Since numerous kinds of development boards can be utilized in healthcare, any one of these
devices can be chosen based on needs or requirements. Table 4 presents the comparison of
some popular development boards based on their characteristics.

Table 4. Comparison of different development boards.

Development
Boards

Random Access
Memory (RAM) Operating System Micro Controller Processor

Speed

Arduino 2 KB Windows, macOS and Linux At-Mega328p MC 16 MHz

Beagle Bone 512 MB Linux and Debian ARM Cortex A8 32bits 1 GHz

Raspberry Pi 1 GB Linux, Debian, Android, Windows, etc. Raspberry Pi Pico
RP 2040 1.2 GHz

Intel Edison 4 GB Windows, macOS and Linux Intel Quark 500 MHz

Banana Pi 1 GB OpenWRT and Android, Lubuntu,
Ubuntu, Debian, and Raspbian ARM Cortex A55 CPU 1.8 GHz

Jetson Nano 4 GB Linux4Tegra
Quad-core ARM

Cortex-A57 MPCore
processor

1.43 GHz

6.4. IoT in Healthcare

Despite significant investments in IT by the healthcare sector, organizations in health-
care today still rely on conventional (paper) medical processes for doctors and caregivers to
communicate with patients. As a result, data exchange between departments and doctors is
difficult and restricted, with doctors obtaining information solely via physical examinations
during the patients’ hospital visits. However, this problem can be surmounted with the
integration of IoT with HMS. Incorporating IoT in healthcare allows doctors and caregivers
to access the patient’s information and health status freely readily and easily. Furthermore,
public health monitoring, treatment, and diagnostics may be carried out more conveniently
and cost-effectively. In other words, IoT can link smart devices, people, and machines to
create an effective HMS [35]. Nonetheless, the patient’s continuous health assessment is
a critical venture in the healthcare industry. As reported by the US Institute of Medicine,
medical mistakes continue to kill three individuals out of every 400,000 people each year.
The major cause of these mistakes is failure to perform adequate tests or lack of continuous
consultation with physicians, late diagnosis, and inability to obtain a patient’s health profile
or history [116]. As a solution, IoT can continuous aggregate health data from various
devices and display actionable insights in real-time [117]. Figure 6 depicts several IoT
applications in the healthcare industry, where IoT devices may be used for a variety of
functions such as vital signs assessments and monitoring.
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Consequently, diagnostic findings may be trusted, and appropriate therapy can be
provided to the patient. Doctors and caregivers may effectively manage and monitor
patient health with IoT technology, saving health response time. There is no need for regular
physical visitation of patients when using IoT in healthcare since caretakers or doctors may
offer remote health tracking and diagnostics. When receiving the detected information,
the proper department may be identified via Wi-Fi and sensors in the hospital [118].
Furthermore, patients in intensive care (clinical or otherwise) can be periodically tracked
utilizing IoT mechanisms. For example, the medical sensor takes physiological data from
the patient to be studied and then transmits it through gateways. The information gathered
will be saved in the cloud. As a result, the patient’s care quality increases while the cost of
treatment falls. Meanwhile, an IoT-based remote health monitoring system may follow a
patient’s health status in real-time and react if there is an issue with the patient’s health. As
seen in Figure 7, a sensor device may be mounted on a patient and the patient’s vital sign
data can be transmitted from the same location. The transmitter is linked to the hospital
through the communication link or network [119]. The hospital’s technology remotely
checks and analyses the patient’s health data.
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6.5. Challenges and Open Issues of IoT in Healthcare

Numerous studies have contributed to the design and implementation of different
IoT-based HMS, as well as the resolution of various technical and architectural issues
linked with such systems. Aside from the research problems raised in the literature,
there are several additional obstacles and unresolved questions that must be properly
addressed. This section briefly highlights both known and unsolved challenges related to
IoT healthcare services.

6.5.1. Data Management

Using IoT in medical care, health-related data are gathered from various devices,
sensors, and instruments, and sent to a server connected to the Internet that holds databases
through gateways. Certain communication standards in the network interface exist between
devices and gateways. The interface between gateways and databases will also regulate
some of the requirements that require the usage of recognized standards and certifications.
The fundamental issue is that many device manufacturers do not comply with these
requirements and certifications. This will cause interoperability issues as well as an increase
in system costs.

6.5.2. Scalability

Since connected operations are becoming increasingly sophisticated with the inclusion
of different applications because of the exponential rise of demands from both people
and health organizations, IoT healthcare services, networks, databases, and applications
should be scalable. Many devices are interconnected in the IoT system, and these devices
generate vast volumes of data that must be absorbed, stored, and processed to draw
relevant conclusions. The kind of data generated by each device will vary; for example,
medical equipment generates picture data, while other devices generate video data, and so
on. This leads to conventional big data challenges, for which infrastructure and platforms
are insufficient. The performance requirements for applications and devices will differ,
increasing the data-processing mechanisms in the IoT healthcare ecosystem.

6.5.3. Security and Privacy

It is vital to safeguard the aggregated data from various devices and sensors in health-
care against unauthorized access. Unauthorized access to data obtained by medical devices
must be avoided. This medical data must only be used for the reasons for which the
patient obtained consent. Policies and protocols must be followed to guarantee that only
authorized people and applications have access to the patient’s medical data. To exchange
health data with authorized people, companies, and applications, strict regulations and
technological security measures should be implemented. An open task is to develop an
ideal algorithm for cooperation amongst protection, detection, and response services to
prevent different attacks, threats, and vulnerabilities.

6.5.4. Interoperability

Interoperability is a critical aspect of HIoT resources and data exchange between
patients and sensing devices. The main challenge of interoperability is developing open-
source frameworks with a consistent connection; a set of standards must be established to
create horizontal platforms capable of operability, programmability, and communicability
among sensing devices, operating systems, and applications irrespective of model or
vendor. Also, interoperability problems can ensue when designing scalable communication
frameworks for multiple sensing devices and data centers (cloud servers).

6.5.5. Mobility

Mobility in HIoT systems refers to the ability to leverage network support for patients
to connect to the gateway at any time and from any location. The IoT healthcare network
should be able to accommodate patients’ mobility and link them at any time and from any
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location. Current studies of IoT frameworks for patient monitoring continue to ignore the
patient’s mobility. In addition, mobility is required to make the network fault-tolerant,
allow comprehensive access to information regardless of location, and improve service
quality. Since provisioning is critical in healthcare, a mobility protocol should be able to
minimize packet losses and network congestion in any situation. As a result, mobility is an
intriguing scientific problem.

7. Artificial Intelligence

This section discusses the third component (AI) in the taxonomy. In the context of
HMS, AI is subdivided into ML and BDA. This classification intends to develop a larger
conceptual perspective of AI’s application in HMS. Details on ML, BDA and their respective
applications to HMS are presented in the following subsections.

7.1. Machine Learning (ML)

In the area of healthcare, ML has a wide technological influence. The value of ML for
data analysis in healthcare is becoming prevalent as devices such as wearable sensors are
utilized to periodically gather a vast amount of health-related data [118]. Insights derived
from these data may be crucial to administering quality healthcare while also assisting in
the establishment of a suitable connection between the patient and the doctor. ML can be
used in a variety of healthcare applications, such as supporting doctors in identifying more
tailored medication and targeted medical processes.

In healthcare, there is a massive quantity of data accessible. This pertains to electronic
medical records (EMRs), which may include all forms of data [120]. For instance, structured
data refers to data that are simple to categorize in a database; they might contain a set of
features and records such as patient’s biodata and generic health complaints such as fever
or nausea [121]. On the other hand, some health data are unstructured and are usually in
the form of photographs, text files (medical reports and summaries), and audio/visual
recordings. Personal conversations, for example, might point in a variety of ways [122].

Realizing and exploiting different forms of data on a large scale would be highly
valuable in implementing ML techniques in HMS [121]. Furthermore, when ML is used
successfully, it may assist doctors in making near-perfect diagnoses, determining and
improving patients’ overall health, and lowering costs [122]. In the healthcare industry,
5% of all patients account for 50% of total expenses; also, the number of chronic disorders
requiring ongoing treatment has steadily climbed across the globe. Due to the expensive
healthcare services, the application of ML to these health-related data may be the answer
to this ever-growing problem. From health-related data, ML can identify people who are
more prone to develop common illnesses. Also, most of the hospital visitations are evitable
and ML may be utilized to aid in diagnosis and administer suitable therapy. As a result,
expenditures are reduced by keeping patients out of expensive emergency rooms [121].

When the training data to be used for an ML process is labelled, a supervised ML
technique can be deployed. In the case of unlabeled training data, an unsupervised ML
technique can be used while a semi-supervised ML technique can be used when the training
data consists of both labelled and unlabeled data. Refs. [123,124] presented a thorough
overview of supervised and unsupervised ML techniques.

7.1.1. Supervised Machine Learning

Supervised ML techniques are those that use labelled training data to create relation-
ships or insights from input and output features. A classification process is developed if
the output data is discrete and regression if the output data is continuous [125]. Certainly,
there is an imperative need for a model that can successfully provide proper output data.
However, the presence of noise in the data may lead to an ineffective model. Some of the
traditional supervised ML methods include Bayesian network (BN), Decision Tree (DT),
and Multi-layer Perceptron (MLP) [126,127]. Instances of supervised ML approaches in
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healthcare include the categorization of several forms of diseases [128] and the identification
of various bodily parts from photographs [129].

7.1.2. Unsupervised Machine Learning

Unsupervised ML methods are ML approaches that use unlabeled data. Unsupervised
ML approaches that are often employed include data point clustering using a similarity
metric and dimensionality reduction to project high-dimensional data to lower-dimensional
subspaces (also known as feature selection) [130]. Exploratory analysis and dimensionality
reduction are two typical unsupervised ML applications. Unsupervised ML approaches
may be utilized to acquire first insights into data in situations when a human examination is
difficult [131]. The findings may be used to test various theories. For dimension reduction,
the data is represented by fewer features and unsupervised ML can also be used for
this procedure. For that purpose, the link between characteristics must be identified.
It may assist us in removing duplicate features. As a result, data processing may be
accomplished using a significantly less demanding solution [33]. Unsupervised ML may
also be utilized for anomaly identification, such as clustering [132,133]. Prediction of
cardiac illnesses using clustering [134] and prediction of hepatitis disease using principal
component analysis (PCA), a dimensionality reduction approach [135,136] are two classic
instances of unsupervised ML techniques in healthcare.

7.1.3. Semi-Supervised Machine Learning

Semi-supervised ML techniques are beneficial when both labelled and unlabeled
samples are available for training, which is often when there is a small quantity of labelled
data and a big number of unlabeled data. Since acquiring a significant quantity of labelled
data for model training is challenging in healthcare, semi-supervised learning approaches
may be very effective for a range of healthcare applications. In the literature, many aspects
of semi-supervised ML employing various learning algorithms have been suggested. For
example, Fagherazzi, et al. [137] presented a semi-supervised clustering technique for
healthcare data, while Yu, et al. [138] suggested a semi-supervised ML strategy for activity
detection using sensor data. Peng, et al. [139] and Luo, et al. [140] used a semi-supervised
learning strategy to segment medical images.

7.2. Application of Sensors and IoT with Machine Learning in HMS

This section examines various existing efforts that combined wearable sensors and IoT
with ML techniques in HMS. The review has been divided into sections depending on the
kind of ML technique used.

7.2.1. Application of Sensors and IoT with Supervised ML in HMS

Saadatnejad, et al. [141] proposed a new ECG categorization method. This approach
was employed on wearable devices to assess heart disease in real-time. The benefit of this
technology was its low power usage. They employed wavelet transform and multiple long
short-term memory (LSTM) recurrent neural networks (RNN) in their technique. Their
strategy produced excellent ECG classification results. Conversely, as reported by Amir-
shahi and Hashemi [142], a novel ECG classification method was presented and deployed in
low-power wearables based on spiking neural networks (SNN). The findings demonstrated
its appropriateness for real-time situations. Furthermore, in the real-time categorization
of ECG data, its energy usage was much lower than that of other comparable devices. In
another study by [143], a classification model was developed to detect irregularities in
patients’ breathing sounds. These data were utilized to automate the diagnosis of respi-
ratory and pulmonary diseases. To categorize respiratory sounds, the deep learning (DL)
model was deployed. A local log quantization approach was also presented to decrease the
memory footprint, which may be employed in memory restricted wearable devices.

Furthermore, sensing devices may be utilized to diagnose diseases using patients’
bodily movements. Hssayeni, et al. [144] employed an LSTM with an RNN to identify
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early indications of Parkinson’s disease (PD) using accelerometer and gyroscope data.
In another work by Ahlrichs, et al. [145], waist-worn accelerators and support vector
machines (SVM) were utilized to identify freezing of gait (FoG) in Parkinson’s disease
patients. Also, Varatharajan, et al. [146] used a dynamic time warping technique (DWT) and
multiple wearable sensors, including accelerometers, to track patients’ walking habits. Early
symptoms of Alzheimer’s disease were discovered based on the reported walking style.

7.2.2. Application of Sensors and IoT with Unsupervised ML in HMS

Das, et al. [147] suggested an unsupervised ML technique for HR prediction from
ECG data obtained by wearable devices. Spike training was used to directly encode the
spatiotemporal features of ECG signals. The spike training was then utilized to stimulate
recurrently coupled spiking neurons in a liquid state machine computing model. Using
particle swarm optimization (PSO), an unsupervised readout based on fuzzy c-Means
clustering of spike responses was created. Their suggested strategy was simple to im-
plement on spiking-based systems. The method’s merits include its excellent accuracy
and extremely reduced energy footprint. As a result, the battery life of wearable gadgets
increased. Krause, et al. [148] suggested another unsupervised learning approach. An
online wearable device was conceived, deployed, and assessed in their study without any
outside supervision. It could ascertain the usual user’s context and the likelihood of context
transfer. They incorporated statistical analysis and an unsupervised ML technique in their
graph algorithm methodologies. The findings demonstrated that their suggested technique
could generate a user context model while just requiring data from a device equipped with
physiological sensors. Janarthanan, et al. [149] proposed a novel form of unsupervised DL
technique that optimized data during preprocessing in wearable sensors. The proposed
method took 11.25 ns for its computation with increased performance in its feature selection
and feature extraction processes.

7.2.3. Application of Sensors and IoT with Semi-Supervised ML in HMS

Wearable gadgets can capture massive volumes of data. However, classifying this data
is expensive and time-consuming. As a result, it is preferable to create strategies for using
unlabeled data while minimizing labelling expenses as much as possible. Semi-supervised
ML techniques are potential ways for effectively using a combination of limited labelled
data and a huge amount of unlabeled data. Ballinger, et al. [150] employed off-the-shelf
wearable HR sensors to gather data from many people using a mobile phone application.
The goal was to use a multi-task LSTM to identify several medical problems such as
diabetes and excessive cholesterol. Two semi-supervised techniques were developed which
eventually outperformed hand-engineered biomarkers from the medical literature. In the
first technique, an LSTM was pre-trained as a sequence autoencoder. The pre-trained
parameters were utilized to kick off a second supervised phase with a pool of restricted
labelled data. In the second strategy, the synthesized dataset was utilized for pre-training.

Also, Stikic, et al. [151] proposed a novel approach for activity recognition. Their
suggested technique propagated information in a graph that included both labelled and
unlabeled data. Two methods for combining several graphs were presented based on
feature similarity. In their study, they examined the quality of the label propagation
process as well as the performance of classifiers. In another similar study, the possibility of
semi-supervised learning to lower the amount of supervision was evaluated for activity
recognition [152]. Ma and Ghasemzadeh [153] suggested a human activity identification
tagged LabelForest. LabelForest is a non-parametric semi-supervised learning framework
for activity identification that enhances the performance of ML algorithms by increasing
the training set. LabelForest labels a portion of unlabeled data. The sample is chosen based
on its resemblance to the labelled samples. The LabelForest framework is comprised of
two algorithms: the spanning forest approach for sample selection and labelling, and the
silhouette-based filtering technique for selecting examples with more reliable clustering
assignments for inclusion in the training set. Wiechert, et al. [154] recorded EEG brain
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waves from subjects doing various activities such as reading, listening to music, and so on,
using a wearable headgear called Muse. The goal was to identify individuals and the sort
of activity they were doing while EEG data were being captured. To do this, K-medoids
and an evolutionary algorithm were coupled to produce multiobjective clustering. The
genetic algorithm (GA) was employed to discover the best K-medoids. Wiechert, Triff, Liu,
Yin, Zhao, Zhong and Lingras [154] reported that their strategy outperformed K-means.

7.3. Big Data Analytics (BDA)

Health data detailing patient characteristics and treatment encompasses a wide range
of data sources, including text files, imaging, and narrative data, all of which are un-
derutilized and have much more potential to be fulfilled than is now realized [155]. It
is commonly acknowledged that applying various data analysis tools to ingest medical
data has significant potential for healthcare improvement [67]. The two most common
methods for using medical data are information retrieval and data mining. It is important
to note that these technologies may be utilized in two ways: first, to collect information for
general use, about groups within the studied population, and second, to obtain information
on particular people. The two purposes are quite distinct, and implementations of both
data-driven technologies vary greatly.

7.3.1. Data Mining in Healthcare

In general, data represents the new gold in the mining metaphor, while analytics
systems represent the technology that mines, moulds, and mints it. In practice, HMS is
dealing with information overload while caring for patients. Data mining in healthcare can
also be referred to as healthcare analytics. Healthcare analytics is described as a collection
of computer-based methodologies, processes, and workflows for translating raw health
data into useful insights, novel discoveries, and knowledge that can be used to make more
effective healthcare decisions [156]. Healthcare analytics has recently gained prominence
not just to enhance patient and healthcare services, but also as an efficient cost-cutting
tool. Healthcare analytics is gaining prominence because of the Big-Data phenomenon’s
emergence in the healthcare arena. In healthcare data, for example, structured data might
take the form of electronic medical records (EMRs) or electronic health records (EHRs),
which feature conventional input record fields such as patient name, date of birth, ad-
dress, address, and other field-based information. Instrument readings and data created
by the continuing migration of paper records to electronic health and medical records
are examples of semi-structured data. Furthermore, structured, and unstructured data
streams from fitness gadgets, genetics and genomics, social media, and other sources may
cascade into healthcare systems. As a result, healthcare companies are in desperate need of
effective methods to integrate and convert such diverse data sets, including automating the
translation from unstructured to structured data.

As a result, big data technologies provide a robust framework for extracting relevant
information from this sea of data. BDA, according to McKinsey’s research, is the basis for
delivering five healthcare values: Right Living, Right Care, Right Provider, Right Value,
and Right Innovation [157]. These ideals provide limitless options for enhancing healthcare
services while also lowering waste and expenses. Healthcare analytics, for example, can aid
in patient classification based not only on simple traditional demographic attributes such
as gender, age, and lifestyle, but also on relevant health and clinical characteristics such
as medical conditions, risk propensities, genetic disposition, and therapeutic probabilities.
Healthcare analytics enable the optimization and tailoring of the course of therapy for
each patient based on a plethora of criteria such as past medical history, precautions,
allergies, genetic features, personal risk factors, work and lifestyles, and safety management.
Healthcare analytics may also reveal causal correlations between a variety of quality metrics
and variables that impact or affect those health indicators in a patient group or individual
patients. Furthermore, healthcare analytics may be utilized to generate more precise patient
risk stratification measures, such as estimating the number of health complications, the
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influence of comorbidity, and how severe a patient’s health state would affect the result.
Risk profiles for patients may be generated using such calculations, which will aid in the
construction of treatment regimens for a group of patients with similar profiles. Such
categorization would be very beneficial to the planning and pricing of any accountable care
organization. These objectives need the availability of strong big data storage, processing,
and analytics systems.

7.3.2. Information Retrieval in Healthcare

Information retrieval (IR) is the process of searching vast document collections for
the information most relevant to a user’s query, which is about discovering anything
or obtaining tiny subsets of documents that are already part of the accessible document
sets. It should be noted that for IR, the returned information is precisely the same as it
is kept, i.e., there is no value addition to the document sets. The purpose of IR is to get
the needed information as quickly and precisely as feasible. In the healthcare arena, IR is
primarily concerned with medical text retrieval and medical picture retrieval. Since clinical
text concerning diagnostic findings, treatment plans, and patient summaries is the major
body of the EMR, it is becoming a vital approach for speedy and efficient access to patient
information for medical text search. The medical records track is established in TREC [158].
Medical text retrieval may be seen as a domain-specific text search problem, with the key
issue being to cope with the complexity and ambiguity of medical data and queries [159].
Semantic-based text search approaches are widely used to address the ambiguity problem
in medical search with the help of standard terminologies or domain ontologies such
as the International Classification of Disease (ICD), Unified Medical Language System
(UMLS), and Medical Subject Headings (MeSH). Query expansion and reformulation
are two mechanisms often used for enhancing search quality. As reported by [160,161],
semantic resources are used to describe inquiries in an expressive and meaningful context,
therefore filling the semantic gap between queries and EMRs and improving medical search
quality. Six existing domain-independent semantic similarity metrics have been extended
to the biomedical domain. The medical hierarchy is used to solve the granularity mismatch
issue resulting from ambiguous inquiries by describing subsumptions as parent-child
connections between ideas [162].

7.3.3. Application of BDA in HMS

In principle, the size of healthcare data is likely to skyrocket in the coming years. In
practice, utilizing recent advances in IT to effectively analyze and utilize such big data
can result in significant benefits for healthcare organizations. These benefits range from
single-doctor offices and multi-provider groups to large hospital networks in a variety of
use-cases and application scenarios. Healthcare analytics, as an example, may be used in
a variety of applications to convert massive volumes of data into actionable information
that can be used to identify needs, deliver services, forecast issues, and avoid crises for the
patient population. Among these use-cases are the following:

Data-Driven and Evidence-Based Healthcare System

Rather than relying only on intuition, the decision-making process is based on the
analysis of large amounts of data that is more indicative of the actual world. For example,
the US Healthcare Big Data project has information on nearly 50 million patients [163].
This data is used to uncover difficulties in the healthcare industry, where answering the
proper questions for this purpose across such large amounts of data is quite difficult. In
addition to clinical data, healthcare data comprises pharmaceutical data (e.g., medication
compounds and structures), data on personal behaviours (e.g., exercise routines, eating
habits, environmental influences), and billing/financial records. Effectively integrating all
of this data is the key to considerable improvements in treatments, delivery, and well-being.

Doctors have typically utilized their discretion when determining treatment choices;
however, there has lately been a shift toward evidence-based medicine. This new trend
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tries to improve decision-making by stressing the use of evidence from well-designed
and executed research. This tendency may be supported and realized by collecting and
analyzing a range of organized and unstructured health-related data, financial data, and
genetic data to match treatments with results, forecast people at risk of developing a disease
and deliver more efficient care.

Moreover, Clinical decision support systems are gaining popularity as medical institu-
tions and regulating authorities strive for improved data management to ensure effective
and efficient healthcare delivery and excellent results. Analytics methods may be used
to analyze massive volumes of data, interpret, categorize, and learn from this data to
forecast results or offer alternative therapies to doctors and patients at the point of care.
Furthermore, comparative effectiveness research may be used to identify more clinically
relevant and cost-effective methods of diagnosing and treating patients.

Healthcare Patient and Unstructured Data Profiling

This entails using sophisticated analytics to patient profiles to identify patients who
might benefit from proactive therapy or lifestyle adjustments. Applying predictive mod-
elling methods, for example, to model and identify the profiles of patients who are at
risk of acquiring a certain illness (e.g., diabetes) and should be exposed to preventative
therapy. In addition, According to Gartner and IBM52, the majority of data (80%) now
resides in unstructured or semi-structured formats, from which a lot of information may be
gathered [59]. In healthcare systems, clinical notes include a wealth of information that is
difficult to extract. Furthermore, medical workers and specialists must stay up with medical
literature. Big data processing technologies may be efficiently used to find highly relevant
data and literature from unstructured language and turn it into readily processable data.

Efficient Healthcare Policy

This type of situation entails using analytics methods on illness patterns to detect
disease outbreaks and transmission which can be used to design prompt and effective
public health monitoring systems. It may also be used for the development of targeted
immunization strategies that are more efficient and effective. Furthermore, a BDA system
may be used to capture as well as analyze social media data to forecast disease outbreaks
based on search, social content, and query behaviours of users. Many researchers, for
example, are presently utilizing Google Trends services to investigate the date and location
of search engine inquiries to forecast illness outbreaks [164].

Genomic Analytics

Recently, the efficiency of the gene sequencing process has been dramatically enhanced,
and the cost has been significantly reduced. The 1000 Genomes Project 51, for example,
has been launched as a multinational research endeavour managed by a coalition of
75 corporations and organizations to create the most comprehensive record of human
genetic diversity. The initiative has expanded to 200 terabytes of genetic data for over
1700 people, which researchers may now freely access and analyze using Amazon Web
Services for disease research. Thus, efficient genomic analytics techniques can make the
genomic analysis process to be a main component of the regular medical care decision
process and the growing patient medical record [165]. Genomic analytics may help find the
links between a disease and its genetic, environmental, and/or health-related risk factors.
This study may provide a unique insight into the underlying processes of illnesses and
disorders, as well as disclose the interaction of several kinds of risk factors. Identifying
risk-based genes is an important step toward discovering molecular pathways for direct
treatments, while personal risk factors create corrective measures that patients may use to
lower their chances of getting certain illnesses.

As a result, effective tailored care services based on DNA sequence information may
be used in real-time to highlight best practice therapies for patients. This allows for a shift
away from a population-level epidemiological approach and toward tiny groups or people
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characterized by their biochemistry and genetics. Furthermore, this contributes to the
continuing and progressive transition from disease-centered to patient-centered treatment.
In this scenario, a single patient may have terabytes of data in multiple formats, including
huge and complicated genetic, proteinic, and metabolic data. NoSQL technology is capable
of effectively coping with such complicated and huge datasets.

Enhanced Remote and Evidential Healthcare Delivery

Sensing technologies are helping to improve the process of obtaining and evaluating
real-time and fast-moving patient data from in-hospital and at-home devices. Real-time
analysis of such data may considerably enhance patient safety monitoring and the accuracy
of the event prediction process. Furthermore, knowing how to discover recurring patterns
in signals received from sensing devices might be useful in recommending a non-invasive
method of learning underlying physiological processes. Big streaming processing systems
may play a significant part in realizing the sorts of applications that can be designed to
meet these circumstances.

Social Media of Healthcare

PatientsLikeMe is an example of a patient social network that began in 2006 and today
includes over 200,000 patients and tracks 1500 illnesses. People may connect with others
who have the same ailment or condition, monitor, and share their own experiences, learn
what therapies have benefited other patients like themselves, acquire insights, and uncover
any common trends on such a platform. Furthermore, patients contribute continuing
data on their unique illnesses, treatment history, side effects, hospitalizations, symptoms,
disease-specific functional scores, weight, mood, quality of life, and other factors. As
the need for obtaining and processing health-related information from social networks
grows, big data analytic tools may play a crucial role in digesting and evaluating such
expanding datasets.

7.4. Challenges and Open Issues of AI in HMS

Despite the positive outcomes obtained using ML and BDA techniques in HMS, there
are still unresolved obstacles in clinical healthcare application. The following are the
primary concerns and challenges:

7.4.1. Size, Quality and Temporality of Data

ML refers to a set of incredibly complex computing models, such as neural networks,
that are entirely linked multi-layer and need many parameters to be estimated properly. It
should supply a massive quantity of data to achieve this goal. Furthermore, comprehending
diseases and their unpredictability is more difficult than other activities. For example, voice
pathology type detection via speech and image processing in Magnetic Resonance Imaging
(MRI) can predict Alzheimer’s sickness. As a result, from the standpoint of BDA, it is
critical to have a larger quantity of medical data to build a strong and effective ML model.
In addition, healthcare data is highly varied, incomplete, and unclear. Training an effective
ML model with such a diverse and massive amount of data is tough, and several factors
must be considered, such as data sparsity, missing values, and redundancy. The ailments
are continually changing and developing throughout time. Several suggested machine
learning models in various healthcare sectors, however, assume static vector-based inputs.
These static inputs couldn’t handle the time factor. A new ML approach that can cope with
temporal medical data is an important feature that will need to be created. In other words,
it is critical to design novel ML techniques and frameworks that consider dynamic inputs.

7.4.2. Field Complexity

Healthcare applications and biomedicine are growing more complicated. The ailments
are very varied, and most of them, their progression, and their causes are still unknown.
Furthermore, the number of patients in a practical clinical is frequently restricted, thus we
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cannot request as many patients as we would want. As a result, medical training data are
scarce for an efficient ML model.

7.4.3. Ethics and Policy Issues

Establishing and maintaining data ethics in user-centric ML and BDA applications
such as in HMS is imperative. Before gathering data for creating ML models, explicit efforts
should be made to understand the intended user community and their social features.
Also, recognizing how data collection might jeopardize a patient’s well-being and dignity
is critical in this context. If ethical problems are ignored, the use of ML and BDA in
practical contexts will have negative consequences. Furthermore, it is critical to have a
comprehensive knowledge of the AI system in unpredictable and complicated settings to
guarantee the fair and ethical functioning of automated systems [166]. Concerning policy
problems, only by resolving regulatory and legislative constraints can the full potential of
ML and BDA systems (which effectively comprise software as a medical device) in actual
healthcare settings be realized. According to the research, regulatory criteria are required
for both medical ML systems and their integration in real clinical contexts [167]. As a result,
the integration of AI-powered ML and BDA systems in the real clinical setting must adhere
to the norms and regulations established by the government and regulatory authorities.
Existing regulations, however, are insufficient for certifying systems that are constantly
evolving, such as ML-enabled systems, because another key challenge with the use of ML
algorithms in clinical practice is determining how these models should be implemented
and regulated, given that these models will incorporate learning from new patient data [36].
Furthermore, objective clinical assessment of ML systems for specific clinical contexts is
critical to ensuring safe, effective, and robust functioning that does not damage patients in
any manner. Data scientists and AI engineers should be hired in hospitals to evaluate AI
systems regularly to verify that they are still safe, relevant, and functional.

7.4.4. Safety and Privacy Issues

Success in a regulated laboratory environment (a frequent ML community practice)
is not proof of safety. The safety of ML and BDA is the assessment of how safe the
implemented system is for patients. Throughout ML’s lifetime, safety should be a continual
focus. Many regular physician jobs are routine, and the patients they meet have common
health issues. It is their job to diagnose uncommon, subtle and concealed health disorders
that arise once in a million. Enabling ML to perform effectively on buried strata, outliers,
edges, and delicate instances is critical to ensuring the safety of contemporary AI systems.
In addition, one of the primary difficulties in data-driven healthcare is privacy, which
is concerned with the usage of users’ data by ML systems for prediction. Users (in this
case patients) expect their healthcare providers to take the required precautions to protect
their inherent right to the privacy of their personal information, such as age, gender, date
of birth, and health data. Potential privacy hazards might be of two types: revealing
sensitive information and harmful data usage (potentially by unauthorized agents). The
qualities and type of the data being gathered, the context in which it was produced, and the
demographics of the patients all influence privacy. As a result, mitigating privacy breaches
with the proper technique(s) is crucial, as such breaches may directly affect patients. To
avoid privacy violations such as (re-)identification of persons, sensitive data should be
anonymized [168]. Furthermore, enough attention should be made to understanding
privacy issues at each level of data processing, and data transmission across departments
within a hospital should be conveyed in a secure environment. Adoption of ML techniques
for building biometric healthcare systems either offline or online raises privacy concerns.
Since the security and privacy of such systems are critical, a worst-case robustness test
for biometrically secure healthcare systems should be done. Worst-case testing is a strong
method that can offer adequate information regarding a system’s resilience and discriminate
between a system that never fails and a system that fails once in billion trials.
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7.4.5. Causality Problem

Recognizing causality as a problem in healthcare is critical since the majority of critical
healthcare issues need causal reasoning [36]. For example, ask what would happen if a
doctor recommended therapy A instead of treatment B. Such problems cannot be answered
using conventional ML algorithms, and we must examine the data from the perspective of
causality [169]. In healthcare, learning is often based exclusively on observational data, and
addressing causal questions through learning from observational data is difficult, necessi-
tating the development of causal models. Some ML models (ensemble and DL methods)
are black boxes with no core underlying theory, and they primarily function by exploiting
patterns and correlations without taking into account any causal relationship [170]. In
general, this is not a constraint since prediction does not need any causal relationship. In
BDA, the lack of a causal relationship raises concerns regarding the implications that may
be derived from ML model findings. Furthermore, via the lens of causal reasoning, fairness
in decision-making may be effectively enforced [171,172]. To provide fair predictions, the
causal influence of some variable(s) on a target output (e.g., target class in a multi-class
classification issue) must be estimated.

8. Blockchain

Blockchain is a network of decentralized nodes that holds data. It is a great solution
for safeguarding sensitive data inside the system. This technology facilitates the flow of
essential data while keeping it private and secret. It is an ideal solution for securely storing
all linked papers in one area [173–175]. Using a single patient database, Blockchain also
speeds up searches for candidates who meet certain trial requirements. The Blockchain is
a peer-to-peer (P2P) network of personal computers known as nodes that maintain, save,
and record history or transaction data [176–178]. It enables dependable cooperation since
information is kept and distributed by all network users, and it maintains track of previous
and present experiences. This technology can connect diverse networks and give insights
into the significance of individual therapy. As a result, Blockchain may be recognized for
its immutability and security. Blockchain’s three primary concepts are blocks, nodes, and
miners. Blockchain does not save any of its data in a single place. Instead, the Blockchain
is replicated and propagated by a network of computers. Every computer on the Internet
updates its Blockchain to reflect the addition of a new block to the Blockchain. Figure 8
depicts the fundamental functioning stages of Blockchain technology.
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8.1. Need for Blockchain in Healthcare

The necessity for improvement in the sphere of healthcare is expanding at an alarming
rate. Nowadays, there is a demand for strong healthcare facilities that are supported
by cutting-edge technology. In this situation, Blockchain would play a significant role
in revolutionizing the healthcare industry. Additionally, the healthcare environment is
evolving toward a patient-centered approach that emphasizes two critical aspects: always-
accessible services and enough healthcare resources. Blockchain technology can improve
the conventional HMS in terms of prompt patient care and healthcare facilities. Another
time-consuming and repetitive activity that contributes to high healthcare expenses may be
resolved swiftly with Blockchain technology. Patients may participate in health research
initiatives using Blockchain technology. Furthermore, informed decisions and data sharing
on public well-being would improve therapy for most people [176,178–180].

To date, the prominent issues in HMS have been data privacy, data sharing, and interop-
erability. The incorporation of Blockchain with HMS can address these lingering problems.
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8.2. Application of Blockchain in Healthcare

Blockchain is a relatively new and rising technology with creative possibilities in
healthcare implementation. Smooth, fast data exchange and delivery among all significant
network members and healthcare providers contribute to the development of cost-effective
medications and advanced treatments for a wide range of ailments. This will hasten
healthcare expansion in the future years. The benefits of Blockchain technology in the trans-
portation business have lately been shown, as have the benefits of Blockchain technology
in the healthcare sector. Since this field has a direct impact on the quality of living, it is one
of the first areas where digital transformation improves, and innovations occur. Simultane-
ously, Blockchain technology is gaining popularity, particularly in the financial sector. It
provides various significant and amazing opportunities for the healthcare business, ranging
from science and logistics to interactions between health workers and patients [180–182].
Table 5 summarizes the key important Blockchain applications in healthcare.

Table 5. Summary of key Blockchain applications in healthcare.

S/No. Blockchain Applications Summary References

1. Patient’s data storage

The patient’s biodata and medical history are recorded in EHR
format by the healthcare provider which can be stored on

blockchain-enable platforms. In this case, healthcare providers
can traverse the stored data and check for validity seamlessly
by regularly matching health records stored on the Blockchain
system. Besides, Blockchain provides cryptographic methods,

which can be useful in the safeguarding of data and
data sharing.

[174,183,184]

2. Data Validation
Deployment of blockchain can adequately validate data at any
point. All transactions are algorithmically validated and linked

together in a Blockchain system.
[185–187]

3. Smooth and transparent data
manipulation

Blockchain can provide a smooth data exchange among health
providers that could enhance diagnostic procedures and

precision. Blockchain allows multiple HMS to stay in contact
and exchange data on a shared distributed ledger for improved

security and accountability.

[188–190]

4. Overhead cost and time
reduction

Blockchain systems can easily address the interoperability issue,
of missing data in healthcare systems. Health providers will

have overview access to patients’ records without the need for
third-party applications. This invariably minimizes the cost and

time of data transformation.

[191–193]

5. Patient Monitoring

Blockchain may be used with IoT technology to increase the
adaptability and integrity of the supply chain, making
healthcare logistics increasingly accessible for effective

healthcare management.

[194–196]

Aside from conventional HMS frameworks, the purpose of Blockchain is to document
all types of transactions in a decentralized record. It is precise and simple, thereby reducing
managerial effort [178,180]. Blockchain’s use in health care seems to be very promising and
exciting since it helps to resolve some of the industry’s most urgent concerns. Blockchain
can be used to link other services onto the network, allowing everyone to access the same
data. By using Blockchain technology in health care, several techniques will bring great
outcomes for organizations. It delivers patient information, medical research, clinical trials,
the medical supply chain, and product integrity [176,177,182,197].

8.3. Use-Cases of Blockchain in HMS

In support of the preceding section (Section 8.2), this section depicts many use-cases
of Blockchain technology in HMS for achieving various advantages in the healthcare sector.
Specifically, Blockchain properties such as decentralization, enhanced data security and
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privacy [180], data ownership, availability and resilience, openness and trust, and data
verifiability are explored.

8.3.1. A seamless HMS

One of the most serious health issues nowadays is the fact that health organizations
maintain several fragmented health data on their patients. This issue may be addressed
by incorporating Blockchain technology in medical record transfers [182]. To provide
restricted access to a patient’s electronic health record, a smart contract may be created to
construct a smart health ecosystem. Doctors will make notes, insert scans, and administer
tests, all of which will be recorded as transactions. When a pharmacy provides medicine,
the transaction is recorded on the Blockchain. The patient grants his or her insurer limited
access to the patient’s check treatment and payment records. Doctors will be able to
remotely assess medical problems and provide advice or a second opinion. Health insurers
will provide tokens or decrease rates to patients to measure their development and fitness.
Some tokens may be produced, which patients will use on the Blockchain to store electronic
health information and transfer data from wearable health devices. This Blockchain-based
healthcare ecosystem will enable developers to create smart applications that analyze health
data and provide suggestions on health issues.

8.3.2. Electronic Health Record (EHR)

Over the years, the health industry has been impacted by the development of central-
ized systems, the regulation of health data, and the obligation to collaborate with multiple
EHR service providers to digitize medical data [197]. Most repositories do not communicate
with one another, but they include information held by health professionals, pharmaceutical
corporations, and other health ecosystem stakeholders. The difficulty of most quantitative
health data systems to communicate with one another, both at the individual (patient) and
community (public) levels, exemplifies the structural issues that are often encountered in
the following situations:

• When patients desire other healthcare practitioners to contact them or seek medical
treatments on their behalf.

• When clinical trial administrators want to authenticate the vast medical data of
their participants.

• When pharmaceutical corporations want to assure that pharmaceuticals distributed
on worldwide marketplaces are genuine.

Blockchain technology has the potential to increase healthcare professionals’ and
the whole healthcare industry’s performance, patient data openness, monitoring, and
accountability, while also lowering costs. Furthermore, a variety of Blockchain solutions
may be adapted to meet diverse healthcare applications.

8.3.3. Healthcare Payments

The pre-authorization procedure, which some insurance companies need before agree-
ing to pay for certain treatments, is today’s significant source of frustration. Determining
whether a particular item is covered by a member’s insurance policy may be a time-
consuming procedure for a variety of reasons, including the participation of various stake-
holders in the difference in the amount covered. The procedures are often complicated,
entail multiple manual stages, and might be the result of inadequate communication and
technology, depending on the payer-provider relationship. With Blockchain, a single ledger
maintained by healthcare stakeholders holds the patient’s entitlement as well as smart
contracts that encode the pre-authorization requirements. This automates information
gathering and dissemination, enabling benefits to be calculated in real-time. Some of the
benefits of adopting Blockchain for pre-authorization include increased cash flow owing to
quicker transaction settlement, prompt patient care, correct payment to the provider, lower
administrative expenses, and double record-keeping.



Healthcare 2022, 10, 1940 34 of 45

All parties in the claim specifications and reimbursement criteria are held accountable
in a Blockchain-enabled HMS. Smart contracts can be used to negotiate and hold contracts
between suppliers, clients, payers, and governmental regulators. Before submitting claims,
healthcare practitioners would know precisely what information is required. Providers
may simply format claim data to guarantee that all data is input properly and accurately,
as needed by the Blockchain. This clarity decreases or eliminates the number of claims
that are returned due to inadequate information, saving time and effort for all parties
involved. Blockchain technology is gaining traction in healthcare, and it may benefit every
stakeholder in the health sector.

To be ready for tomorrow’s transformations, health organizations must recognize and
test Blockchain technology today.

8.3.4. Pharmaceutical Supply Chains

Safety, stability, and security are among the highest criteria in the pharmaceutical sector.
Blockchain technology, for example, can be used to monitor supply chain management
securely and transparently. This may greatly decrease delays and human mistakes. It may
also be used to monitor costs, labour, and even waste pollution at every point in the supply
chain [198]. They may also be used to check product validity by tracking their origin and
combating the counterfeit medication industry, which costs $200 billion in losses each year.
Companies such as Chronicled, Blockpharma, and Modum are already developing more
efficient Blockchain logistic solutions. Modum, as an example, operates following EU
standards that demand verification that pharmaceutical items have not been subjected to
specified circumstances, particularly high temperatures, that might jeopardize their purity.
Modum’s answer was to create a sensor that collects environmental variables while actual
objects move and stores them permanently on the Blockchain [180].

8.4. Challenges and Open Issues of Blockchain in Healthcare

Although Satoshi Nakamoto pioneered Blockchain technology in 2008 [199], it is still
in its infancy. It was designed to function as a public transaction ledger for the Bitcoin
cryptocurrency. Since 2008, there has been a dearth of serious studies, and not enough
emphasis has been placed on the actual technology behind Bitcoin. This lack of study
has an impact on the adoption of Blockchain technology. There is no legal structure to
support or support smart contracts, making it more difficult for enterprises to fully adopt
and integrate them into their operations.

Deloitte conducted a Global Blockchain Survey in early 2019 (Deloitte’s 2019 Global
Blockchain Survey), and 29% of respondents highlighted a lack of knowledge of Blockchain
technology as one of the major barriers to adoption [180,200]. Research has continued
to focus on Bitcoin rather than the infrastructure that Bitcoin employs. There is inade-
quate proof of Blockchain technology’s genuine usefulness, and 22% of respondents to
the Deloitte Global Blockchain Survey concur. The following factors as listed in the suc-
ceeding subsections may contribute to apprehension about using Blockchain technology
in healthcare.

8.4.1. Cost of Acceptance and Adoption

There are currently not many systems that are built to make use of Blockchain tech-
nology wholistically. When Blockchain technology is intended to be used for a particular
purpose, developers must write their code (or hire someone else to do it)—creating new
software costs a lot of money, ranging from $10,000 for simple apps to $800,000 or more for
unique software with complicated features.

8.4.2. Limited Blockchain Experts

Adoption is being hampered by a scarcity of specialists in two ways. For starters,
there aren’t enough individuals working on innovation to keep up with demand. Second,
exclusivity implies that existing Blockchain professionals are expensive to hire. In an ideal
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world, increased interest in Blockchain technology would drive more individuals to learn
more about it.

8.4.3. Regulations, Policies and Government

Regulation, policies and willingness of Government are major barriers to Blockchain
technology adoption, despite the technology’s promise [201]. Deloitte performed research
in 2019 in which managers were asked, “What are the impediments to increasing the usage
and scope of Blockchain technology in your firm or strategy if any?” [180]. According to
30% of respondents, regulatory issues alongside implementation problems are the primary
impediments to additional Blockchain investment.

Perhaps the technology’s embryonic nature, or its affiliation with Bitcoin, has made
many companies wary. Concerns that a distributed computerized system is fully depen-
dent may also emerge, preventing the Blockchain from being used to tackle complicated
issues such as DSCSA compliance (Drug Supply Chain Security Act). The deployment of
Blockchain requires trust in data repositories without relying on a trustworthy broker to val-
idate a transaction, which prevents healthcare organizations from storing and transferring
sensitive information in the HMS.

9. Open Research Problems on Emerging Technologies in Healthcare Delivery

Many critical efforts have already been made by researchers around IoT-based appli-
cations in the healthcare sector utilizing AI; nevertheless, some constraints remain, which
are highlighted in the outstanding problems. As the concepts of IoT and next-generation
ML (i.e., deep learning and reinforcement learning) are growing, numerous new paths
for exploration will be created. As a result, research problems and open topics have been
found during this study and are discussed in the following subsections.

9.1. Data Acquisition

Well-curated datasets are critical to the success of AI-based HMS. Several efforts have
been made to train Supervised ML techniques using real-time data [16,28]. However,
most of the research utilized datasets acquired from public sources supplied by third-
party individuals or organizations. These datasets often include unintended bias, lack of
variation and missing values. Dataset gathering is a critical undertaking, particularly in the
healthcare industry. Furthermore, changes in the environment’s control factors may alter
the nature and efficacy of the dataset. Also, the data held in HMS are often incompatible,
posing an additional degree of difficulty.

9.2. Handling Data Streams

Data Stream Mining is a technique for extracting usable information from continuous
and rapid data streams. The modern healthcare sector employs real-time components to
gather immediate valuable physiological information with the introduction of remote HMS.
This notion addresses how to handle continuous and large data streams [202]. The data
that flows via the IoT framework from sensors has a high volume, velocity, diversity, and
validity [203,204]. The difficulty is therefore in storing and processing this stream of data,
managing difficulties such as concept drift, model retraining, imbalance class labels, high
dimensionality, adaptive model selection, and so on. Overall, this is a novel field that ought
to be explored more in the context of IoT-based HMS.

9.3. Security

Typically, health-related data are acquired from patients (actively or passively), trans-
mitted, and stored in repositories, which are critical in receiving the appropriate treatment
or attention. As a result, it is imperative to ensure the security of the patient’s sensitive data.
During the data transport, processing, gathering, and storage stages, security refers to the
protection of data against unauthorized access or change [205]. Aside from that, various
precautions should be taken at the sensor-closest level to secure user data. To offer data
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security, AI-based HMS may be a preferable alternative [34]. The following three critical
security characteristics must be guaranteed [205]:

• Confidentiality: Encryption is the proper technology for ensuring data confidential-
ity, which necessitates the distribution of a shared key over a WSN communication
channel [34].

• Integrity: An attacker should not be able to modify the health-related data contained
inside a device. To ensure the accuracy and consistency of the information, the required
precautions must be taken.

• Availability: A patient’s health data should be available immediately when requested
by an authorized party. Patients’ data is sensitive, and it should be always accessible
and available from the network.

9.4. Privacy and Ethics

Privacy refers to how the issuing authority handles a patient’s data [205]. It should
also specify where the data will be stored and who will have access to a patient’s medical
data. In general, doctors, nurses, and caregivers may access and handle this data. However,
in certain emergencies, this sensitive data must be shared with other individuals as well to
obtain proper treatment or attention [21]. Furthermore, patients may be reluctant to divulge
too much personal data (for example, an early pregnancy) to anybody other than family
members. As a result, such data should not be made public. Furthermore, since the sensing
layer is closest to the user, it requires additional protection from external threats [206].
Personal data on a patient is kept in the storage unit during remote monitoring. As a result,
any illegal access to such personal data must be protected [207,208]. It should be noted that
there must be a trade-off between maintaining the privacy and offering tailored service.
With the increment in health-related data, ethical concerns about the decision-making
capabilities of AI-HMS are becoming more pressing. The predictability of AI models is
often overestimated, and the techniques lack empathy, which is a critical problem in the
healthcare sector.

9.5. Explainable AI

There has been a phenomenal rise in supervised ML utilizing multi-modal DL in
recent ML studies. Decisions in the healthcare sector are often based on comparable
historical facts/data. However, this has opened a new vista in the AI domain and warrants
more research in the healthcare sector [21]. In addition, ML models such as Generative
Adversarial Networks (GANs) are increasingly often employed in dataset augmentation,
boosting the overall performance of ML algorithms. GANs are, to the best of our knowledge,
underutilized in this field [209,210]. Deep Reinforcement Learning-based approaches
have recently been used in agent-based modelling in the health care area. However, a
more advanced design of the HMS may be required before RL-based algorithms can be
widely used.

9.6. Underdeveloped Countries

It was observed in the literature that researchers often make assumptions that are
dependent on the infrastructure of the research area or locale. The successful reported AI
models are mostly from developed nations. On the other hand, relatively few successful
works have been carried out in underdeveloped regions [21]. Lack of healthcare infrastruc-
ture may be the primary barrier same as lack of a communication network (such as the
Internet), limited access to data, higher device costs, and hostile and severe laws that are an
encumbrance to the healthcare sector.

10. Conclusions

In recent years, Sensors, IoT, AI and Blockchain have been widely deployed in many
areas. These emerging technologies are being deployed in healthcare for the enhancement
of HMS. Therefore, researchers are paying close attention to the deployment of these tech-
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nologies in healthcare. In this research, a survey was conducted to identify the application,
challenges, and open research areas of Sensor-IoT-AI-Blockchain-based HMS. Specifically,
a unique taxonomy that illustrates the whole process of Sensor-IoT-AI-Blockchain-based
HMS is proposed. For convenience, the whole process is separated into four major areas:
Sensors, IoT, AI, and Blockchain. Data collection and transmission are accomplished with
sensors and IoT frameworks, while AI and Blockchain allow intelligent decision-making
in healthcare systems. Various aspects of this process have been explored throughout
this survey.

From the reviewed literature, it was observed that Sensors and IoT frameworks have
been successfully deployed in several HMS. In particular, sensors and IoT technologies
have effectively improved HMS operations by enabling efficient and smart diagnosis,
supervision, and treatment of diseases and ailments. Nonetheless, it was observed that
despite the successful implementations of sensors and IoT in HMS, some critical open issues
such as user acceptance, data synchronization, scalability, and interoperability of sensing
and IoT devices, data security and privacy, and streamlining practices must be addressed.

In addition, AI and Blockchain technologies are becoming more relevant to the health-
care domain. Specifically, the AI and Blockchain technologies offer platforms for data
storage, data visualization and analysis that are quite essential for efficient HMS. AI
provides advanced methods that can generate actionable insights and knowledge from
health-related data that can be used for immediate and future reference in HMS. Also,
Blockchain can provide platforms for health professionals to create decentralized data
storage for health-related data that only authorized parties can access to address the issue
of data theft and security. However, it was observed that data quality, ethics and privacy is-
sues are some of the barriers to AI in HMS while implementation (cost and user acceptance)
and regulatory policies are the key factors against the deployment of Blockchain in HMS.

Consequently, the key value of this study is that it provides readers with a detailed
review of Sensor-IoT-AI-Blockchain-based HMS research. Another innovative aspect of the
study is the collection of research works based on all the taxonomy’s tiers and sub-tiers
and assessed them from the standpoint of healthcare. This method of presenting is distinct
from standard survey works.

We are certain that our effort will assist both academic and industrial researchers.
A researcher may obtain appropriate guidance on various kinds of sensors that may be
employed for different kinds of diseases. Researchers may also learn about the techni-
cal details of the Sensor-IoT-AI-Blockchain-based HMS. Furthermore, the open research
challenges addressed in this study provide the researchers with some obvious future
research possibilities.

Author Contributions: Conceptualization, S.B.J., A.A.I., A.O.B., M.A. and A.N.S.; data curation,
A.O.B., G.K., Y.A.S., L.C.D.S. and A.G.; formal analysis., A.O.B., A.M., T.Y.M. and B.A.A.; funding
acquisition, S.B.J., A.A.I., L.C.D.S. and S.M.; investigation, S.B.J., A.A.I., A.O.B., M.A. and A.N.S.;
methodology, S.B.J., A.A.I., A.O.B., M.A. and A.N.S.; project administration, S.B.J., A.A.A., N.A.I.K.,
S.M., A.M. and A.G.; resources, S.B.J., A.A.A., N.A.I.K., S.M., A.G., T.Y.M. and B.A.A.; software, M.A.,
Y.A.S. and G.K.; supervision, A.A.I., A.A.A. and N.A.I.K.; validation, A.M., T.Y.M., G.K., L.C.D.S. and
B.A.A.; visualization, A.A.I., A.O.B., M.A., Y.S. and A.N.S.; writing—original draft, A.A.I., A.O.B.,
M.A. and A.N.S.; writing—review & editing, S.B.J., L.C.D.S., S.M. and A.A.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research paper was supported by Faculty of Integrated Technologies,
Universiti Brunei Darussalam, Brunei, and Tertiary Education Trust Fund (TETFund) Nigeria, via
National Research Fund (NRF) with Ref. No.TETF/DR&D/CE/NRF/2020/SET1/65/VOL.1.

Conflicts of Interest: The authors declare no conflict of interest.



Healthcare 2022, 10, 1940 38 of 45

References
1. Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance

model. Appl. Ergon. 2019, 75, 162–169. [CrossRef]
2. Mohammadzadeh, N.; Gholamzadeh, M.; Saeedi, S.; Rezayi, S. The application of wearable smart sensors for monitoring the vital

signs of patients in epidemics: A systematic literature review. J. Ambient Intell. Humaniz. Comput. 2020, 1–15. [CrossRef]
3. Gries, A.; Seekamp, A.; Wrede, C.; Dodt, C. Zusatz-Weiterbildung Klinische Akut-und Notfallmedizin in Deutschland. Der

Anaesthesist 2018, 67, 895–900. [CrossRef]
4. Da Costa, C.A.; Pasluosta, C.F.; Eskofier, B.; Da Silva, D.B.; da Rosa Righi, R. Internet of Health Things: Toward intelligent vital

signs monitoring in hospital wards. Artif. Intell. Med. 2018, 89, 61–69. [CrossRef] [PubMed]
5. Fan, Y.; Xu, P.; Jin, H.; Ma, J.; Qin, L. Vital sign measurement in telemedicine rehabilitation based on intelligent wearable medical

devices. Ieee Access 2019, 7, 54819–54823. [CrossRef]
6. Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [CrossRef] [PubMed]
7. Lee, J.; McCullough, J.S.; Town, R.J. The impact of health information technology on hospital productivity. RAND J. Econ. 2013,

44, 545–568. [CrossRef]
8. Alotaibi, Y.K.; Federico, F. The impact of health information technology on patient safety. Saudi Med. J. 2017, 38, 1173. [CrossRef]
9. Jamal, A.; McKenzie, K.; Clark, M. The impact of health information technology on the quality of medical and health care: A

systematic review. Health Inf. Manag. J. 2009, 38, 26–37. [CrossRef] [PubMed]
10. Sittig, D.F.; Singh, H. Defining health information technology–related errors: New developments since to err is human. Arch.

Intern. Med. 2011, 171, 1281–1284. [CrossRef]
11. Garcia, M.B.; Pilueta, N.U.; Jardiniano, M.F. VITAL APP: Development and User Acceptability of an IoT-Based Patient Monitoring

Device for Synchronous Measurements of Vital Signs. In Proceedings of the 2019 IEEE 11th International Conference on
Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM),
Laoag, Philippines, 29 November–1 December 2019; pp. 1–6.

12. Garcia, M.B. A speech therapy game application for aphasia patient neurorehabilitation—A pilot study of an mHealth app. Int. J.
Simul. Syst. Sci. Technol. 2019, 20, 1–8. [CrossRef]

13. Mosa, A.S.M.; Yoo, I.; Sheets, L. A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Mak.
2012, 12, 67. [CrossRef] [PubMed]

14. Chung, K.; Park, R.C. Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Computing 2019,
22, 1925–1937. [CrossRef]

15. Islam, M.S.; Hasan, M.M.; Wang, X.; Germack, H.D. A systematic review on healthcare analytics: Application and theoretical
perspective of data mining. Healthcare 2018, 6, 54. [CrossRef]

16. Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J.
Ind. Inf. Integr. 2020, 18, 100129. [CrossRef]

17. Jones, N. Computer science: The learning machines. Nat. News 2014, 505, 146. [CrossRef]
18. Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
19. Ayodele, T.O. Machine learning overview. New Adv. Mach. Learn. 2010, 2, 9–18.
20. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electronic Markets 2021, 31, 685–695. [CrossRef]
21. Sworna, N.S.; Islam, A.M.; Shatabda, S.; Islam, S. Towards development of IoT-ML driven healthcare systems: A survey. J. Netw.

Comput. Appl. 2021, 196, 103244. [CrossRef]
22. Meier, C.A.; Fitzgerald, M.C.; Smith, J.M. eHealth: Extending, enhancing, and evolving health care. Annu. Rev. Biomed. Eng. 2013,

15, 359–382. [CrossRef] [PubMed]
23. Becker, S.; Miron-Shatz, T.; Schumacher, N.; Krocza, J.; Diamantidis, C.; Albrecht, U.-V. mHealth 2.0: Experiences, possibilities,

and perspectives. JMIR Mhealth Uhealth 2014, 2, e3328. [CrossRef] [PubMed]
24. Costa, C.A.d.; Yamin, A.C.; Geyer, C.F.R. Toward a general software infrastructure for ubiquitous computing. IEEE Pervasive

Comput. Mob. Ubiquitous Systems. Los Alamitos 2008, 7, 64–73. [CrossRef]
25. Jung, E.-Y.; Kim, J.-H.; Chung, K.-Y.; Park, D.K. Home health gateway based healthcare services through U-health platform. Wirel.

Pers. Commun. 2013, 73, 207–218. [CrossRef]
26. Kamruzzaman, M.; Alrashdi, I.; Alqazzaz, A. New Opportunities, Challenges, and Applications of Edge-AI for Connected

Healthcare in Internet of Medical Things for Smart Cities. J. Healthc. Eng. 2022, 2022, 2950699. [CrossRef] [PubMed]
27. Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A Review of IoT-enabled Mobile Healthcare: Technologies, Challenges,

and Future Trends. IEEE Internet Things J. 2022, 9, 9478–9502. [CrossRef]
28. Karatas, M.; Eriskin, L.; Deveci, M.; Pamucar, D.; Garg, H. Big Data for Healthcare Industry 4.0: Applications, challenges and

future perspectives. Expert Syst. Appl. 2022, 200, 116912. [CrossRef]
29. Alshamrani, M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud

Univ. -Comput. Inf. Sci. 2022, 34, 4687–4701. [CrossRef]
30. Krishnamoorthy, S.; Dua, A.; Gupta, S. Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey,

current challenges and future directions. J. Ambient Intell. Humaniz. Comput. 2021, 1–47. [CrossRef]
31. Li, W.; Chai, Y.; Khan, F.; Jan, S.R.U.; Verma, S.; Menon, V.G.; Li, X. A comprehensive survey on machine learning-based big data

analytics for IoT-enabled smart healthcare system. Mob. Netw. Appl. 2021, 26, 234–252. [CrossRef]

http://doi.org/10.1016/j.apergo.2018.10.006
http://doi.org/10.1007/s12652-020-02656-x
http://doi.org/10.1007/s00101-018-0515-5
http://doi.org/10.1016/j.artmed.2018.05.005
http://www.ncbi.nlm.nih.gov/pubmed/29871778
http://doi.org/10.1109/ACCESS.2019.2913189
http://doi.org/10.3390/s17010130
http://www.ncbi.nlm.nih.gov/pubmed/28085085
http://doi.org/10.1111/1756-2171.12030
http://doi.org/10.15537/smj.2017.12.20631
http://doi.org/10.1177/183335830903800305
http://www.ncbi.nlm.nih.gov/pubmed/19875852
http://doi.org/10.1001/archinternmed.2011.327
http://doi.org/10.5013/IJSSST.a.20.S2.05
http://doi.org/10.1186/1472-6947-12-67
http://www.ncbi.nlm.nih.gov/pubmed/22781312
http://doi.org/10.1007/s10586-018-2334-5
http://doi.org/10.3390/healthcare6020054
http://doi.org/10.1016/j.jii.2020.100129
http://doi.org/10.1038/505146a
http://doi.org/10.1007/s10796-014-9492-7
http://doi.org/10.1007/s12525-021-00475-2
http://doi.org/10.1016/j.jnca.2021.103244
http://doi.org/10.1146/annurev-bioeng-071812-152350
http://www.ncbi.nlm.nih.gov/pubmed/23683088
http://doi.org/10.2196/mhealth.3328
http://www.ncbi.nlm.nih.gov/pubmed/25099752
http://doi.org/10.1109/MPRV.2008.21
http://doi.org/10.1007/s11277-013-1231-8
http://doi.org/10.1155/2022/2950699
http://www.ncbi.nlm.nih.gov/pubmed/35251564
http://doi.org/10.1109/JIOT.2022.3144400
http://doi.org/10.1016/j.eswa.2022.116912
http://doi.org/10.1016/j.jksuci.2021.06.005
http://doi.org/10.1007/s12652-021-03302-w
http://doi.org/10.1007/s11036-020-01700-6


Healthcare 2022, 10, 1940 39 of 45

32. Tunc, M.A.; Gures, E.; Shayea, I. A Survey on IoT Smart Healthcare: Emerging Technologies, Applications, Challenges, and
Future Trends. arXiv 2021, arXiv:2109.02042.

33. Nahavandi, D.; Alizadehsani, R.; Khosravi, A.; Acharya, U.R. Application of artificial intelligence in wearable devices: Opportu-
nities and challenges. Comput. Methods Programs Biomed. 2022, 213, 106541. [CrossRef]

34. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging
technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [CrossRef]

35. Al-Dhief, F.T.; Latiff, N.M.a.A.; Malik, N.N.N.A.; Salim, N.S.; Baki, M.M.; Albadr, M.A.A.; Mohammed, M.A. A survey of voice
pathology surveillance systems based on internet of things and machine learning algorithms. IEEE Access 2020, 8, 64514–64533.
[CrossRef]

36. Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and robust machine learning for healthcare: A survey. IEEE Rev. Biomed.
Eng. 2020, 14, 156–180. [CrossRef]

37. Karthick, G.; Pankajavalli, P. A review on human healthcare internet of things: A technical perspective. SN Comput. Sci. 2020,
1, 198. [CrossRef]

38. Santos, M.A.; Munoz, R.; Olivares, R.; Rebouças Filho, P.P.; Del Ser, J.; de Albuquerque, V.H.C. Online heart monitoring systems on
the internet of health things environments: A survey, a reference model and an outlook. Inf. Fusion 2020, 53, 222–239. [CrossRef]

39. Amin, S.U.; Hossain, M.S. Edge intelligence and Internet of Things in healthcare: A survey. IEEE Access 2020, 9, 45–59. [CrossRef]
40. Alshehri, F.; Muhammad, G. A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access

2020, 9, 3660–3678. [CrossRef]
41. Dhanvijay, M.M.; Patil, S.C. Internet of Things: A survey of enabling technologies in healthcare and its applications. Comput.

Netw. 2019, 153, 113–131. [CrossRef]
42. Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A survey of healthcare Internet of Things

(HIoT): A clinical perspective. IEEE Internet Things J. 2019, 7, 53–71. [CrossRef]
43. Mutlag, A.A.; Abd Ghani, M.K.; Arunkumar, N.a.; Mohammed, M.A.; Mohd, O. Enabling technologies for fog computing in

healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62–78. [CrossRef]
44. Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw.

Comput. Appl. 2019, 140, 1–22. [CrossRef]
45. Dang, L.M.; Piran, M.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics

2019, 8, 768. [CrossRef]
46. Cui, L.; Yang, S.; Chen, F.; Ming, Z.; Lu, N.; Qin, J. A survey on application of machine learning for Internet of Things. Int. J. Mach.

Learn. Cybern. 2018, 9, 1399–1417. [CrossRef]
47. Alam, M.M.; Malik, H.; Khan, M.I.; Pardy, T.; Kuusik, A.; Le Moullec, Y. A survey on the roles of communication technologies in

IoT-based personalized healthcare applications. IEEE Access 2018, 6, 36611–36631. [CrossRef]
48. Sharma, N.; Singh, A. Diabetes detection and prediction using machine learning/IoT: A survey. In Proceedings of the International

Conference on Advanced Informatics for Computing Research, Shimla, India, 14–15 July 2018; pp. 471–479.
49. Babu, G.C.; Shantharajah, S. Survey on data analytics techniques in healthcare using IOT platform. Int. J. Reason.-Based Intell. Syst.

2018, 10, 183–196. [CrossRef]
50. Sughasiny, M.; Rajeshwari, J. Application of machine learning techniques, big data analytics in health care sector—A literature

survey. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud),
Palladam, India, 30–31 August 2018; pp. 741–749.

51. Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and
challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018, 78, 659–676. [CrossRef]

52. Darwish, A.; Hassanien, A.E.; Elhoseny, M.; Sangaiah, A.K.; Muhammad, K. The impact of the hybrid platform of internet of
things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. J. Ambient Intell. Humaniz.
Comput. 2019, 10, 4151–4166. [CrossRef]

53. Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035.
[CrossRef]

54. Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced internet of things for personalised healthcare systems: A survey.
Pervasive Mob. Comput. 2017, 41, 132–149. [CrossRef]

55. Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural health monitoring framework based on Internet of Things: A survey. IEEE
Internet Things J. 2017, 4, 619–635. [CrossRef]

56. Yuehong, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13.
57. Capraro, G.T. Artificial Intelligence (AI), Big Data, and Healthcare. In Proceedings of the International Conference on Artificial

Intelligence (ICAI), Athens, Greece, 25–26 March 2016; p. 425.
58. Azzawi, M.A.; Hassan, R.; Bakar, K.A.A. A review on Internet of Things (IoT) in healthcare. Int. J. Appl. Eng. Res. 2016, 11,

10216–10221.
59. Sakr, S.; Elgammal, A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Res. 2016,

4, 44–58. [CrossRef]
60. Hossain, M.S.; Muhammad, G. Cloud-assisted industrial internet of things (iiot)–enabled framework for health monitoring.

Comput. Netw. 2016, 101, 192–202. [CrossRef]

http://doi.org/10.1016/j.cmpb.2021.106541
http://doi.org/10.1109/COMST.2020.2973314
http://doi.org/10.1109/ACCESS.2020.2984925
http://doi.org/10.1109/RBME.2020.3013489
http://doi.org/10.1007/s42979-020-00205-z
http://doi.org/10.1016/j.inffus.2019.06.004
http://doi.org/10.1109/ACCESS.2020.3045115
http://doi.org/10.1109/ACCESS.2020.3047960
http://doi.org/10.1016/j.comnet.2019.03.006
http://doi.org/10.1109/JIOT.2019.2946359
http://doi.org/10.1016/j.future.2018.07.049
http://doi.org/10.1016/j.jnca.2019.05.005
http://doi.org/10.3390/electronics8070768
http://doi.org/10.1007/s13042-018-0834-5
http://doi.org/10.1109/ACCESS.2018.2853148
http://doi.org/10.1504/IJRIS.2018.096197
http://doi.org/10.1016/j.future.2017.04.036
http://doi.org/10.1007/s12652-017-0659-1
http://doi.org/10.1155/2017/9324035
http://doi.org/10.1016/j.pmcj.2017.06.018
http://doi.org/10.1109/JIOT.2017.2664072
http://doi.org/10.1016/j.bdr.2016.05.002
http://doi.org/10.1016/j.comnet.2016.01.009


Healthcare 2022, 10, 1940 40 of 45

61. Romero, L.E.; Chatterjee, P.; Armentano, R.L. An IoT approach for integration of computational intelligence and wearable sensors
for Parkinson’s disease diagnosis and monitoring. Health Technol. 2016, 6, 167–172. [CrossRef]

62. Mathew, P.S.; Pillai, A.S. Big data challenges and solutions in healthcare: A survey. In Innovations in Bio-Inspired Computing and
Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 543–553.

63. Yeole, A.S.; Kalbande, D.R. Use of Internet of Things (IoT) in healthcare: A survey. In Proceedings of the ACM Symposium on
Women in Research, Indore, India, 21–22 March 2016; pp. 71–76.

64. Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Trajkovik, V. A survey of Ambient Assisted Living systems: Challenges and
opportunities. In Proceedings of the 2016 IEEE 12th international conference on intelligent computer communication and
processing (ICCP), Cluj-Napoca, Romania, 8–10 October 2016; pp. 49–53.

65. Islam, S.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The internet of things for health care: A comprehensive survey. IEEE
Access 2015, 3, 678–708. [CrossRef]

66. Li, R.; Lu, B.; McDonald-Maier, K.D. Cognitive assisted living ambient system: A survey. Digit. Commun. Netw. 2015, 1, 229–252.
[CrossRef]

67. Yang, J.-J.; Li, J.; Mulder, J.; Wang, Y.; Chen, S.; Wu, H.; Wang, Q.; Pan, H. Emerging information technologies for enhanced
healthcare. Comput. Ind. 2015, 69, 3–11. [CrossRef]

68. Wahaishi, A.; Samani, A.; Ghenniwa, H. Smarthealth and internet of things. In Proceedings of the International Conference on
Smart Homes and Health Telematics, Geneva, Switzerland, 10–12 June 2015; pp. 373–378.

69. Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of
Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019.

70. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions:
Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef]

71. Kamruzzaman, M.; Yan, B.; Sarker, M.N.I.; Alruwaili, O.; Wu, M.; Alrashdi, I. Blockchain and Fog Computing in IoT-Driven
Healthcare Services for Smart Cities. J. Healthc. Eng. 2022, 2022, 9957888. [CrossRef] [PubMed]

72. Qi, J.; Yang, P.; Waraich, A.; Deng, Z.; Zhao, Y.; Yang, Y. Examining sensor-based physical activity recognition and monitoring for
healthcare using Internet of Things: A systematic review. J. Biomed. Inform. 2018, 87, 138–153. [CrossRef] [PubMed]

73. Maurya, M.R.; Riyaz, N.U.; Reddy, M.; Yalcin, H.C.; Ouakad, H.M.; Bahadur, I.; Al-Maadeed, S.; Sadasivuni, K.K. A review of
smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring. Med. Biol. Eng.
Comput. 2021, 59, 2185–2203. [CrossRef] [PubMed]

74. Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.-Y. Recent Advances on IoT-Assisted Wearable Sensor
Systems for Healthcare Monitoring. Biosensors 2021, 11, 372. [CrossRef] [PubMed]

75. Meraj, M.; Alvi, S.A.M.; Quasim, M.T.; Haidar, S.W. A Critical Review of Detection and Prediction of Infectious Disease using IOT
Sensors. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems
(ICESC), Coimbatore, India, 4–6 August 2021; pp. 679–684.

76. Khundaqji, H.; Hing, W.; Furness, J.; Climstein, M. Smart shirts for monitoring physiological parameters: Scoping review. JMIR
Mhealth Uhealth 2020, 8, e18092. [CrossRef] [PubMed]

77. Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J.
Med. Syst. 2016, 40, 286. [CrossRef]

78. Azimi, I.; Pahikkala, T.; Rahmani, A.M.; Niela-Vilén, H.; Axelin, A.; Liljeberg, P. Missing data resilient decision-making for
healthcare IoT through personalization: A case study on maternal health. Future Gener. Comput. Syst. 2019, 96, 297–308. [CrossRef]

79. Bhatia, M.; Sood, S.K. A comprehensive health assessment framework to facilitate IoT-assisted smart workouts: A predictive
healthcare perspective. Comput. Ind. 2017, 92, 50–66. [CrossRef]

80. Wu, T.; Wu, F.; Redoute, J.-M.; Yuce, M.R. An autonomous wireless body area network implementation towards IoT connected
healthcare applications. IEEE Access 2017, 5, 11413–11422. [CrossRef]

81. Wu, T.; Redouté, J.-M.; Yuce, M.R. A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT
healthcare applications. IEEE Access 2018, 6, 35801–35808. [CrossRef]

82. Wu, T.; Wu, F.; Qiu, C.; Redouté, J.-M.; Yuce, M.R. A rigid-flex wearable health monitoring sensor patch for IoT-connected
healthcare applications. IEEE Internet Things J. 2020, 7, 6932–6945. [CrossRef]

83. Niitsu, K.; Kobayashi, A.; Nishio, Y.; Hayashi, K.; Ikeda, K.; Ando, T.; Ogawa, Y.; Kai, H.; Nishizawa, M.; Nakazato, K. A
self-powered supply-sensing biosensor platform using bio fuel cell and low-voltage, low-cost CMOS supply-controlled ring
oscillator with inductive-coupling transmitter for healthcare IoT. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2784–2796.
[CrossRef]

84. Tekeste, T.; Saleh, H.; Mohammad, B.; Ismail, M. Ultra-low power QRS detection and ECG compression architecture for IoT
healthcare devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 669–679. [CrossRef]

85. Hallfors, N.G.; Alhawari, M.; Abi Jaoude, M.; Kifle, Y.; Saleh, H.; Liao, K.; Ismail, M.; Isakovic, A.F. Graphene oxide: Nylon ECG
sensors for wearable IoT healthcare—Nanomaterial and SoC interface. Analog Integr. Circuits Signal Process. 2018, 96, 253–260.
[CrossRef]

86. Ray, P.P.; Dash, D.; De, D. Analysis and monitoring of IoT-assisted human physiological galvanic skin responsefactor for smart
e-healthcare. Sens. Rev. 2019, 39, 525–541. [CrossRef]

http://doi.org/10.1007/s12553-016-0148-0
http://doi.org/10.1109/ACCESS.2015.2437951
http://doi.org/10.1016/j.dcan.2015.10.003
http://doi.org/10.1016/j.compind.2015.01.012
http://doi.org/10.1016/j.jclinepi.2009.06.006
http://doi.org/10.1155/2022/9957888
http://www.ncbi.nlm.nih.gov/pubmed/35126961
http://doi.org/10.1016/j.jbi.2018.09.002
http://www.ncbi.nlm.nih.gov/pubmed/30267895
http://doi.org/10.1007/s11517-021-02447-2
http://www.ncbi.nlm.nih.gov/pubmed/34611787
http://doi.org/10.3390/bios11100372
http://www.ncbi.nlm.nih.gov/pubmed/34677328
http://doi.org/10.2196/18092
http://www.ncbi.nlm.nih.gov/pubmed/32348279
http://doi.org/10.1007/s10916-016-0644-9
http://doi.org/10.1016/j.future.2019.02.015
http://doi.org/10.1016/j.compind.2017.06.009
http://doi.org/10.1109/ACCESS.2017.2716344
http://doi.org/10.1109/ACCESS.2018.2851940
http://doi.org/10.1109/JIOT.2020.2977164
http://doi.org/10.1109/TCSI.2018.2791516
http://doi.org/10.1109/TCSI.2018.2867746
http://doi.org/10.1007/s10470-018-1116-6
http://doi.org/10.1108/SR-07-2018-0181


Healthcare 2022, 10, 1940 41 of 45

87. Esmaeili, S.; Tabbakh, S.R.K.; Shakeri, H. A priority-aware lightweight secure sensing model for body area networks with clinical
healthcare applications in Internet of Things. Pervasive Mob. Comput. 2020, 69, 101265. [CrossRef]

88. Muthu, B.; Sivaparthipan, C.; Manogaran, G.; Sundarasekar, R.; Kadry, S.; Shanthini, A.; Dasel, A. IOT based wearable sensor for
diseases prediction and symptom analysis in healthcare sector. Peer Peer Netw. Appl. 2020, 13, 2123–2134. [CrossRef]

89. Huifeng, W.; Kadry, S.N.; Raj, E.D. Continuous health monitoring of sportsperson using IoT devices based wearable technology.
Comput. Commun. 2020, 160, 588–595. [CrossRef]

90. Sood, S.K.; Mahajan, I. IoT-fog-based healthcare framework to identify and control hypertension attack. IEEE Internet Things J.
2018, 6, 1920–1927. [CrossRef]

91. Vilela, P.H.; Rodrigues, J.J.; Solic, P.; Saleem, K.; Furtado, V. Performance evaluation of a Fog-assisted IoT solution for e-Health
applications. Future Gener. Comput. Syst. 2019, 97, 379–386. [CrossRef]

92. Ray, P.P.; Thapa, N.; Dash, D.; De, D. Novel implementation of IoT based non-invasive sensor system for real-time monitoring of
intravenous fluid level for assistive e-healthcare. Circuit World 2019, 45, 109–123. [CrossRef]

93. Elsts, A.; Fafoutis, X.; Woznowski, P.; Tonkin, E.; Oikonomou, G.; Piechocki, R.; Craddock, I. Enabling healthcare in smart homes:
The SPHERE IoT network infrastructure. IEEE Commun. Mag. 2018, 56, 164–170. [CrossRef]

94. Chen, X.; Ma, M.; Liu, A. Dynamic power management and adaptive packet size selection for IoT in e-Healthcare. Comput. Electr.
Eng. 2018, 65, 357–375. [CrossRef]

95. Beevers, G.; Lip, G.Y.; O’Brien, E. The pathophysiology of hypertension. Bmj 2001, 322, 912–916. [CrossRef]
96. Mukkamala, R.; Hahn, J.-O. Toward ubiquitous blood pressure monitoring via pulse transit time: Predictions on maximum

calibration period and acceptable error limits. IEEE Trans. Biomed. Eng. 2017, 65, 1410–1420. [CrossRef]
97. Wang, Z.; Yang, Z.; Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize

physical activities and monitor vital signs in real time. Sensors 2017, 17, 341. [CrossRef]
98. Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices.

Adv. Mater. 2016, 28, 4373–4395. [CrossRef]
99. Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Fenech, S.; Bonek, L.; Sapoznik, N.; Fleming, P.D.; Bazuin, B.J.; Atashbar,

M.Z. Development of a flexible wireless ECG monitoring device with dry fabric electrodes for wearable applications. IEEE Sens. J.
2021, 22, 11223–11232. [CrossRef]

100. Jahmunah, V.; Ng, E.; San, T.R.; Acharya, U.R. Automated detection of coronary artery disease, myocardial infarction and
congestive heart failure using GaborCNN model with ECG signals. Comput. Biol. Med. 2021, 134, 104457. [CrossRef]

101. Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [CrossRef]
102. Zhang, K.; Xu, G.; Zheng, X.; Li, H.; Zhang, S.; Yu, Y.; Liang, R. Application of transfer learning in EEG decoding based on

brain-computer interfaces: A review. Sensors 2020, 20, 6321. [CrossRef] [PubMed]
103. Fang, Q.; Fang, C.; Li, L.; Song, Y. Impact of sport training on adaptations in neural functioning and behavioral performance: A

scoping review with meta-analysis on EEG research. J. Exerc. Sci. Fit. 2022, 20, 206–215. [CrossRef] [PubMed]
104. Luks, A.M.; Swenson, E.R. Pulse oximetry for monitoring patients with COVID-19 at home. Potential pitfalls and practical

guidance. Ann. Am. Thorac. Soc. 2020, 17, 1040–1046. [CrossRef] [PubMed]
105. Kateu, F.; Jakllari, G.; Chaput, E. SmartPhOx: Smartphone-Based Pulse Oximetry Using a Meta-Region Of Interest. In Proceedings

of the 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom), Pisa, Italy, 21–25 March
2022; pp. 130–140.

106. Porter, P.; Muirhead, F.; Brisbane, J.; Schneider, B.; Choveaux, J.; Bear, N.; Carson, J.; Jones, K.; Silva, D.; Neppe, C. Accuracy,
clinical utility, and usability of a wireless self-guided fetal heart rate monitor. Obstet. Gynecol. 2021, 137, 673. [CrossRef]

107. Saha, A.; Saha, S.; Mandal, P.; Bawaly, P.; Roy, M. Microcontroller-Based Heart Rate Monitor. In Computational Advancement in
Communication, Circuits and Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 271–280.

108. Liu, H.; Hartmann, Y.; Schultz, T. Motion Units: Generalized sequence modeling of human activities for sensor-based activity
recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August
2021; pp. 1506–1510.

109. Blasch, E.; Pham, T.; Chong, C.-Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine learning/artificial intelligence for
sensor data fusion–opportunities and challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [CrossRef]

110. Doddabasappla, K.; Vyas, R. Statistical and machine learning-based recognition of coughing events using triaxial accelerometer
sensor data from multiple wearable points. IEEE Sens. Lett. 2021, 5, 1–4. [CrossRef]

111. William, P.; Badholia, A.; Verma, V.; Sharma, A.; Verma, A. Analysis of Data Aggregation and Clustering Protocol in Wireless Sen-
sor Networks Using Machine Learning. In Evolutionary Computing and Mobile Sustainable Networks; Springer: Berlin/Heidelberg,
Germany; Bangalore, India, 2022; pp. 925–939.

112. Wan, J.; Al-awlaqi, M.A.A.H.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring
system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [CrossRef]

113. Tabassum, S.; Zaman, M.I.U.; Ullah, M.S.; Rahaman, A.; Nahar, S.; Islam, A.M. The cardiac disease predictor: IoT and ML
driven healthcare system. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication
Technology (EICT), Khulna, Bangladesh, 20–21 December 2019; pp. 1–6.

114. Magaña-Espinoza, P.; Aquino-Santos, R.; Cárdenas-Benítez, N.; Aguilar-Velasco, J.; Buenrostro-Segura, C.; Edwards-Block, A.;
Medina-Cass, A. WiSPH: A wireless sensor network-based home care monitoring system. Sensors 2014, 14, 7096–7119. [CrossRef]

http://doi.org/10.1016/j.pmcj.2020.101265
http://doi.org/10.1007/s12083-019-00823-2
http://doi.org/10.1016/j.comcom.2020.04.025
http://doi.org/10.1109/JIOT.2018.2871630
http://doi.org/10.1016/j.future.2019.02.055
http://doi.org/10.1108/CW-01-2019-0008
http://doi.org/10.1109/MCOM.2017.1700791
http://doi.org/10.1016/j.compeleceng.2017.06.010
http://doi.org/10.1136/bmj.322.7291.912
http://doi.org/10.1109/TBME.2017.2756018
http://doi.org/10.3390/s17020341
http://doi.org/10.1002/adma.201504366
http://doi.org/10.1109/JSEN.2021.3116215
http://doi.org/10.1016/j.compbiomed.2021.104457
http://doi.org/10.1109/JSEN.2014.2370945
http://doi.org/10.3390/s20216321
http://www.ncbi.nlm.nih.gov/pubmed/33167561
http://doi.org/10.1016/j.jesf.2022.04.001
http://www.ncbi.nlm.nih.gov/pubmed/35510253
http://doi.org/10.1513/AnnalsATS.202005-418FR
http://www.ncbi.nlm.nih.gov/pubmed/32521167
http://doi.org/10.1097/AOG.0000000000004322
http://doi.org/10.1109/MAES.2020.3049030
http://doi.org/10.1109/LSENS.2021.3074183
http://doi.org/10.1186/s13638-018-1308-x
http://doi.org/10.3390/s140407096


Healthcare 2022, 10, 1940 42 of 45

115. Pham, M.; Mengistu, Y.; Do, H.; Sheng, W. Delivering home healthcare through a cloud-based smart home environment (CoSHE).
Future Gener. Comput. Syst. 2018, 81, 129–140. [CrossRef]

116. Tyagi, S.; Agarwal, A.; Maheshwari, P. A conceptual framework for IoT-based healthcare system using cloud computing. In
Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15
January 2016; pp. 503–507.

117. Abdulameer, T.H.; Ibrahim, A.A.; Mohammed, A.H. Design of health care monitoring system based on internet of thing (IOT).
In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Istanbul, Turkey, 22–24 October 2020; pp. 1–6.

118. Adewole, K.S.; Akintola, A.G.; Jimoh, R.G.; Mabayoje, M.A.; Jimoh, M.K.; Usman-Hamza, F.E.; Balogun, A.O.; Sangaiah, A.K.;
Ameen, A.O. Cloud-based IoMT framework for cardiovascular disease prediction and diagnosis in personalized E-health care. In
Intelligent IoT Systems in Personalized Health Care; Elsevier: Amsterdam, The Netherlands, 2021; pp. 105–145.

119. Blake, M.B. An internet of things for healthcare. IEEE Internet Comput. 2015, 19, 4–6. [CrossRef]
120. Li, Q.; Campan, A.; Ren, A.; Eid, W.E. Automating and improving cardiovascular disease prediction using Machine learning and

EMR data features from a regional healthcare system. Int. J. Med. Inform. 2022, 163, 104786. [CrossRef] [PubMed]
121. Kumar, G.; Basri, S.; Imam, A.A.; Khowaja, S.A.; Capretz, L.F.; Balogun, A.O. Data Harmonization for Heterogeneous Datasets: A

Systematic Literature Review. Appl. Sci. 2021, 11, 8275. [CrossRef]
122. Kong, H.-J. Managing unstructured big data in healthcare system. Healthc. Inform. Res. 2019, 25, 1–2. [CrossRef] [PubMed]
123. Verma, K.K.; Singh, B.M.; Dixit, A. A review of supervised and unsupervised machine learning techniques for suspicious behavior

recognition in intelligent surveillance system. Int. J. Inf. Technol. 2019, 14, 397–410. [CrossRef]
124. Hiran, K.K.; Jain, R.K.; Lakhwani, K.; Doshi, R. Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real

Examples (English Edition); BPB Publications: Noida, India, 2021.
125. Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Alazzawi, A.K.; Bajeh, A.O.;

Kumar, G. Software Defect Prediction Using Wrapper Feature Selection Based on Dynamic Re-Ranking Strategy. Symmetry 2021,
13, 2166. [CrossRef]

126. Balogun, A.O.; Basri, S.; Mahamad, S.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G. A novel rank
aggregation-based hybrid multifilter wrapper feature selection method in software defect prediction. Comput. Intell. Neurosci. 2021,
2021, 5069016. [CrossRef]

127. Alsariera, Y.A.; Balogun, A.O.; Adeyemo, V.E.; Tarawneh, O.H.; Mojeed, H.A. Intelligent tree-based ensemble approaches for
phishing website detection. J. Eng. Sci. Technol. 2022, 17, 563–582.

128. Kaplan, A.; Cao, H.; FitzGerald, J.M.; Iannotti, N.; Yang, E.; Kocks, J.W.; Kostikas, K.; Price, D.; Reddel, H.K.; Tsiligianni, I.
Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J. Allergy Clin.
Immunol. Pract. 2021, 9, 2255–2261. [CrossRef]

129. Petersilge, C.A.; McDonald, J.; Bishop, M.; Yudkovitch, L.; Treuting, C.; Towbin, A.J. Visible Light Imaging: Clinical Aspects
with an Emphasis on Medical Photography—A HIMSS-SIIM Enterprise Imaging Community Whitepaper. J. Digit. Imaging 2022,
35, 385–395. [CrossRef]

130. Oladepo, A.G.; Bajeh, A.O.; Balogun, A.O.; Mojeed, H.A.; Salman, A.A.; Bako, A.I. Heterogeneous Ensemble with Combined
Dimensionality Reduction for Social Spam Detection. Int. J. Interact. Mob. Technol. 2021, 15, 84–103. [CrossRef]

131. Usman-Hamza, F.; Atte, A.; Balogun, A.; Mojeed, H.; Bajeh, A.; Adeyemo, V. Impact of feature selection on classification via
clustering techniques in software defect prediction. J. Comput. Sci. Its Appl. 2019, 26.

132. Apostol, I.; Preda, M.; Nila, C.; Bica, I. IoT botnet anomaly detection using unsupervised deep learning. Electronics 2021, 10, 1876.
[CrossRef]

133. Balogun, A.; Oladele, R.; Mojeed, H.; Amin-Balogun, B.; Adeyemo, V.E.; Aro, T.O. Performance analysis of selected clustering
techniques for software defects prediction. Afr. J. Comput. ICT 2019, 12, 30–42.

134. Sahoo, S.; Das, M.; Mishra, S.; Suman, S. A hybrid DTNB model for heart disorders prediction. In Advances in Electronics,
Communication and Computing; Springer: Berlin/Heidelberg, Germany; Bhubaneswar, India, 2021; pp. 155–163.

135. Alamsyah, A.; Fadila, T. Increased accuracy of prediction hepatitis disease using the application of principal component analysis
on a support vector machine. In Proceedings of the Journal of Physics: Conference Series, Manado, Indonesia, 15 October 2020;
p. 012016.

136. Muneer, A.; Taib, S.M.; Fati, S.M.; Balogun, A.O.; Aziz, I.A. A Hybrid deep learning-based unsupervised anomaly detection in
high dimensional data. Comput. Mater. Contin. 2022, 70, 6073–6088.

137. Fagherazzi, G.; Zhang, L.; Aguayo, G.; Pastore, J.; Goetzinger, C.; Fischer, A.; Malisoux, L.; Samouda, H.; Bohn, T.; Ruiz-Castell,
M. Towards precision cardiometabolic prevention: Results from a machine learning, semi-supervised clustering approach in the
nationwide population-based ORISCAV-LUX 2 study. Sci. Rep. 2021, 11, 16056. [CrossRef] [PubMed]

138. Yu, H.; Chen, Z.; Zhang, X.; Chen, X.; Zhuang, F.; Xiong, H.; Cheng, X. FedHAR: Semi-Supervised Online Learning for
Personalized Federated Human Activity Recognition. IEEE Trans. Mob. Comput. 2021. [CrossRef]

139. Peng, J.; Wang, P.; Desrosiers, C.; Pedersoli, M. Self-paced contrastive learning for semi-supervised medical image segmentation
with meta-labels. Adv. Neural Inf. Process. Syst. 2021, 34, 16686–16699.

140. Luo, X.; Chen, J.; Song, T.; Wang, G. Semi-supervised medical image segmentation through dual-task consistency. In Proceedings
of the AAAI Conference on Artificial Intelligence, Virtual Conference, 2–9 February 2021; pp. 8801–8809.

http://doi.org/10.1016/j.future.2017.10.040
http://doi.org/10.1109/MIC.2015.89
http://doi.org/10.1016/j.ijmedinf.2022.104786
http://www.ncbi.nlm.nih.gov/pubmed/35512622
http://doi.org/10.3390/app11178275
http://doi.org/10.4258/hir.2019.25.1.1
http://www.ncbi.nlm.nih.gov/pubmed/30788175
http://doi.org/10.1007/s41870-019-00364-0
http://doi.org/10.3390/sym13112166
http://doi.org/10.1155/2021/5069016
http://doi.org/10.1016/j.jaip.2021.02.014
http://doi.org/10.1007/s10278-022-00584-0
http://doi.org/10.3991/ijim.v15i17.19915
http://doi.org/10.3390/electronics10161876
http://doi.org/10.1038/s41598-021-95487-5
http://www.ncbi.nlm.nih.gov/pubmed/34362963
http://doi.org/10.1109/TMC.2021.3136853


Healthcare 2022, 10, 1940 43 of 45

141. Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices.
IEEE J. Biomed. Health Inform. 2019, 24, 515–523. [CrossRef]

142. Amirshahi, A.; Hashemi, M. ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring
on ultra low-power personal wearable devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1483–1493. [CrossRef]

143. Barbruni, G.L.; Ros, P.M.; Demarchi, D.; Carrara, S.; Ghezzi, D. Miniaturised wireless power transfer systems for neurostimulation:
A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1160–1178. [CrossRef]

144. Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Wearable sensors for estimation of parkinsonian tremor severity
during free body movements. Sensors 2019, 19, 4215. [CrossRef]

145. Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; Rodríguez-Martín, D.; Pérez-López, C.; Sweeney, D.; Quinlan, L.R.; Laighin, G.Ò.;
Counihan, T. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med. Biol. Eng. Comput.
2016, 54, 223–233. [CrossRef]

146. Varatharajan, R.; Manogaran, G.; Priyan, M.K.; Sundarasekar, R. Wearable sensor devices for early detection of Alzheimer disease
using dynamic time warping algorithm. Clust. Comput. 2018, 21, 681–690. [CrossRef]

147. Das, A.; Pradhapan, P.; Groenendaal, W.; Adiraju, P.; Rajan, R.T.; Catthoor, F.; Schaafsma, S.; Krichmar, J.L.; Dutt, N.; Van Hoof, C.
Unsupervised heart-rate estimation in wearables with liquid states and a probabilistic readout. Neural Netw. 2018, 99, 134–147.
[CrossRef] [PubMed]

148. Krause, A.; Siewiorek, D.P.; Smailagic, A.; Farringdon, J. Unsupervised, Dynamic Identification of Physiological and Activity
Context in Wearable Computing. In Proceedings of the ISWC, White Plains, NY, USA, 21–23 October 2003; p. 88.

149. Janarthanan, R.; Doss, S.; Baskar, S. Optimized unsupervised deep learning assisted reconstructed coder in the on-nodule
wearable sensor for human activity recognition. Measurement 2020, 164, 108050. [CrossRef]

150. Ballinger, B.; Hsieh, J.; Singh, A.; Sohoni, N.; Wang, J.; Tison, G.H.; Marcus, G.M.; Sanchez, J.M.; Maguire, C.; Olgin, J.E. DeepHeart:
Semi-supervised sequence learning for cardiovascular risk prediction. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2079–2086.

151. Stikic, M.; Larlus, D.; Schiele, B. Multi-graph based semi-supervised learning for activity recognition. In Proceedings of the 2009
International Symposium on Wearable Computers, Linz, Austria, 4–7 September 2009; pp. 85–92.

152. Stikic, M.; Van Laerhoven, K.; Schiele, B. Exploring semi-supervised and active learning for activity recognition. In Proceedings
of the 2008 12th IEEE International Symposium on Wearable Computers, Pittsburgh, PA, USA, 28 September–1 October 2008;
pp. 81–88.

153. Ma, Y.; Ghasemzadeh, H. LabelForest: Non-parametric semi-supervised learning for activity recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4520–4527.

154. Wiechert, G.; Triff, M.; Liu, Z.; Yin, Z.; Zhao, S.; Zhong, Z.; Lingras, P. Evolutionary semi-supervised rough categorization of brain
signals from a wearable headband. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver,
BC, Canada, 24–29 July 2016; pp. 3131–3138.

155. Mao, R.; Xu, H.; Wu, W.; Li, J.; Li, Y.; Lu, M. Overcoming the challenge of variety: Big data abstraction, the next evolution of data
management for AAL communication systems. IEEE Commun. Mag. 2015, 53, 42–47. [CrossRef]

156. Jothi, N.; Husain, W. Data mining in healthcare—A review. Procedia Comput. Sci. 2015, 72, 306–313. [CrossRef]
157. Chmielewska, M.; Stokwiszewski, J.; Markowska, J.; Hermanowski, T. Evaluating Organizational Performance of Public Hospitals

using the McKinsey 7-S Framework. BMC Health Serv. Res. 2022, 22, 7. [CrossRef]
158. Patel, S.A.; Sharma, H.; Mohan, S.; Weber, M.B.; Jindal, D.; Jarhyan, P.; Gupta, P.; Sharma, R.; Ali, M.; Ali, M.K. The Integrated

Tracking, Referral, and Electronic Decision Support, and Care Coordination (I-TREC) program: Scalable strategies for the
management of hypertension and diabetes within the government healthcare system of India. BMC Health Serv. Res. 2020,
20, 1022. [CrossRef]

159. Nair, L.R.; Subramaniam, K.; Prasannavenkatesan, G. A review on multiple approaches to medical image retrieval system. Intell.
Comput. Eng. 2020, 1125, 501–509.

160. Torjmen-Khemakhem, M.; Gasmi, K. Document/query expansion based on selecting significant concepts for context based
retrieval of medical images. J. Biomed. Inform. 2019, 95, 103210. [CrossRef]

161. Wang, Y.; Afzal, N.; Fu, S.; Wang, L.; Shen, F.; Rastegar-Mojarad, M.; Liu, H. MedSTS: A resource for clinical semantic textual
similarity. Lang. Resour. Eval. 2020, 54, 57–72. [CrossRef]

162. Pedersen, T.; Pakhomov, S.V.; Patwardhan, S.; Chute, C.G. Measures of semantic similarity and relatedness in the biomedical
domain. J. Biomed. Inform. 2007, 40, 288–299. [CrossRef]

163. Kayyali, B.; Knott, D.; Van Kuiken, S. The big-data revolution in US health care: Accelerating value and innovation. Mc Kinsey Co.
2013, 2, 1–13.

164. Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The use of google trends in health care
research: A systematic review. PLoS ONE 2014, 9, e109583. [CrossRef] [PubMed]

165. He, K.Y.; Ge, D.; He, M.M. Big data analytics for genomic medicine. Int. J. Mol. Sci. 2017, 18, 412. [CrossRef] [PubMed]
166. Zhang, J.; Bareinboim, E. Fairness in decision-making—The causal explanation formula. In Proceedings of the AAAI Conference

on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [CrossRef]

http://doi.org/10.1109/JBHI.2019.2911367
http://doi.org/10.1109/TBCAS.2019.2948920
http://doi.org/10.1109/TBCAS.2020.3038599
http://doi.org/10.3390/s19194215
http://doi.org/10.1007/s11517-015-1395-3
http://doi.org/10.1007/s10586-017-0977-2
http://doi.org/10.1016/j.neunet.2017.12.015
http://www.ncbi.nlm.nih.gov/pubmed/29414535
http://doi.org/10.1016/j.measurement.2020.108050
http://doi.org/10.1109/MCOM.2015.7010514
http://doi.org/10.1016/j.procs.2015.12.145
http://doi.org/10.1186/s12913-021-07402-3
http://doi.org/10.1186/s12913-020-05851-w
http://doi.org/10.1016/j.jbi.2019.103210
http://doi.org/10.1007/s10579-018-9431-1
http://doi.org/10.1016/j.jbi.2006.06.004
http://doi.org/10.1371/journal.pone.0109583
http://www.ncbi.nlm.nih.gov/pubmed/25337815
http://doi.org/10.3390/ijms18020412
http://www.ncbi.nlm.nih.gov/pubmed/28212287
http://doi.org/10.1609/aaai.v32i1.11564


Healthcare 2022, 10, 1940 44 of 45

167. Faes, L.; Wagner, S.K.; Fu, D.J.; Liu, X.; Korot, E.; Ledsam, J.R.; Back, T.; Chopra, R.; Pontikos, N.; Kern, C. Automated deep
learning design for medical image classification by health-care professionals with no coding experience: A feasibility study. Lancet
Digit. Health 2019, 1, e232–e242. [CrossRef]

168. Al-Rubaie, M.; Chang, J.M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49–58.
[CrossRef]

169. Ghassemi, M.; Naumann, T.; Schulam, P.; Beam, A.L.; Chen, I.Y.; Ranganath, R. A review of challenges and opportunities in
machine learning for health. AMIA Summits Transl. Sci. Proc. 2020, 2020, 191. [PubMed]

170. Begoli, E.; Bhattacharya, T.; Kusnezov, D. The need for uncertainty quantification in machine-assisted medical decision making.
Nat. Mach. Intell. 2019, 1, 20–23. [CrossRef]

171. Khademi, A.; Lee, S.; Foley, D.; Honavar, V. Fairness in algorithmic decision making: An excursion through the lens of causality.
In Proceedings of the The World Wide Web Conference, Seoul, Korea, 7–11 April 2014; pp. 2907–2914.

172. Kilbertus, N.; Rojas Carulla, M.; Parascandolo, G.; Hardt, M.; Janzing, D.; Schölkopf, B. Avoiding discrimination through causal
reasoning. Adv. Neural Inf. Process. Syst. 2017, 30, 656–666.

173. Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The role of blockchain technology in telehealth and
telemedicine. Int. J. Med. Inform. 2021, 148, 104399. [CrossRef]

174. De Aguiar, E.J.; Faiçal, B.S.; Krishnamachari, B.; Ueyama, J. A survey of blockchain-based strategies for healthcare. ACM Comput.
Surv. (CSUR) 2020, 53, 1–27. [CrossRef]

175. Al-Ashmori, A.; Basri, S.B.; Dominic, P.; Capretz, L.F.; Muneer, A.; Balogun, A.O.; Gilal, A.R.; Ali, R.F. Classifications of Sustainable
Factors in Blockchain Adoption: A Literature Review and Bibliometric Analysis. Sustainability 2022, 14, 5176. [CrossRef]

176. Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J.
Intell. Netw. 2021, 2, 130–139. [CrossRef]

177. McGhin, T.; Choo, K.-K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw.
Comput. Appl. 2019, 135, 62–75. [CrossRef]

178. Varshney, A.; Garg, N.; Nagla, K.; Nair, T.; Jaiswal, S.; Yadav, S.; Aswal, D. Challenges in sensors technology for industry 4.0 for
futuristic metrological applications. MAPAN 2021, 36, 215–226. [CrossRef]

179. Farouk, A.; Alahmadi, A.; Ghose, S.; Mashatan, A. Blockchain platform for industrial healthcare: Vision and future opportunities.
Comput. Commun. 2020, 154, 223–235. [CrossRef]

180. Mamun, Q. Blockchain technology in the future of healthcare. Smart Health 2022, 23, 100223. [CrossRef]
181. Fu, J.; Wang, N.; Cai, Y. Privacy-preserving in healthcare blockchain systems based on lightweight message sharing. Sensors 2020,

20, 1898. [CrossRef]
182. Satamraju, K.P. Proof of concept of scalable integration of internet of things and blockchain in healthcare. Sensors 2020, 20, 1389.

[CrossRef]
183. Ejaz, M.; Kumar, T.; Kovacevic, I.; Ylianttila, M.; Harjula, E. Health-blockedge: Blockchain-edge framework for reliable low-latency

digital healthcare applications. Sensors 2021, 21, 2502. [CrossRef]
184. Aggarwal, S.; Kumar, N.; Alhussein, M.; Muhammad, G. Blockchain-based UAV path planning for healthcare 4.0: Current

challenges and the way ahead. IEEE Netw. 2021, 35, 20–29. [CrossRef]
185. Reddy, B.; Aithal, P. Blockchain as a disruptive technology in healthcare and financial services-A review based analysis on current

implementations. Intl Journal of Appl. Eng. and Mgmt Letters 2020, 4, 142–155.
186. Tanwar, S.; Parekh, K.; Evans, R. Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J. Inf. Secur.

Appl. 2020, 50, 102407. [CrossRef]
187. Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain technology in healthcare: A systematic review. Healthcare 2019, 7, 56.

[CrossRef]
188. Hathaliya, J.; Sharma, P.; Tanwar, S.; Gupta, R. Blockchain-based remote patient monitoring in healthcare 4.0. In Proceedings

of the 2019 IEEE 9th international conference on advanced computing (IACC), Tiruchirappalli, India, 13–14 December 2019;
pp. 87–91.

189. Jiang, S.; Cao, J.; Wu, H.; Yang, Y.; Ma, M.; He, J. Blochie: A blockchain-based platform for healthcare information exchange.
In Proceedings of the 2018 ieee international conference on smart computing (smartcomp), Taormina, Italy, 18–20 June 2018;
pp. 49–56.

190. Wang, S.; Wang, J.; Wang, X.; Qiu, T.; Yuan, Y.; Ouyang, L.; Guo, Y.; Wang, F.-Y. Blockchain-powered parallel healthcare systems
based on the ACP approach. IEEE Trans. Comput. Soc. Syst. 2018, 5, 942–950. [CrossRef]

191. Ashima, R.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Automation and manufacturing of smart materials in Additive
Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Mater. Today Proc. 2021, 45, 5081–5088.
[CrossRef]

192. Pandey, P.; Litoriya, R. Implementing healthcare services on a large scale: Challenges and remedies based on blockchain
technology. Health Policy Technol. 2020, 9, 69–78. [CrossRef]

193. Saha, A.; Amin, R.; Kunal, S.; Vollala, S.; Dwivedi, S.K. Review on “Blockchain technology based medical healthcare system with
privacy issues”. Secur. Priv. 2019, 2, e83. [CrossRef]

194. Ray, P.P.; Dash, D.; Salah, K.; Kumar, N. Blockchain for IoT-based healthcare: Background, consensus, platforms, and use cases.
IEEE Syst. J. 2020, 15, 85–94. [CrossRef]

http://doi.org/10.1016/S2589-7500(19)30108-6
http://doi.org/10.1109/MSEC.2018.2888775
http://www.ncbi.nlm.nih.gov/pubmed/32477638
http://doi.org/10.1038/s42256-018-0004-1
http://doi.org/10.1016/j.ijmedinf.2021.104399
http://doi.org/10.1145/3376915
http://doi.org/10.3390/su14095176
http://doi.org/10.1016/j.ijin.2021.09.005
http://doi.org/10.1016/j.jnca.2019.02.027
http://doi.org/10.1007/s12647-021-00453-1
http://doi.org/10.1016/j.comcom.2020.02.058
http://doi.org/10.1016/j.smhl.2021.100223
http://doi.org/10.3390/s20071898
http://doi.org/10.3390/s20051389
http://doi.org/10.3390/s21072502
http://doi.org/10.1109/MNET.011.2000069
http://doi.org/10.1016/j.jisa.2019.102407
http://doi.org/10.3390/healthcare7020056
http://doi.org/10.1109/TCSS.2018.2865526
http://doi.org/10.1016/j.matpr.2021.01.583
http://doi.org/10.1016/j.hlpt.2020.01.004
http://doi.org/10.1002/spy2.83
http://doi.org/10.1109/JSYST.2020.2963840


Healthcare 2022, 10, 1940 45 of 45

195. Soltanisehat, L.; Alizadeh, R.; Hao, H.; Choo, K.-K.R. Technical, temporal, and spatial research challenges and opportunities in
blockchain-based healthcare: A systematic literature review. IEEE Trans. Eng. Manag. 2020.

196. Munoz, D.-J.; Constantinescu, D.-A.; Asenjo, R.; Fuentes, L. Clinicappchain: A low-cost blockchain hyperledger solution for
healthcare. In Proceedings of the International Congress on Blockchain and Applications, L’Aquila, Italy, 17–19 June 2019;
pp. 36–44.

197. Saranya, R.; Murugan, A. A systematic review of enabling blockchain in healthcare system: Analysis, current status, challenges
and future direction. Mater. Today Proc. 2021. [CrossRef]

198. Subramanian, G.; Thampy, A.S.; Ugwuoke, N.V.; Ramnani, B. Crypto pharmacy–digital medicine: A mobile application integrated
with hybrid blockchain to tackle the issues in pharma supply chain. IEEE Open J. Comput. Soc. 2021, 2, 26–37. [CrossRef]

199. Nakamoto, S.; Bitcoin, A. A peer-to-peer electronic cash system. Bitcoin-URL 2008, 4, 2. Available online: https://bitcoin.org/
bitcoin.pdf (accessed on 15 June 2022).

200. Griggs, K.N.; Ossipova, O.; Kohlios, C.P.; Baccarini, A.N.; Howson, E.A.; Hayajneh, T. Healthcare blockchain system using smart
contracts for secure automated remote patient monitoring. J. Med. Syst. 2018, 42, 130. [CrossRef]

201. Falwadiya, H.; Dhingra, S. Blockchain technology adoption in government organizations: A systematic literature review. J. Glob.
Oper. Strateg. Sourc. 2022, 15, 473–501. [CrossRef]

202. Mrozek, D.; Koczur, A.; Małysiak-Mrozek, B. Fall detection in older adults with mobile IoT devices and machine learning in the
cloud and on the edge. Inf. Sci. 2020, 537, 132–147. [CrossRef]

203. Syed, L.; Jabeen, S.; Manimala, S.; Alsaeedi, A. Smart healthcare framework for ambient assisted living using IoMT and big data
analytics techniques. Future Gener. Comput. Syst. 2019, 101, 136–151. [CrossRef]

204. Vitabile, S.; Marks, M.; Stojanovic, D.; Pllana, S.; Molina, J.M.; Krzyszton, M.; Sikora, A.; Jarynowski, A.; Hosseinpour, F.; Jakobik,
A. Medical data processing and analysis for remote health and activities monitoring. In High-Performance Modelling and Simulation
for Big Data Applications; Springer: Cham, Germany, 2019; pp. 186–220.

205. Selvaraj, P.; Doraikannan, S. Privacy and security issues on wireless body area and IoT for remote healthcare monitoring. Intell.
Pervasive Comput. Syst. Smarter Healthc. 2019, 227–253. [CrossRef]

206. Kaur, J.; Verma, R.; Alharbe, N.R.; Agrawal, A.; Khan, R.A. Importance of fog computing in healthcare 4.0. In Fog Computing for
Healthcare 4.0 Environments; Springer: Berlin/Heidelberg, Germany, 2021; pp. 79–101.

207. Satpathy, S.; Mohan, P.; Das, S.; Debbarma, S. A new healthcare diagnosis system using an IoT-based fuzzy classifier with FPGA.
J. Supercomput. 2020, 76, 5849–5861. [CrossRef]

208. Vijayakumar, V.; Malathi, D.; Subramaniyaswamy, V.; Saravanan, P.; Logesh, R. Fog computing-based intelligent healthcare
system for the detection and prevention of mosquito-borne diseases. Comput. Hum. Behav. 2019, 100, 275–285. [CrossRef]

209. Yang, Y.; Nan, F.; Yang, P.; Meng, Q.; Xie, Y.; Zhang, D.; Muhammad, K. GAN-based semi-supervised learning approach for
clinical decision support in health-IoT platform. IEEE Access 2019, 7, 8048–8057. [CrossRef]

210. Singh, P.; Kaur, R. An integrated fog and Artificial Intelligence smart health framework to predict and prevent COVID-19. Glob.
Transit. 2020, 2, 283–292. [CrossRef]

http://doi.org/10.1016/j.matpr.2021.07.105
http://doi.org/10.1109/OJCS.2021.3049330
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.1007/s10916-018-0982-x
http://doi.org/10.1108/JGOSS-09-2021-0079
http://doi.org/10.1016/j.ins.2020.05.070
http://doi.org/10.1016/j.future.2019.06.004
http://doi.org/10.1002/9781119439004.ch10
http://doi.org/10.1007/s11227-019-03013-2
http://doi.org/10.1016/j.chb.2018.12.009
http://doi.org/10.1109/ACCESS.2018.2888816
http://doi.org/10.1016/j.glt.2020.11.002

	Introduction 
	Related Works 
	Related Studies on the Application of Sensors, IoT, AI, and Blockchain Technologies in HMS 
	Comparison of Existing Literature with This Study and Motivation 

	Taxonomy 
	Methodology 
	Inclusion and Exclusion Criteria 
	Selection of Keywords 
	Inclusion 
	Exclusion 

	Quality Assessment and Data Extraction 

	Sensors 
	Wearable Sensors 
	Ambient Sensors 
	Commonly Deployed Sensors in Healthcare 
	Blood Pressure (BP) Sensor 
	Body Temperature (BT) Sensor 
	Electrocardiography (ECG) Sensor 
	Electroencephalogram (EEG) Sensor 
	Pulse Oximeter 
	Heart Rate (HR) Monitor 
	Motion and Activity Sensor 

	Challenges and Open Issues of Sensors in Healthcare 
	Data Collection 
	Data Transmission 
	Security and Privacy 
	User Acceptance 
	Scalability and Interoperability 
	Resource Constraints 


	IoT Framework 
	IoT Layers 
	Actuators 
	Development Boards 
	IoT in Healthcare 
	Challenges and Open Issues of IoT in Healthcare 
	Data Management 
	Scalability 
	Security and Privacy 
	Interoperability 
	Mobility 


	Artificial Intelligence 
	Machine Learning (ML) 
	Supervised Machine Learning 
	Unsupervised Machine Learning 
	Semi-Supervised Machine Learning 

	Application of Sensors and IoT with Machine Learning in HMS 
	Application of Sensors and IoT with Supervised ML in HMS 
	Application of Sensors and IoT with Unsupervised ML in HMS 
	Application of Sensors and IoT with Semi-Supervised ML in HMS 

	Big Data Analytics (BDA) 
	Data Mining in Healthcare 
	Information Retrieval in Healthcare 
	Application of BDA in HMS 

	Challenges and Open Issues of AI in HMS 
	Size, Quality and Temporality of Data 
	Field Complexity 
	Ethics and Policy Issues 
	Safety and Privacy Issues 
	Causality Problem 


	Blockchain 
	Need for Blockchain in Healthcare 
	Application of Blockchain in Healthcare 
	Use-Cases of Blockchain in HMS 
	A seamless HMS 
	Electronic Health Record (EHR) 
	Healthcare Payments 
	Pharmaceutical Supply Chains 

	Challenges and Open Issues of Blockchain in Healthcare 
	Cost of Acceptance and Adoption 
	Limited Blockchain Experts 
	Regulations, Policies and Government 


	Open Research Problems on Emerging Technologies in Healthcare Delivery 
	Data Acquisition 
	Handling Data Streams 
	Security 
	Privacy and Ethics 
	Explainable AI 
	Underdeveloped Countries 

	Conclusions 
	References

