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Abstract: (1) Background: AI-based solutions could become crucial for the prediction of pregnancy
disorders and complications. This study investigated the evidence for applying artificial intelli-
gence methods in obstetric pregnancy risk assessment and adverse pregnancy outcome prediction.
(2) Methods: Authors screened the following databases: Pubmed/MEDLINE, Web of Science,
Cochrane Library, EMBASE, and Google Scholar. This study included all the evaluative studies
comparing artificial intelligence methods in predicting adverse pregnancy outcomes. The PROS-
PERO ID number is CRD42020178944, and the study protocol was published before this publication.
(3) Results: AI application was found in nine groups: general pregnancy risk assessment, prenatal
diagnosis, pregnancy hypertension disorders, fetal growth, stillbirth, gestational diabetes, preterm
deliveries, delivery route, and others. According to this systematic review, the best artificial intelli-
gence application for assessing medical conditions is ANN methods. The average accuracy of ANN
methods was established to be around 80–90%. (4) Conclusions: The application of AI methods
as a digital software can help medical practitioners in their everyday practice during pregnancy
risk assessment. Based on published studies, models that used ANN methods could be applied
in APO prediction. Nevertheless, further studies could identify new methods with an even better
prediction potential.

Keywords: artificial intelligence (AI); artificial neuronal network (ANN); pregnancy complications;
perinatology

1. Introduction

The first mentions of artificial intelligence (AI) appeared in ancient Greek mythology.
In the 15th century, Leonardo Da Vinci crafted an impressive mechanical knight that could
move its arms, sit, and twist its head. However, the actual field of artificial intelligence
research was founded in 1956 [1].

Artificial intelligence is a science and engineering field that deals with computer-
driven mechanisms or machines that use computer power, memory, and large amounts of
data. It has been handling learning tasks by creating models of intelligent behavior with the
lowest possible human interruption. The appliance of artificial intelligence in medicine can
be divided into two main branches: virtual and physical. The virtual branch is represented
by machine learning (ML) which is characterized by computer algorithms that can enhance
learning through experience [1]. In contrast, the physical branch consists of mechanical
devices such as medical equipment or highly advanced robots [2].

Many complications of pregnancy cannot be directly treated once they occur. Therefore,
perinatal medicine predicts high-risk groups and applies interventions to minimize adverse
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perinatal outcomes [3]. Examples of such interventions are aspirin for preeclampsia,
progesterone for preterm birth, diet and insulin for diabetes, and growth assessment for
stillbirth [4–9]. Incorporating AI in risk assessment and adverse pregnancy outcome (APO)
prediction is an opportunity for present-day perinatal medicine. The development of
prediction models and effective screening methods for APO could improve diagnostic and
therapeutic decisions and significantly impact women’s and children’s well-being. The
routine implementation of AI could even further improve medical care [10–13].

Factors such as BMI, maternal hypertension, CTG, and gestational diabetes mellitus
can help predict fetal disorders, the route of delivery, preterm birth, and other risk factors for
pregnant women and fetuses. In addition, maternal biochemical markers, such as β-human
chorionic gonadotrophin (β-hCG), pregnancy-associated plasma protein A (PAPP-A), and
placental growth factor (PLGF), are used to predict aneuploidies or other fetal and placental
dysfunctions [14,15]. Artificial neural networks (ANNs) are the most popular form of
AI applied in medicine. ANNs are computer analytic models inspired by the animal
nervous system. An ANN is composed of interconnected computer processors called
‘neurons’ which can simultaneously perform data calculations to assess the occurrence
of an outcome based on given factors. ANNs can learn and analyze imprecise pieces of
information, nonlinear data, and previous examples. These abilities allow for the analysis
of large amounts of medical data and help in diagnostic and treatment decisions. They
progressively move towards plastic neural systems capable of learning through evolution
by interacting with the environment [16]. The other most popular AI techniques are ML, the
decision tree (DT), the support vector machine (SVM), and the random forest (RF) [17–22].
Every AI method should be compared to the best prediction statistic method which is
named logistic regression (LR), or, to be precise, a distinguished form of multiple linear
regression—multivariate logistic regression (MLR). MLR has the same aim as all model-
building techniques: to describe the relationship between predictors and outcomes [23–25].

There are no published studies comparing the usage of artificial intelligence methods
to predict perinatology complication occurrences. This study investigated the evidence for
applying artificial intelligence methods in obstetric pregnancy risk assessment and adverse
pregnancy outcome prediction.

2. Materials and Methods
2.1. Study Design

The current systematic review was performed according to the systematic reviews and
meta-analyses (PRISMA) guidelines and was presented in Table S1 [26]. The systematic
review protocol was registered in PROSPERO with ID-number CRD42020178944 and was
published beforehand [27].

2.2. Search Strategy

Authors screened the following databases using the search strategy presented in Box 1:
Pubmed/MEDLINE, Web of Science, Cochrane Library, and EMBASE. In addition, the
electronic database search was supplemented by searching Google Scholar.

Box 1. Search strategy.

(pregnant OR pregnancy OR prepartum OR prenatal OR gestation OR prelabor OR maternal) AND
(artificial neural networks OR artificial intelligence OR machine learning) AND (pregnancy risk)

All searches were conducted on 27 May 2022, with languages restricted to English,
German, or Polish and with no publication-time limits. Additionally, references of all
included studies were hand-searched for additional relevant articles.

2.3. Inclusion Criteria

All types of evaluative study designs were included and assessed. Two reviewers (SF
and MP) independently screened the studies by the title, abstract, and full text. Studies
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that met the selection criteria were included. The reference lists of the included studies
were additionally screened. Every included study was assessed (0 = not relevant, 1 =
possibly relevant, and 2 = very relevant). Only publications that scored at least 1 point
were included in the study. Any disagreement was discussed and resolved by the third
researcher (AK).

2.4. Data Extraction

PI(E)CO question was “Artificial intelligence methods in the screening for pregnancy
risk and adverse pregnancy outcomes in pregnant women.” Population (P) was pregnant
women with high-risk pregnancies (with named complications of pregnancies). Interven-
tion (E) applied artificial intelligence methods to evaluate pregnancy risk and to screen for
APO. For comparison, (C) pregnant women with low-risk pregnancies were included. The
outcome (O) was the prediction value of the studied artificial intelligence method. Studies
(S) included in the analyses were retrospective or prospective trials with the unaffected
population as a control.

The PRISMA diagram was made according to Reporting Items for Systematic Reviews
and Meta-Analyses. The PRISMA flow chart is shown in Figure 1 [28].
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Figure 1. PRISMA systematic-review flow diagram.

2.5. Quality Assessment and Risk of Bias

The risk of bias was assessed independently by two authors (SF and MP) using the
Newcastle–Ottawa scale [29]. The third reviewer (AK) resolved apparent discrepancies in
the selection process. In general, the studies included were of moderate to high quality.
The selection process is shown in Table 1.

2.6. Synthesis of Results

Due to the heterogeneity of the included studies, there was no possibility of performing
a quantitative synthesis. Nevertheless, all prediction values of the included studies’ AI
methods were divided into groups according to pregnancy outcomes and were assessed.
Results were summarized in Tables 2–10.
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Table 1. The Newcastle–Ottawa scale for quality assessment of included studies.
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Table 2. Characteristics of included studies on general pregnancy risk assessment.

Study Country Sample Size Population Model Knowledge Source for
AI Type of Risk Prediction Value of

AI/AUC Prediction Value of LR

Gorthi et al. (2009) [30] India 240

A prospectively
collected sample of

pregnant women was
used to assess the
practical model.

There were 200 training
cases and 40 test cases.

Knowledge-based
system Literature Risk classification Training 93.4 %,

test 82.5% NA

Umoh and Nyoho (2015) [31] Nigeria 30

Pregnant women (aged
25–40) were selected to

test the
theoretical model.

Intelligent
fuzzy framework Literature High-risk pregnancy Not assessed NA

Fernandes et al. (2017) [32] Brazil 1380

Retrospective
validation of the

documentation of
pregnant women from
the High-Risk Prenatal

sector at MEJC was
used to test the

theoretical model.

Knowledge-based
system Predefined risk factors Risk reclassification Not assessed NA

Chaminda and Sharmilan
(2016) [33] Sri Lanka 117

Pregnant women of
different ages and

lifestyles were used.
(Unclear if

retrospective or
prospective.)

There were 93 training
cases and

24 testing cases.

Hybrid system:
neuronal network

and naïve
Bayes algorithm

Predefined risk factors Pregnancy risk
assessment

ANN 80%,
naïve Bayes 70%,

novel hybrid
approach 86%

NA

Moreira et al. (2018) [34]
Brazil, Portugal,

Saudi Arabia,
India, Russia

100

Parturient women
diagnosed with a

hypertensive disorder
during pregnancy were

used.
All prospectively

collected cases were
used to test the model.

Artificial neural
networks (ANN) Patient’s history Hypertensive disorder

during pregnancy Hybrid algorithm 93% NA
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3. Results

AI has been applied to many different aspects of perinatal medicine. The included
studies described AI applications in predicting general pregnancy risk characteristics,
prenatal diagnoses, pregnancy hypertension disorder, fetal growth, stillbirth, gestational
diabetes, preterm deliveries, the delivery route, and other conditions [30–69,69–79]. The
studies were divided into nine groups using the predictive value of the AI methods.
Tables 3–10 present the main characteristics of the included studies. For each group, the
most robust method was identified.

The first group included five prediction studies assessing the general pregnancy risk
(Table 2) [30–34].

There were various predictors used in the model construction. The most relevant
were the clinical parameters and existing health conditions of the mother (maternal and
gestational age; gravidity and parity; BMI, weight gain; and life parameters such as blood
pressure, lifestyle, nutrition, etc.), pregnancy-related complications (threatened preterm
delivery, bleeding in pregnancy, prepregnancy and gestational diabetes, hypertensive dis-
order spectrum, HELLP syndrome, cholestasis and other liver disorders in pregnancy,
thrombophilia, autoimmune diseases, an age higher than 35 years, multiple pregnancies,
and an interval of 10 years or more between pregnancies), laboratory parameters (albumin-
uria, hyperglycemia, leucocythemia, etc.), fetal monitoring parameters (basal fetal heart
rate, variability, and the occurrence of accelerations or decelerations), and Ultrasound and
Doppler parameters (fetal movement; the growth of the fetus; uterine, cerebral, and umbili-
cal fetal Doppler signals; and the amniotic fluid index). However, many other variables
might be used in order to measure the overall risk of a pregnancy. This would increase
the model’s representativeness and accuracy, but it could be difficult to determine how
effective the model would be.

Classification and regression trees (CART) [30], fuzzy logic [31], the teletech architec-
ture ILITIA [32], ANNs, and naïve Bayes were used [34]. CART had the best predictive
value (accuracy of 93.4% in the training group and 82.5% in the tested group), and naïve
Bayes had the worst accuracy with a score of 70% [34]. Nevertheless, the observed differ-
ences between all the methods were minimal.

The second group included four articles about the prenatal diagnosis of chromosomal
abnormalities using ANNs and binary classification models such as the averaged percep-
tron, the boosted DT, the Bayes point machine, the decision forest, the decision jungle, the
locally deep SVM, LR, ANNs, and the SVM (Table 3) [35–38].

Table 3. Characteristics of included studies on prenatal diagnosis of chromosomal abnormalities.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value

of AI/AUC
Prediction Value

of LR

Neocleous et al.
(2016) [36]

United Kingdom,
Netherlands, Cyprus 51,208

Pregnant women with euploid
and aneuploid fetuses were used.

There was a 3-fold cross
validation of the system. This was
done by randomly dividing cases

into training and
evaluation groups.

ANN Patient’s history Aneuploidies 21st trisomy 100%,
euploidy 96.1% NA

Neocleous et al.
(2017) [35]

United Kingdom,
Netherlands, Cyprus 123,329

There were 122362 euploid cases
and 967 aneuploid cases.

There were retrospective cases of
pregnant women. They were split
into 70% training cases and 30%

validation cases.

ANN Patient’s history Aneuploidies
21st trisomy 100%,

other
aneuploidies > 80%

NA

Neocleous et al.
(2018) [37]

United Kingdom,
Netherlands, Cyprus 72,654

There was a prospective sample
of pregnant women at
11–13 weeks gestation.

An amount of 70% of training sets
and 30% of test sets were

randomly chosen.

ANN Patient’s history Aneuploidies
21st trisomy 94.2%,
other aneuploidies

79.5%
NA

Akbulut et al. (2018)
[38]

Turkey,
United States 97

There was a prospective analysis
of pregnant women (96 singletons

and 1 twin).
There were 97 training cases and

16 testing cases.

Decision Forest (DF)

Maternal
questionnaire,
specialist, and

patient’s history.

Congenital
anomalies

DF during
training 89.5%,

DF during
testing 87.5%

NA

A well-known chromosomal abnormality prediction was built in the AI model using
ultrasound indicators (nuchal translucency, crown-rump length, and the presence of the
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nasal bone) and pregnancy-associated plasma protein A (PAPP-A) with free β-hCG. All
were obtained between the 9th + 3 and the 11th week + 6 days of gestation.

The best method was the Decision Forest model, which achieved the highest accuracy
of 89.5%, with an almost 100% detection rate of 21st trisomy [38].

The third group included five articles about pregnancy hypertension characteristics
(Table 4) [39–43]. The methods used in this group were ANNs [41], neuro-fuzzy machine
learning techniques [40], MLR [39,43], and other ML techniques such as LR, the DT model,
the naïve Bayes classification, the SVM, the RF algorithm, and the stochastic gradient
boosting method [42].

Table 4. Characteristics of included studies on hypertension.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value

of AI/AUC
Prediction Value

of LR

Robinson et al.
(2010) [39] United States 608

There was a retrospective
analysis of patients with

preeclampsia (after
induction of labor,

1997–2007, 195 cesarean
sections, 413 vaginal

deliveries).
There was training of 304
patients (50%) and testing

of 152 patients (25%).

ANN Patient’s history Preeclampsia AUC (area under the
ROC curve) 0.75 AUC 0.74

Moreira et al. (2018)
[40]

Brazil, Portugal,
Russia, Saudi Arabia 205

There were 205 women
with a hypertensive

disorder during pregnancy
and 7 women with HELLP

syndrome.
All records were used to

test the model.

Neuro-fuzzy model Patient’s
history, experts HELLP syndrome AUC 0.685 NA

Nair et al. (2018) [41] United States 38

There were 38 pregnant
women (19 with PE and 19

normotensives)
It was split into 85 training

cases and
15% testing cases.

ANN Patient’s history Preeclampsia AUC 0.908 NA

Jhee et al. (2019) [42] Korea 11,006

There was a prospective
analysis of pregnant

women.
It was split into 70% (n = 10
058) training cases and 30%

(n = 474) testing cases.

ML—decision tree
(DT),

naïve Bayes
classification (NBC),

support vector
machine (SVM), RF,
stochastic gradient

boosting (SGB)

Patient’s history Preeclampsia

DT 84.7%,
NBC 89.9%,
SVM 89.2%,
RF 92.3%,

SGB 97.3%

86.2%

Mello et al. (2001)
[43] Italy 303

There was a prospective
analysis of preconception

enrollment and,
consequently, pregnant
women (spontaneous

conception, single
pregnancies, 76–25.1% with
pregnancy hypertension in

III trimester)—patients
were postpartum

controlled.
There were 187 training

cases and 116 testing cases.

ANN and
multivariate logistic

regression (MLR)
Patient’s history Preeclampsia

and FGR

AUC 0.952,
positive predictive

value 86.2%,
negative predictive

value 95.5%

AUC 0.962,
positive predictive

value 92%,
negative predictive

value 93.4%

For pregnancy hypertension prediction, the following risk factors were assessed: ma-
ternal age at the time of delivery, gestational age at delivery; maternal race; parity; neonatal
birth weight; prepregnancy BMI; cervical ripening during induction; fetal growth restric-
tion; blood pressure; maternal medical history of hypertension, diabetes, and previous
preeclampsia; obstetrical and social histories; medications prescribed during pregnancy;
and laboratory data (blood urea nitrogen, serum creatinine, spot urine protein-to-creatinine
ratio, urine albumin-to-creatinine ratio, hemoglobin, fasting blood glucose, serum albumin,
uric acid, total bilirubin, aspartate transaminase, alanine transaminase, total cholesterol,
triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol).

ML techniques showed remarkable results. The stochastic gradient boosting model
had the best prediction performance, with an accuracy of 97.3% and a false-positive rate
of 0.9%. ANNs and MLR showed an area under the ROC curve of 0.952 as well as 86.2%
sensitivity and 95.4% specificity for ANNs.

The fourth group included four articles about the prediction of fetal growth restriction
(FGR) (Table 5) [44–47].
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Table 5. Characteristics of included studies on fetal growth.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value

of AI/AUC
Prediction

Value of LR

Li et al. (2016) [44] China 215,568

There was a prospective analysis
of pregnant women (13,258 cases

of SGA and 202310 cases of
non-SGA).

It was split into 90% training
cases and 10% testing cases.
It was unclear if they were

prospective or retrospective.

ML—support vector
machine (SVM),

random forest (RF),
logistic regression

(LR), and sparse LR

Patient’s history Fetal growth
abnormalities

SVM 92.4%,
C4.5 43.7%,
RF 61.2%,

LR Sparse 94.5%,
AUC 0.6

93%,
AUC 0.6

Kuhle et al. (2018) [45] Canada 30,705

There was a retrospective analysis
of pregnant women after 26
gestation weeks (SGA 7.9%,

LGA 13.5%).
It was split into 80% training
cases and 20% testing cases.

Neural network
models: NNET

package
Patient’s history Fetal growth

abnormalities AUC 0.60–0.75 84.7%,
0.66

Moreira et al. (2019) [46] Brazil NA

There was a prospective analysis
of pregnant women (Fetal
birth-weight estimation in

high-risk pregnancies).
It was not possible to assess the

size of the training and
test groups.

Machine learning
(ML)—bagged tree NA Fetal Growth 84.9%,

AUC 0.636 NA

Naimi et al. (2018) [47] United States 18,757

There was a retrospective analysis
of pregnant women (240 high-risk

pregnancies).
All cases were used to test

the model.

ML Patient’s history Fetal Growth Not assessed NA

The three most important factors for SGA prediction were gestational weight gain, ma-
ternal smoking, and prior low birth weight (LBW) infants. Prepregnancy BMI, gestational
weight growth, and a history of deliveries of infants weighing more than 4080 g were the
primary predictors of LGA.

Methods such as the SVM, the RF, LR, sparse LR models, linear and quantile regression,
Bayesian additive regression trees, generalized boosted models, and the ML technique
called the bagged tree were used [44–47]. The SGA bagged tree case had a prediction value
of 84.9% and an area under the receiver operating characteristic curve of 0.636 [46]. The
highest accuracy was achieved by the SVM, with a prediction score of 90.7% and an AUC
of 0.588 [44].

The next group of examined articles included four studies about stillbirth prediction
(Table 6) [48–51]. MLR [48], artificial intelligence analysis of time-lapse (TLM) embryo
images [49], LR, ANNs, the gradient boosting DT [50], regularized logistic regression,
the DT based on classification and regression trees, the RF, extreme gradient boosting
(XGBoost), and the multilayer perceptron neural network were used in those studies [51].

Table 6. Characteristics of included studies on stillbirth.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value

of AI/AUC
Prediction

Value of LR

Kayode et al. (2016) [48]

Nigeria,
Netherlands, Ghana,

South
Africa

6956

There was a retrospective
analysis of pregnant

women (6573 well-ended
pregnancies and 443

stillbirths).
All cases were used as

testing cases.

Multivariable
logistic regression Patient’s history Stillbirth

C-statistic basic
model 80%

Extended model 82%
NA

Harihara et al. (2019) [49]

United
Kingdom, Spain,

Italy, Brazil,
United States

3412

Images of the embryos
(1756 newborns, 1656

miscarriages) were used.
A total of 63% (n = 2140) of
retrospective lapse images
of blastocysts with known

live-birth outcomes
following a single embryo
transfer were used to train
the model. An amount of

15.5% (n = 536) of the
images were used in

validation.
A total of 21.5% (n = 736) of

prospective cases were
used to test the model.

Convolutional
neural network

(CNN)
Patient’s history Miscarriage 77% NA
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Table 6. Cont.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value of

AI/AUC
Prediction

Value of LR

Koivu et al. (2020) [50] Finland 16,340 661

Prospectively collected
normal pregnancies

(965,504 preterm births,
8061 early stillbirths, and

8420 late stillbirths)
were used.

There were 9,004,902
training cases and

1,292,847 testing cases.

LR, ANNs, deep NN
(neuronal network),

SELU N (scaled
exponential linear

units network),
LGBM (The lightgun

gradient boosting
decision tree)

Patient’s history
Early and late

stillbirth,
preterm delivery

Early stillbirth AUC
Deep NN 0.73,
SELU N 0.75,
LGBM 0.75;

Late stillbirth AUC
Deep NN 0.57,

SELU N 0.59, LGBM 0.6;
Preterm delivery AUC

Deep NN 0.66,
SELU N 0.67,
LGBM 0.67

Early stillbirth
AUC 0.73,

Late stillbirth
AUC 0.58,
Preterm
delivery

AUC 0.64

Malacova et al. (2020) [51] Australia, Norway,
United States 467,365

There was a retrospective
analysis of pregnant

women (7788 stillbirths).
All cases were used for

testing the existing models.

LR, decision trees
(DT) and regression
trees, random forest

(RF), extreme
gradient boosting
(XGBoost), and a

multilayer
perceptron

neural network

Patient’s history Stillbirth

AUCs 0.59–0.84,
DT 0.59–0.82,
RF 0.594–0.84,

XGBoost
0.596–0.84,

multilayer perceptron
0.595–0.84

AUCs
0.602–0.83

Social predictors (maternal age, parity, education, occupation, ethnicity, place of res-
idence, previous fetal loss, bleeding during pregnancy, maternal BMI, number of prior
caesarean sections, multiple pregnancies, child’s gender, and fetal growth rate) and co-
morbid conditions (hypertension disorder spectrum, diabetes, sickle cell disease, renal
disorders, thyroid dysfunction, and venereal diseases) were used to estimate the risk
of miscarriages. MLR showed excellent results with a C-statistic basic model of 80% of
stillbirth predictions.

The sixth group included seven articles about gestational diabetes prediction
(Table 7) [52–58]. The methods used were ANNs, LR, ML methods, the radial basis function
network (RBFNetwork), the MLP, the DT, and the SVM [52–58].

Other factors such as the mother’s age, BMI, triceps skin-fold thickness, plasma
glucose concentration at 2 h in an oral glucose tolerance test, 2 h serum insulin level,
and diabetes degree function were particularly effective in predicting gestational diabetes.
The ML method resulted in a high accuracy even at pregnancy initiation with 0.85 ROC,
substantially outperforming a baseline risk score of 0.68 ROC [52]. The usage of the
RBFNetwork also showed great results with a precision of 78.5%, an F-Measure of 78.6%,
an ROC area of 0.839, and a Kappa statistic of 0.509 [53]. Therefore, these two models seem
to be the best fit for the prediction of GDM [52,53].
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Table 7. Characteristics of included studies on gestational diabetes.

Study Country Sample Size Population Model Knowledge Source
for AI Type of Risk Prediction Value

of AI/AUC Prediction Value of LR

Shanker et al. (1996) [55] United States 768

Pima Indian pregnant
women (268 with diabetes)

were used.
There were 576 training

cases (378 patients without
diabetes and 198 patients

with diabetes) and
192 test cases.

ANN Patient’s history GDM 77.6% 79.2%

Polak and Mendyk (2004) [56] Poland 2551

There was a retrospective
analysis of pregnant women
(2460 without GDM, 91 with

GDM)
The randomly chosen 90%
were used for training, and

the remaining 10% were
used to test the model.

ANN Patient’s history GDM 70% 56.3%

Artzi et al. (2020) [52]. Israel 588,622

A retrospectively collected
cohort of pregnant women
(I group—46,002 women

from Jerusalem;
II group—8540 women from

the aforementioned area)
was used.

There were 2355 training
cases (295 at the start of the
pregnancy, 2060 generated
by different processes). The

hold-out/external
validation n = 82678.

ML Patient’s history GDM
AUC 0.85,

AUC 0.80 (simpler
model)

NA

Moreira et al. (2018) [53] USA (Gila and Salt
rivers) 394

A prospectively collected
cohort of pregnant women

(the Pima Indians) was used.
All cases were used to test

the model.

ANN—multilayer
perceptron (MLP)

Literature,
patient’s history GDM

Precision 0.785,
F-measure 0.786,

AUC 0.839
NA

Nanda et al. (2011) [58] United States 11,464

There was a retrospective
analysis of pregnant women
(297 (2.6%) with GDM and

11,167 without GDM).
All cases were used to test

the model.

Knowledge-based
system Patient’s history GDM 61.6% NA

Kang et al. (2019) [57] China, United States 1891

There was a retrospective
analysis of pregnant women
with GDM (14.2%, n = 268)

that had macrosomia.
There were 1702 training
cases and 189 test cases.

Decision tree (DT),
support vector

machine (SVM), and
ANN

Patient’s history Macrosomia in patients
with GDM

DT training 87.14, DT
test 86.25,

ANN training 86.54,
ANN test 85.52,

SMV training 86.23,
SMV test 86.09

Training 86.44,
test 86.20
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The seventh group included fourteen studies about preterm delivery prediction
(Table 8) [59–72]. ANNs [59], cross-validated regressions [60], the RF classifier, the rule-
based classifier, penalized logistic regression [61], the synthetic minority oversampling
technique [63], LR, classification and regression trees (CART), the SVM, the Bayesian classi-
fier [64], the back-propagation neural network [65], the system for mobile health SVM [72],
deep learning [66], data mining, and the feed-forward back-propagation network were
used in all of these studies [67–71].

Table 8. Characteristics of included studies on preterm delivery.

Study Country Sample
Size Population Model Knowledge

Source for AI Type of Risk
Prediction
Value of
AI/AUC

Prediction
Value of LR

Pourahmad
et al. (2017)

[59]
Iran 1102

There was a
retrospective analysis
of pregnant women

(1047 (95%) singleton
pregnancies, 52 (4.7%)

employed women,
24.3% of fetuses with

PTB).
All cases were used to

test the model.

ANN Patient’s
history

Preterm
delivery (PTB),

low birth
weight (LBW)

For PTB 81.4%
(AUC 0.78),

for LBW 87.8%
(AUC 0.79)

NA

Weber et al.
(2018) [60]

United
States 336,214

There was a
retrospective analysis
of pregnant women

(singleton
pregnancies,

nulliparous, NH
black (54,084), and

NH white (282,130)).
The original sample

was partitioned into a
training set to fit the
model and a testing
set to evaluate the
goodness of the fit.

ML Patient’s
history

Preterm
delivery AUC 0.67 NA

Idowu et al.
(2015) [61]

United
Kingdom 300

There was an analysis
of pregnant women

(262 delivered at term
and 38 prematurely).
(NA if retrospective

or prospective.)
All cases were used
as a testing group.

ML—RF Patient’s
history

Preterm
delivery AUC 0.94 NA

Woolery and
Jerzy (1994)

[62]

United
States 9419

A population of
pregnant women was

used for testing the
model.

(NA if retrospective
or prospective.)

ML
Patient’s
history

(database)

Preterm
delivery 53–88% NA

Fergus et al.
(2013) [63]

United
Kingdom 300

There was a
retrospective analysis

of pregnancies (38
ended preterm, and

262 were term
deliveries).

A total of 80% of the
whole dataset was

designated for
training, and the

remaining 20% was
for testing.

ML Patient’s
history

Preterm
delivery AUC 0.95 NA
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Table 8. Cont.

Study Country Sample
Size Population Model Knowledge

Source for AI Type of Risk
Prediction
Value of
AI/AUC

Prediction
Value of LR

Courtney et al.
(2008) [64]

United
States 73,040

There was a
retrospective analysis
of pregnant women.

All cases were used to
test the method.

Matlab®

Neuronal
Networks

package and
the support

vector
machine
(SVM)

classifier

Patient’s
history,
medical
records

Preterm
delivery, low
birth weight

AUC neural
networks 0.57,

AUC SVM
0.57,

AUC Bayesian
classifiers 0.59,

AUC CART
0.56

AUC 0.605

Nodelman
et al. (2020)

[65]

United
States 3001

There was a
retrospective analysis
of pregnant women

(10.3% preterm
deliveries).

There was a total of
2038 training cases

and 963 testing cases.

ANN Patient’s
history

Preterm
delivery

87.3% (95%CI:
85.1–89.4%) NA

Moreira et al.
(2018) [72]

Brazil,
Portugal,

Spain
205

Pregnant women
with a hypertensive

disorder during
pregnancy were

collected
retrospectively (12%

PTB).
Patients were divided

into ten subsets of
equal sizes. Then,

each subset was used
once for testing, and
the remaining were

used for training.
(NA if retrospective

or prospective.)

Data mining,
ML—support

vector
machine
(SVM).

Patient’s
history

Preterm
delivery in

patients with
hypertensive

disorder

82.1%
(AUC 0.785) NA

Bahado-Singh
et al. (2019)

[66]

United
States 32

We retrospectively
collected a cohort of

pregnant women
(42.3% (n = 11)

patients delivered
≥ 34 weeks, 57.7% (n
= 15) delivered < 34

weeks).
We randomly split

the combined omics
sample data into 80%
training set and a 20%

test set.

ML Patient’s
history

Preterm
delivery AUC 0.875 NA

Lee and Ahn
(2019) [67] Korea 596

A cohort of pregnant
women was collected

retrospectively.
There were 298

training cases and 298
validation cases.

ANN Patient’s
history

Preterm
delivery

MLR 0.918,
Decision Tree

0.8328,
naïve Bayes

0.1115
RF 0.8918

SVM 0.9148

NA

Goodwin et al.
(2001) [68]

United
States 19,970

Pregnant women (105
(1%) American Indian

or Alaskan native;
116 (1%) Asian or
Pacific Islander;

10,901 (55%) Black
not of Hispanic
Origin; 519 (3%)

Hispanic; 7837 (39%)
White not of Hispanic

origin; 492 (2%)
Unknown) were used

(probably
retrospectively

collected).
All cases were used to

test the model.

Data Mining Patient’s
history

Preterm
delivery

ROC neural
net 0.64,
custom

classifier
software 0.72

0.66
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Table 8. Cont.

Study Country Sample
Size Population Model Knowledge

Source for AI Type of Risk
Prediction
Value of
AI/AUC

Prediction
Value of LR

Prema and
Pushpalatha
(2019) [69]

India 124

Preterm birth in
pregnant women

with diabetes
mellitus or

gestational diabetes
mellitus was used.

All cases were used to
test the model.

ML, support
vector

machine
(SVM)

Patient’s
history

Preterm
delivery, DM,

GDM
86% NA

Elaveyini et al.
(2011) [70] India 50

A prospective cohort
of pregnant women

was used.
There were 40

training cases and 10
testing cases.

Neural
networks

Patient’s
history

Preterm
delivery 70% NA

Catley et al.
(2006) [71] Canada 19710

A prospective cohort
of pregnant women,
collected before 23
weeks of gestation,

was used.
They were split into
2/3 training cases
and 1/3 test cases.

ANNs Patient’s
history

Preterm
delivery

Eight-node
high-risk PTB

model 0.73
four-node

high-risk PTB
model with

free-flow
oxygen cases
removed 0.72

NA

Predictors such as first trimester bleeding, preterm rupture of the membranes, poly-
hydramnios, oligohydramnios, the occurrence of infections, close spacing between preg-
nancies, histories of preterm delivery, and miscarriages played a crucial role in preterm
delivery despite the frequently used clinical evaluation of patients and their comorbidities.

Out of all AI methods used, the RF performed well, with a sensitivity of 97%, a
specificity of 85%, an area under the ROC curve of 94%, and a mean square error rate of
14% [61]. Prediction values for most of the studies were similar.

The eighth group includes two articles about predicting the delivery route (Table 9) [73,74].
The DT [73] and the backpropagation learning algorithm (ANN method) [74] were used.

Table 9. Characteristics of included studies on delivery routes.

Study Country Sample
Size Population Model Knowledge

Source for AI Type of Risk
Prediction
Value of
AI/AUC

Prediction
Value of LR

Beksac et al.
(1996) [74] Turkey 7398

There were
retrospective analyses

of pregnancies.
There were 4451

(40.2%) training cases
and 2947 (39.8%)

testing cases.

ANN Literature Caesarian
section rate

Positive
predictive

value 81.8%,
negative

predictive
value 93.1%

NA

Caruana et al.
(2003) [73]

United
States 22,175

A sample of pregnant
women was used to

test the model
(probably

retrospective).

MML decision
trees

Patient’s
history

Caesarian
Section

Test 87%
(AUC 0.9233) NA

The predictors included maternal age, gravida, parity, gestational age at delivery, need
for and kind of labor induction, baby’s presentation at birth, and maternal comorbidi-
ties. Again, ANNs performed better than ML, with a 97.5% specificity and a sensitivity
of 60.9% [74].

The last group consists of five studies predicting other aspects of perinatal care
(Table 10) [75–79].
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Table 10. Characteristics of other included studies.

Study Country Sample
Size Population Model Knowledge

Source for AI Type of Risk
Prediction
Value of
AI/AUC

Prediction
Value of LR

Paydar et al.
(2017) [75] Iran 149

There was a
retrospective analysis

across pregnant women
with systemic lupus

erythematosus.
For MLP (neuronal

network-multi-layer
perceptron), 70% were

training cases, 15% were
validation cases, and

15% were testing data.
For RBF (radial basis
function), 70% were

training cases and 30%
were testing data.

CDSS (MLP,
RBF)

Literature,
specialist,
patient’s
history

High-risk
pregnancy-
(with SLE)

RBF 75.16%,
MLP 90.6% NA

Li et al. (2017)
[76] China 358

There was a
case-control study of
pregnant women (119

fetuses with congenital
heart disease and 239

controls).
It was split into 85%, or
n = 300 (101 cases and
199 controls), training

cases and
15%, or n = 58 (18 cases

and 40 controls),
test cases.

ANN − ANN
+ BPNN (back-

propagation
neural

network)

Patient’s
history,

specialist

Congenital
heart disease

Training 91%,
testing 86% NA

Grossi et al.
(2016) [77] Italy 137

There was a
retrospective analysis of

pregnant women (45
mothers of autistic

children and 68 mothers
of typically developing
children). A total of 24
siblings of 19 autistic

children were an
internal control group.
All cases were used to

test the model.

Specialized
ANNs (ANNs)

Interview of
the mothers,

literature,
patient’s
history

Autism 80.2% 46%

Valensise et al.
(2006) [78] Italy 302

There was a
retrospective analysis of

healthy post-term
pregnancies (42 fetuses
with labor distress and

260 without).
All cases were used to

test the model

ANN Patient’s
history Fetal distress

Accuracy 86%,
positive

predictive
value 53%,
negative

predictive
value 92%

NA

Gao et al.
(2019) [79]

United
States 45,858

Electronic health record
data of pregnant

women were collected
retrospectively.

All cases were used to
test the model.

(NA if retrospectively or
prospectively collected).

Observational
medical

outcomes
partnership

Patient’s
history,
internet

Severe
maternal

morbidity.

M0 AUC 0.790,
M1 AUC 0.919,
M3 AUC 0.937

NA

Despite the group’s heterogeneity, the previous groups’ predictors were also used.
For example, the studies described the prediction of pregnancy outcomes among women
affected by SLE using a binary logistic regression model [75], and they described the
prediction of congenital heart disease (CHD) among pregnant women [44], the frequency
of 27 potential risk factors related to pregnancy and the perinatal period [77], and the
identification of patients with the risk of fetal distress in labor using ANNs [78]. The
application of ML was used to identify severe maternal morbidity (SMM) and relevant risk
factors from electronic health records (EHRs) [79].

There were only a few of the most relevant prospective AI models tested on the
representative samples [35–37,42,44,50,71]. Therefore, Neocleous et al. conducted three
prospective studies on the prediction of fetal aneuploidy [35–37]. In those studies, the sam-
ple sizes were 51,208; 72,654; and 123,329, respectively. The most widely used ANN model
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(fully connected multilayer feed-forward structure—FCMLFF) was subsequently trained
and tested to predict trisomy 21 and other aneuploidies. The model’s accuracy was assessed
to be between 94 and 100% for trisomy 21 and 80–96% for other aneuploidies [35–37].

For preeclampsia assessment, Jhee et al. conducted a prospective study of 11,006
pregnant patients [42]. The machine learning model—decision trees (DTs), the naïve
Bayes classification (NBC), the support vector machine (SVM), the random forest (RF), and
stochastic gradient boosting (SGB) were subsequently trained and used. The predictive
value of the DT was 84.7%, and it was 89.9% for the NBC, 89.2% for the SVM, 92.3% for the
RF, and 97.3% for SGB [42].

Li et al. conducted a prospective study to predict the fetal growth restriction on
a sample of 215568 pregnant women. The ML technique—the support vector machine
(SVM)—and the random forest (RF) were trained and tested in comparison to logistic
regression (LR) and sparse LR. The accuracy of the SVM was 92.4%, and it was 43.7% for
C4.5, 61.2% for RF; 94.5% for sparse LR; the AUC for LR was 0.6 with 93% accuracy of
the model [44].

Koivu et al. conducted a prospective study by including 16,340,661 pregnant women
to predict early and late stillbirth as well as preterm delivery. The ANN models, deep
NN (neuronal network), SELU N (scaled exponential linear units network), and LGBM
(the light GBM—gradient boosting decision tree), were subsequently trained and tested
in comparison to LR. The predictive values of those models measured with an AUC in
early stillbirth prediction were 0.73 for deep NN, 0.75 for SELU N, and 0.75 for LGBM
compared to 0.73 for LR. In late stillbirth prediction, the AUC values were 0.57 for deep
NN, 0.59 for SELU N, and 0.6 for LGBM compared to 0.58 for LR. The values of preterm
delivery prediction measured with AUC were 0.66 for deep NN, 0.67 for SELU N, and 0.67
for LGBM compared to 0.64 for LR [50]. In their study, Catley et al. showed the predictive
accuracy of PTB occurrence (AUC 0.73) in a prospective cohort (N = 19710) using the Neural
Network Toolkit [71].

4. Discussion

All of the presented works showed the potential of AI methods for improving risk
assessment and predicting adverse perinatal outcomes. We found that AI techniques had
high prediction values established at around 80–90%, which were better in comparison
to logistic regression methods. However, this systematic review did not distinguish the
best AI method, and further prospective studies should be performed. We suppose that
there are two reasons for this. First, every perinatal complication has different risk factors
and occurrences [80–83], and a comparison of each led to biases of the heterogeneity of the
results. The other reason is that most of models were tested on small groups or were not
proven prospectively.

Risk factors for PTO, primarily sociological and clinical indicators, the mother’s
health, problems during pregnancy, comorbidities, laboratory values, and fetal monitoring
parameters, were considered. However, many more characteristics might be taken into
account to measure the overall risk of a pregnancy. Doing so would increase the model’s
representativeness and accuracy, but it can be difficult to judge how beneficial this would
be. Immunohistochemical and genetic predictors are two of the components that are
typically not taken into account. Medical specialties like immunology and genetics have
advanced extremely quickly, and these fields of study have produced the orphan molecules
responsible for many illnesses. Therefore, combining genetic and immunohistochemistry
predictors with the previously discussed socioeconomic, laboratory, and medical history
components in AI models may improve their ability to predict outcomes.

Study construction and sample size are the most significant sources of bias in the
included studies. There is a majority of retrospective studies or studies where the prospec-
tive or retrospective character is not indicated. Moreover, studies where the prospective
analysis of patient records was made were often conducted on small samples. As a result,
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only a few studies provide robust evidence of AI accuracy [35–37,42,44,50,71]. Based on
those studies, ANN models seem appropriate for extensive patient data in APO prediction.

The usage of AI in obstetrics is not close to being a gold standard. Therefore, this
summary of AI application opportunities seems crucial to show the unused potential
of these methods. The authors see the opportunity for AI application in daily routine
medical challenges. For example, the AI techniques’ predictive value could be used during
the first assessment of a pregnant woman or even when planning the pregnancy or on
the perinatology department to determine the delivery timing. Gathering the potential
risk factors and using trained and validated software could lead to very early diagnosis
of complications or even their prevention, for example, in patients with GDM during
pregnancy [52,53]. Today’s decisions are made according to the experience and knowledge
of the medical practitioners whose input in medical diagnoses and procedures is not
questionable. Nevertheless, human brains are not able to proceed large prospective study
data to calculate the exact risk factor in every medical case. We supposed that the digital
software could help to increase medical condition prediction.

There are reports of AI applications using mobile software [84,85]. Telemedicine was
applied to inform patients about their condition and gestational diabetes state. AI tools
for patient examination, hospital monitoring, or everyday clinical routine could improve
healthcare results. Pregnant women often underestimate their health status and do not
report everything to their medical care providers [86,87]. Combining AI and telemedicine
software could help medical care providers assess real-time risks and threats to pregnant
women, as it works, for example, in cardiology or diabetology [88–90]. As previously
mentioned, such information could avoid many unwanted adverse medical conditions.

This study had several limitations. One of them was a problem with synthesis because
of the heterogeneity of the reported results. Therefore, several deviations into the groups
were made to approximate the similar outcomes of the assessed studies. Unfortunately,
this was insufficient because of methodological differences and significantly different
AI methods. As a result, only AI applications with a calculated LR were quantitively
synthesized. Moreover, the heterogeneity of the APO prediction reporting could have an
impact on reported results. The detailed assessment of each AI method could provide the
readers with the information needed to apply the AI methods in praxis. Nevertheless, there
were not enough studies on the same quality level (prospective with large patient groups)
according to the same complication. Therefore, more prospective studies could conclude
the best AI method.

The strength of this study was its novel character. There are no published studies compar-
ing the usage of artificial intelligence methods to predict perinatology complication occurrences.

This systematic review described AI’s application in predicting pregnancy compli-
cations, which is one of this study’s biggest strengths. It gave a broad overview of the
different factors and diseases to which AI can be applied [1,16].

5. Conclusions

The application of AI methods as a digital software can help medical practitioners
in their everyday practice in pregnancy risk assessment. Decision making supported by
technology could eliminate the mistakes made because of the imperfect human brain.
Based on published studies, models that used ANNs and were tested on large prospective
data could be applied in APO prediction. Nevertheless, further studies could identify new
methods with even better prediction potential.
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