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Abstract: In this research, we consider a deterministic three-stage operating room surgery scheduling
problem. The three successive stages are pre-surgery, surgery, and post-surgery. The no-wait
constraint is considered among the three stages. Surgeries are known in advance (elective). Multiple
resources are considered throughout the surgical process: PHU (preoperative holding unit) beds
in the first stage, ORs (operating rooms) in the second stage, and PACU (post-anesthesia care unit)
beds in the third stage. The objective is to minimize the makespan. The makespan is defined as the
maximum end time of the last activity in stage 3. Minimizing the makespan not only maximizes the
utilization of ORs but also improves patient satisfaction by allowing treatments to be delivered to
patients in a timely manner. We proposed a genetic algorithm (GA) for solving the operating room
scheduling problem. Randomly generated problem instances were tested to evaluate the performance
of the proposed GA. The computational results show that overall, the GA deviated from the lower
bound (LB) by 3.25% on average, and the average computation time of the GA was 10.71 s. We
conclude that the GA can efficiently find near-optimal solutions to the daily three-stage operating
room surgery scheduling problem.
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1. Introduction

As medical technology improves day by day, more and more patients can be treated
and saved through surgeries. Hence, operating rooms are in high demand in most hospitals.
Operating rooms usually consume more than 9% of a hospital’s budget [1]. However, it is
also estimated that operating rooms account for more than 40% of a hospital’s revenue [2].
Operating rooms are high-cost, high-revenue, and high-demand units. Finding an effective
method for allocating surgeries to operating rooms that maximizes operating room utiliza-
tion while ensuring good quality of care is a very important problem for hospital managers.
In this research, we consider a daily surgery scheduling problem with three successive
stages: pre-surgery, surgery, and post-surgery. The pre-surgery stage usually takes place in
the PHU, where nurses help patients prepare for surgery (signing paperwork, putting on a
hospital gown, performing necessary tests, measuring vital signs, setting up intravenous
access, etc.). The surgery stage is the main stage of the entire operation, which takes place
in the operating room. The post-surgery stage begins after the end of surgery and takes
place in the PACU bed, where the patient is continuously monitored and cared for until
recovery. The no-wait constraint is considered between the three stages. If no PACU bed
is available after surgery, the patient remains in the operating room for recovery until a
bed becomes available. Surgeries are known in advance (elective). Multiple resources are
considered throughout the surgical process: PHU beds in the first stage; operating rooms
in the second stage; and PACU beds in the third stage. The objective is to minimize the
makespan. Figure 1 shows a typical patient flow in surgery and also shows the scope of
this research.
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Figure 1. The scope of this research.
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Our main contribution is the development of an easy-to-implement GA, which ef-
ficiently solves the no-wait three-stage surgery scheduling problem. We also propose a
heuristic and use an existing lower bound to validate the effectiveness of the proposed
GA. The computational results show that the proposed GA can significantly reduce the
makespan. Minimizing the makespan maximizes the utilization of ORs, reduces idle times
between two consecutive surgeries, and also reduces material (PHU, operating room:s,
PACU, equipment operating costs) and human (surgeons, nurses, anesthetists) costs. From
the patient’s perspective, a reduction in time improves patient satisfaction. It can reduce
waiting time and also increases the safety of the procedure since surgeons, nurses, and
anesthetists working long overtime hours under high pressure are dangerous to patients
during the procedure.

The remainder of this paper is organized as follows. Section 2 reviews the litera-
ture. Section 3 describes the problem. Section 4 presents the heuristic and the proposed
GA. Section 5 presents the computational experiments and analyzes the results. Finally,
conclusions and suggestions for future research are formulated.

2. Literature Review

In the past 50 years, a large amount of literature on operating room scheduling has
evolved. Refs. [3-5] provide a comprehensive survey of research on operating room
planning and scheduling problems. Here, we review the literature pertaining to this study.
Many researchers have studied operating room scheduling problems in a deterministic
environment. Some researchers focused on studying the allocation of surgeries to operating
rooms (stage 2) without considering the availability of human resources [6,7]. The objective
is to minimize total operating costs, which include unused operating room costs and
overtime costs. Some researchers considered both the availability of operating rooms and
surgeons [8-11]. Some researchers studied two-stage (stages 2 and 3) operating room
scheduling problems [12-17]. For example, references [12-14] considered scheduling
surgeries in operating rooms and PACU beds (stages 2 and 3) with consideration of the
availability of surgeons. The two-stage scheduling problem was further examined by
references [15-17] by considering both human resources and equipment availability.

Only a few papers studied operating room scheduling problems in three stages [18-21].
In [18], the authors applied an ant colony (ACO) algorithm to solve a three-stage operating
room scheduling problem integrating multiple nurses’ roster constraints. Similarly, in [19],
the authors used an ACO to solve a three-stage operating room scheduling problem
by considering available material resources (PHU beds, ORs, PACU beds) and human
resources (surgeons, nurses, and anesthetists). Moreover, in [20], the authors proposed
an iterative local search (ILS) and a hybrid GA (HGA) approach to solve the three-stage
no-wait operating room surgery scheduling problem under various resource constraints.
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The availability of material resources, specialties, and qualifications of human resources
was integrated, and the objective was to minimize the makespan and total idle time in the
operating rooms. They compared the proposed ILS and HGA with real data and the ACO
algorithm [19]. The ILS and HGA outperformed the real data scheduling and the ACO
scheduling [19] with close results and a relatively short computation time. They allow fewer
operating rooms and balance the working time between them. They concluded that the ILS
and HGA algorithms are efficient and effective. In [21], the authors investigated operating
room scheduling, taking into account all resources, post-anesthesia beds, and emergency
procedures. To solve the problem, they formulated a mixed linear integer programming
(MILP) and transformed it into CP models. They also proposed a metaheuristic based on a
GA and a constructive heuristic (CH). They compared the heuristic (GA combined with CH)
with the MILP and CP models. They concluded that the CP model discovered high-quality
solutions faster than the MILP. However, the improvement was not substantial. On the
other hand, the heuristic found solutions of very good quality in a short run time, with
an average of 7 s, on instances ranging from 15 to 40 surgeries requiring scheduling. The
heuristic outperformed the MILP and CP models. Table 1 presents comparisons between
key related work and this study:.

Some researchers tried to use mathematical model-based algorithms to solve operating
room scheduling problems [6,8,15-17,21]. In [6], the authors developed a branch-and-price
approach to solving a surgery assignment problem. In [8], the authors applied a column-
generation-based heuristic to solve a tactical operating room planning problem. In [15],
the authors proposed a primal-dual heuristic for solving an operation theatre planning
problem. In [16], the authors presented a two-step approach to address an operating
room scheduling problem with various resource-related constraints and the specifications
of the operations processes. The two-step approach is based on solving mathematical
models. In [17], the authors developed a constraint programming approach for solving
multi-objective operating room scheduling. They considered multiple real-life constraints
in the mathematical model, such as availability, staff preferences, and affinities among staff
members. Mathematical model-based algorithms usually need advanced knowledge in
math and optimization. It might not be easy to learn and implement for hospital managers.
On the other hand, some researchers have recently addressed operating room scheduling
problems using machine learning-based algorithms. Machine learning-based techniques
are mainly employed to handle stochastic problems or problems with uncertain data. For
example, [22] developed several machine learning techniques for the predictive energy
consumption data of smart residential homes. For operating room scheduling problems, ma-
chine learning-based algorithms are applied to predict surgery durations, estimate required
PACU time for each type of surgical procedure, predict emergency patient arrival times,
or detect surgeries with significant cancellation risks [23-27]. Since we are dealing with a
deterministic three-stage operating room surgery scheduling problem, machine learning-
based algorithms might not be suitable. Additionally, several researchers have applied
metaheuristics to handle operating room scheduling issues, including GA [7,12,20,21,28,29],
ILS [20], ACO [18,19], and artificial bee colony (ABC) [10] algorithms. The advantage of
metaheuristics is that they are easy to implement and can find good quality solutions within
a reasonable time. This might better suit the needs of the hospital manager. In contrast
to previous mathematical model-based approaches [6,8,15-17,21], we aim to develop an
algorithm that is easy to implement and flexible for the majority of hospitals. GA is one of
the oldest and most well-known algorithms that are easy to learn and implement. Hence,
we have chosen GA to address the research problem.
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Table 1. Comparisons between key related work and this study.
Paper Stage Objective Algorithm Analysis Resource Complexity
Fei et al. [6] 2 Minimize a cost function Heuristic; mathematical model A E ORs NP-hard
Lin and Chou [7] 2 Minimize a cost function Heuristic; mathematical model A E ORs NP-hard
Fei et al. [8] 2 Minimize a cost function Heuristic A Surgeons, ORs NP-hard
Zhu et al. [9] 2 Minimize a cost function Heuristics A Surgeons, ORs NP-hard
Lin and Li [10] Minimize a cost function Heuristic; mathematical model A E Surgeons, ORs NP-hard
Bargetto et al. [11] 2 Maximize the total Heuristic; mathematical model A E Surgeons, nurses, ORs NP-hard
surgery revenue
Fei et al. [12] 2,3 Minimize a cost function Heuristic A Surgeons, ORs, PACU NP-hard
Liu etal. [13] 2,3 Minimize a cost function Heuristic A Surgeons, ORs, PACU NP-hard
Riise et al. [14] 2,3 Minimize makespan Heuristic A Surgeons, ORs, PACU NP-hard
Guinet and Chaabane [15] 2,3 Minimize a cost function Heuristic A Surgeons, ORs, equipment, PACU NP-hard
Jebali et al. [16] 2,3 Minimize a cost function Heuristic; mathematical model A E Surgeons, ORs, equipment, PACU NP-hard
.. . . . . Surgeons, nurses, anesthetists,
Meskens et al. [17] 2,3 Minimize muti-objective Constraint programming A ORs, equipment, PACU NP-hard
. .. e . Surgeons, nurses, anesthetists,
Xiang et al. [18] 1,2,3 Minimize makespan Heuristic; mathematical model A PHU, ORs, PACU NP-hard
. . L. Surgeons, nurses, anesthetists,
Xiang et al. [19] 1,2,3 Minimize makespan Heuristic A PHU, ORs, PACU NP-hard
.. . L. Surgeons, nurses, anesthetists,
Belkhamsa et al. [20] 1,2,3 Minimize makespan Heuristic A PHU, ORs, PACU NP-hard
Latorre-Nunfez et al. [21] 1,2,3 Minimize makespan Heuristic; mathematical model AE Surgeons, nqrses, anesthetists, NP-hard
ORs, equipment, PACU
This study 1,2,3 Minimize makespan Heuristics A PHU, ORs, PACU NP-hard

Stage: 1—considered pre-surgery, 2—considered surgery, 3—considered post-surgery. Analysis: A—approximate, E—exact.
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From the literature review, there is research studying the three-stage operating room
surgery scheduling problem. All have considered both human resources (surgeons, anes-
thetists, nurses) and material resources (PHU, ORs, PACU). To create a feasible schedule,
the availability of human resources and material resources must be integrated. However,
human resources are generally very complicated and must take into account a variety of
constraints, including resource availability (role, shifts, roster), specialties, qualifications,
etc. This usually makes the developed algorithms and results only suitable for the specified
problems. Hence, in this study, we only consider the three-stage operating room surgery
scheduling problem under material resource constraints. We do not take into account
human resources to maintain the developed algorithm’s simplicity and flexibility for the
majority of hospitals.

In this research, we consider the PHU and PACU beds while constructing the operating
room schedule. Similar to a three-stage no-wait (nwt) flexible flow-shop problem, the oper-
ating room scheduling problem under consideration aims to reduce the makespan. Follow-
ing the three-field notation of Graham et al. [30], we refer to this problem as FF3|nwt|Cyax -
The studied problem is NP-hard in the strong sense since the problem of minimizing
makespan on a three-stage no-wait flow-shop problem ( Fz|nwt|Cyqy ) is already NP-hard
in the strong sense [31]. Given that the studied problem is NP-hard, we have proposed a
genetic algorithm (GA) to handle it.

3. Problem Description

This study deals with a daily surgery scheduling problem that is equivalent to a flexible
flow shop problem with three sequential stages: preoperative (pre-surgery), intraoperative
(surgery), and postoperative (recovery). For each surgery, different resources at each stage
are required: a PHU bed at the pre-surgery stage, an operating room at the surgery stage,
and a PACU bed at the recovery stage. The no-wait constraint is considered between the
three stages. Surgeries are known in advance (elective). The performance measure is to
minimize the makespan. The makespan is defined as the maximum end time of the last
activity in stage 3: minCy,zy = max(Csz1,Csp,Cs3 ... Cs, ), where Csjis the completion time
of surgery j on stage 3. We provide the following illustration of the examined problem
using an example.

Example A

We use a 10-surgery example to illustrate a three-stage operating room surgery schedul-
ing problem. Material resources are 2 PHU beds, 3 ORs, and 2 PACU beds. The planning
horizon is one day. Table 2 shows the data on surgeries.

Table 2. Data of surgeries.

Surgery Pre-Surgery Duration Surgery Duration  Post-Surgery Duration
1 15 105 30
2 15 75 30
3 15 30 15
4 15 30 15
5 15 105 30
6 15 150 45
7 15 120 45
8 15 180 45
9 15 45 15
10 15 75 30

unit minutes

Figure 2 depicts a feasible solution 1 for example A. The first surgery starts at 8:00,
and the final surgery ends at 16:30. No-wait constraints among the three stages are met.
The makespan is 16:30. As we can see, the operating rooms are idle for 5 h and 45 min. This
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schedule is not ideal. The expense of operating rooms is expensive. Any idle time in the
operating room between two surgeries is a waste. Moreover, in order to avoid any delays,
patients typically arrive at the hospital much early than scheduled. From the perspective
of the patients, if procedures 9 and 10 can start earlier and finish sooner, it can cut down
on waiting time and allow patients to go back to the ward (or home). Figure 3 shows a
feasible solution 2 for example A. The first surgery starts at 8:00, and the final surgery ends
at 15:30. No-wait constraints among the three stages are satisfied. The makespan is 15:30.
Feasible solution 2 provides a better solution that has a smaller makespan and no idle times
between two consecutive surgeries in an operating room. All other surgeries end before
13:30 except for surgery 8, which ends at 15:30. Minimizing makespan not only maximizes
the utilization of ORs, reduces idle times and costs but also improves patient satisfaction. It
can reduce waiting time so patients can return to the ward (or home) earlier and recuperate.
This is a small example, with 10 surgeries to be scheduled. The manager might be able
to manually optimize it. However, as the problem size increases, the complexity of the
problem increases. Manual schedule optimization becomes virtually impossible. In that
case, an easy-to-implement algorithm that can provide a good quality solution quickly
would be highly beneficial.

PHU1
PHU2 3 5 8
ORI 5 8
OR2 2 Idle time 6
OR3 | 3 Tdle time
PACU1 | 2 3
PACU2 5 6
| | I | | | I [ % || [ 1 1 I T T T I | HE| | I |
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17.00
Figure 2. A feasible solution 1 for Example A.
PHU1 6 .
pHU2 |2 |3 5 E I
ORI 5 8 |
OR2 2 6
OR3
PACUI 3 2 | 8 |
PACU2 5 6
[T T 1 [ T [ f T T 1 1 [ [ T T T T T T T T T T % T T 7T
08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Figure 3. A feasible solution 2 of Example A.

4. GA for a Three-Stage Operating Room Scheduling Problem

The GA was created by John Holland in 1960 [32]. GA is an adaptive technique that
imitates the behavior of natural selection, evolution, and heredity. Although GA was
created 60 years ago, it remains one of the most well-known and effective algorithms for
solving various kinds of optimization problems. Readers interested in learning more about
GA and its applications may refer to [33,34]. Many studies have successfully employed
GAs to solve scheduling problems in operating rooms [7,12,20,21,28,29]. The literature
review demonstrates that GA can effectively address scheduling problems for operating
room surgeries and deliver positive outcomes. GA is a good fit because we are dealing
with a three-stage deterministic operating room surgery scheduling problem [20,21]. As a
result, we created a GA to address the research challenge.

We consider giving the GA a good initial solution to guide the GA’s search in a good
direction. Hence, a solution based on the longest processing time first (LPT) heuristic is
developed. The LPT heuristic is described below.
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LPT Heuristic

Step 1. Let U be the set of unscheduled surgeries.

Step 2. Set U = {null}. Sum the durations of three stages for each surgery j (Y3 piivj)-
Add all unscheduled surgeries into U first and sort the surgeries in non-increasing order of
Y pij values.

Step 3. If U = {null}, terminate the procedure and report the final makespan value.
Otherwise, select the first surgery j* in U. Assigns job j* to each stage. In each stage, surgery
j* is assigned to the first available resource (a PHU bed in the first stage, an operating room
in the second stage, and a PACU bed in the third stage). The no-wait constraint has to be
satisfied among the three stages.

Step 4. Remove j* from U by setting U = U\ j* and go back to Step 3.

We describe the main steps of the proposed GA as follows.

1  Coding and initial population
A solution is encoded in the proposed GA as a permutation of the 7 surgeries. The

initial population contains an initial solution that was created using the LPT heuristic. The
remaining population is created by randomly generating permutations of surgeries.

2 Evaluation and selection

The GA uses a roulette wheel as the primary selection mechanism. The selection
operates on an enlarged sampling space. The roulette wheel [33] gives a higher probability
to the best individuals. A chromosome’s probability for each performance measure can
be calculated from Equation (1), where f(w) is the worst fitness value in the population,
and f(x) = Cyax is the fitness value of a given solution x. Moreover, to preserve the best
chromosome for the next generation, we always sort and keep the top 5 elite solutions and
carry them into the next generation.

Pop

P(x) = (f(w) —f(X))/k;(f(W) = f(xx)) 1)

3 Crossover and mutation schemes

Two parent solutions are selected from the population based on a roulette wheel
mentioned above for crossover. The crossover scheme is a two-point crossover operator [35],
as depicted in Figure 4. The surgeries between two randomly selected points are always
inherited from Parent-1 to the child. The rest of the chromosome is filled by reading the
information of Parent-2 from left to right. This crossover is executed under a probability P..
After crossover, there are [P. x Pop]| offspring generated.

y

’Parent-l|2|3 5|8 4|l 7|6|

;Chﬂd|z|7|5|g KN

A A [ o ]

Figure 4. Crossover scheme.

The mutation happens in offspring under a probability P,. The mutation scheme
merely employs a general pair-wise exchange. Two surgeries are chosen at random, and
then their positions are switched. The mutation scheme is illustrated in Figure 5.

4 Termination criteria

There are two stopping criteria. One is based on the maximum number of iterations
(Maxlteration), and the other one is based on the maximum number of iterations without
improvement (MIWOI), whichever is earlier. If the GA runs MaxIteration or if all of the
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elite solutions do not improve for a pre-defined number (MIWOI), then we stop the GA
and report the best solution.

‘Original|2|7|5|8|4|l|6|3|

‘Mutation|2|7|4|8|5|1|6|3|

Figure 5. Mutation scheme.

5 Parameterization

The performance of the GA is influenced by parameter settings. Here, we tune
several important parameters of GA through extensive experiments. The final selected
GA parameters are MaxIteration = 5000, Pop = 200, crossover rate P, = 0.75, mutation rate
Py, = 0.05, and MIWOI = 200. Figure 6 shows the search procedure for the proposed GA.

Procedure GA
#Generate Initial population
x1= LPT heuristic
For k=2 to Pop
x= randomly generated
End for
Sort all solutions in nondecreasing order in X, pop
#Elite list
For t=1 to MaxElite
Save and sort the top MaxElite unique solutions in Elite
End for
#Initialization
Set IWOI=0, Cp,q,= Elitey, iteration=1
While (iteration< MaxIteration)
flag=0
counter=1
While (counter< [P, x Pop])
select two individuals based on a roulette wheel
Perform crossover on the two selected individuals and generate an offspring Xy, +counter
R=randomly generated number between (0,1)
If R<P,,
Perform mutation on offspring X+ counter
End if
counter= counter+1
End While
#Update elite list
Sort all solutions in nondecreasing order in Xy, pop+[p.xpop]
For t=1 to MaxElite
Save and sort the top MaxElite unique solutions in Elite;
If any of the Elite; has been updated
flag=1
End if
End for
If (Comax pite, <Conax)
Cnax™ Cmaxpiice,
End if
If (flag==1)
NonImprove =0
Else
NonImprove= Nonlmprove+1
End if
# If all the elite solutions do not improve for a pre-defined number, we terminate the GA
If (NonImprove== MIWOI)
iteration= MaxIteration
Else
#Select Pop population for next generation
For k=1 to MaxElite
Xk = Elitex
End for
For k= MaxElite+1 to Pop
X select an individual from Xyaxgiite+1,.. pop+[pxpop) based on a roulette wheel
End for
iteration= iteration+1
End if
End while

Figure 6. A search procedure for the proposed GA.

5. Computational Results

In this section, random problem instances are used to evaluate the GA’s performance.
The GA and LPT heuristics were written in the Python language and run on a computer
with an Intel core i7 2.3 GHz CPU and 16 GB RAM. Randomly generated problem instances
were generated based on [19]. According to the surgery duration, the surgeries are classified
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into five types: small, medium, large, extra-large, and special. Table 3 shows the durations
of pre-surgery, surgery, and post-surgery. Table 4 shows detailed information on four test
cases, including the number of surgeries to be scheduled, the number of PHU and PACU
beds, the number of operating rooms, and the number of surgeries in each surgery type.
For each case, 10 randomly generated problem instances are generated and tested.

Table 3. The durations (minutes) of pre-surgery, surgery, and post-surgery.

Pre-Surgery Surgery Case Post-Surgery

Small: normal (33, 15)
Medium: normal (86, 17)
Normal (8, 2) Large: normal (153, 17) Normal (28, 17)
E-large: normal (213, 17)
Special: normal (316, 62)

Table 4. The detailed information of four test cases.

Case No. Number of Surgeries PHU Beds Operating Rooms PACU Beds Number of Surgery Types
(S:M:L:E:SE)
1 10 2 3 2 2:6:1:1:0
2 15 3 4 3 3:9:2:1:0
3 20 3 4 4 4:12:3:1:0
4 30 4 5 5 7:18:3:1:1
We calculate the lower limit (LB) of the tested problem instances in order to demon-
strate the GA’s effectiveness. The lower bound is developed by [36] for solving a flexible
flow shop to minimize the makespan. The studied problem has a no-wait constraint, so
the lower bound developed for solving the flexible flow shop to minimize the makespan
will also be the lower bound of the studied problem. Table 5 shows the results of the
10 surgeries under the 2 PHU beds, 3 ORs, and 2 PACU beds available. The average Cax
value of GA is 366.1 (minutes), which is about 6 h. If the first surgery starts at 8:00, then the
last surgery would end at around 14:00, excluding lunch hours. Both the GA and the LPT
can find solutions that finish 10 surgeries within 8 working hours.
Table 5. Results of 10 surgeries.
10 Surgeries
Instance LPT GA
LB
Cinax CPU (s) (Cinax—LB)/LB Cinax CPU (s) (Cinax—LB)/LB
1 359.33 387.00 0.04 7.70% 370.00 497 2.97%
2 349.33 378.00 0.04 8.21% 359.00 5.51 2.77%
3 354.67 386.00 0.03 8.83% 364.00 6.39 2.63%
4 374.00 389.00 0.03 4.01% 384.00 523 2.67%
5 362.33 400.00 0.03 10.40% 375.00 5.20 3.50%
6 324.67 351.00 0.03 8.11% 340.00 5.19 4.72%
7 355.33 381.00 0.04 7.22% 367.00 5.20 3.28%
8 374.33 422.00 0.03 12.73% 388.00 6.01 3.65%
9 345.00 386.00 0.03 11.88% 357.00 5.20 3.48%
10 346.67 409.00 0.08 17.98% 357.00 8.65 2.98%
Average 354.57 388.90 0.04 9.71% 366.10 5.75 3.27%

Table 6 shows the results of 15 surgeries with 3 PHU beds, 4 ORs, and 3 PACU beds
available. The average C,x value of GA is 395.4 (minutes), which is about 6.5 h. If the
first surgery starts at 8:00, then the last surgery can be finished before 15:00, excluding
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lunch hours. Both the GA and the LPT can find solutions that finish 10 surgeries within
8 working hours.

Table 6. Results of 15 surgeries.

15 Surgeries

Instance LPT GA
LB
Cinax CPU (s) (Cinax—LB)/LB Cinax CPU (s) (Cinax—LB)/LB
1 391.75 417.00 0.08 6.45% 407.00 11.60 3.89%
2 357.00 380.00 0.04 6.44% 373.00 7.57 4.48%
3 391.50 431.00 0.04 10.09% 408.00 9.94 4.21%
4 373.50 406.00 0.03 8.70% 392.00 7.09 4.95%
5 377.00 417.00 0.03 10.61% 396.00 13.39 5.04%
6 381.25 415.00 0.03 8.85% 397.00 11.84 4.13%
7 372.25 418.00 0.03 12.29% 388.00 6.72 4.23%
8 371.25 414.00 0.13 11.52% 389.00 713 4.78%
9 380.25 403.00 0.03 5.98% 397.00 6.86 4.40%
10 387.00 420.00 0.04 8.53% 407.00 6.65 517%
Average 378.28 412.10 0.05 8.95% 395.40 8.88 4.53%
When the number of surgeries increases while the number of material resources is
almost the same as in Case 2, overtime is needed slightly. Table 7 shows the results of
20 surgeries with 3 PHU beds, 4 ORs, and 4 PACU beds available. The average C;;sx value
of GA is 504.2 (minutes), and the largest C,4x value of GA is 532 (minutes), which are both
more than 8 h. If the first surgery starts at 8:00, then the last surgery can be finished before
17:00, excluding lunch hours. However, 3 out of 10 surgeries cannot be finished within
8.5 working hours. Slight overtime is needed, and that causes extra costs.
Table 7. Results of 20 surgeries.
20 Surgeries
Instance LPT GA
LB
Cinax CPU (s) (Ciax—LB)/LB Cinax CPU (s) (Cinax—LB)/LB
1 505.25 541.00 0.03 7.08% 518.00 11.36 2.52%
2 492.75 516.00 0.04 4.72% 504.00 9.71 2.28%
3 494.25 533.00 0.04 7.84% 509.00 8.97 2.98%
4 484.00 518.00 0.04 7.02% 497.00 13.93 2.69%
5 494.00 541.00 0.03 9.51% 506.00 9.92 2.43%
6 499.25 521.00 0.04 4.36% 514.00 8.76 2.95%
7 473.25 493.00 0.09 4.17% 483.00 10.74 2.06%
8 520.25 543.00 0.03 4.37% 532.00 15.03 2.26%
9 482.25 503.00 0.04 4.30% 490.00 9.12 1.61%
10 472.00 515.00 0.09 9.11% 489.00 11.64 3.60%
Average 491.73 522.40 0.05 6.25% 504.20 10.92 2.54%

On the other hand, the average Cy;qx value of LPT is 522.4 (minutes). The largest C;;qx
value of LPT is 543 (minutes), which is more than 9 h. A total of 8 out of 10 surgeries cannot
be finished within 8.5 working hours. Overtime is more severe than the solutions found by
the GA. Allowing more overtime can build up pressure and stress on the surgery team and
increases the risk of surgery.

When the number of surgeries that needs to be scheduled is more than the capacity
and overtime is needed, every minute counts. Table 8 shows the results of 30 surgeries
with 4 PHU beds, 5 ORs, and 5 PACU beds available. The average Cy,qx value of GA is
604 (minutes), and the largest C;;;5x value from GA is 629 (minutes), which are both more
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than 10 h. If the first surgery starts at 8:00 am, then the last surgery would be finished
around 19:00, excluding lunch hours. The overtime intensity increases. Patients are at risk
during surgery when surgeons, nurses, and anesthetists work long hours under stress. Any
potential mistakes might occur during the surgery. That increases the risk of surgery.

Table 8. Results of 30 surgeries.

30 Surgeries

Instance LPT GA
LB
Ciax CPU (s) (Cyuax—LB)/LB Cinax CPU (s) (Ciiax—LB)/LB
1 563.00 587.00 0.10 4.26% 577.00 16.40 2.49%
2 588.40 617.00 0.04 4.86% 604.00 17.61 2.65%
3 615.00 640.00 0.04 4.07% 626.00 27.51 1.79%
4 603.40 641.00 0.04 6.23% 622.00 13.49 3.08%
5 604.20 644.00 0.04 6.59% 619.00 17.82 2.45%
6 615.40 652.00 0.04 5.95% 629.00 19.66 2.21%
7 571.60 609.00 0.04 6.54% 586.00 16.74 2.52%
8 571.60 604.00 0.10 5.67% 585.00 13.62 2.34%
9 559.00 586.00 0.04 4.83% 573.00 14.80 2.50%
10 605.00 656.00 0.04 8.43% 619.00 15.36 2.31%
Average 589.66 623.60 0.05 5.74% 604.00 17.30 2.44%

On the other hand, the Cy;s found by the LPT is even worse than C;;x found by the
GA. The average Cyux value from LPT is 623.6 (minutes). The largest Cy;;4 value from LPT
is 652 (minutes), which is almost 11 h. A shorter makespan improves patient satisfaction
because it can arrange treatments for patients timely. A shorter makespan also improves
the surgery team’s satisfaction because allowing more overtime can build up pressure and
stress on the surgery team. The GA can save about 20 min on average when compared
to the Cyqx value found by the LPT. This will save costs, reduce the risk of surgery, and
improve the satisfaction of patients and the surgery team.

Table 9 shows the overall results of the GA and the LPT, which is a summary of
Tables 5-8. The results indicate that the solutions found by the GA deviate by 3.27%, 4.53%,
2.54%, and 2.44% from the lower bound for 10, 15, 20, and 30 surgeries, respectively. On
the other hand, the solutions found by the LPT deviate by 9.71%, 8.95%, 6.25%, and 5.74%
from the lower bound for 10, 15, 20, and 30 surgeries, respectively. The GA outperforms
the LPT in terms of Cpux. However, the LPT outperforms the GA in terms of computation
time. The overall average computation time of LPT is 0.05 s. The average computation
time of the GA is 5.75, 8.88, 10.92, and 17.30 s for 10, 15, 20, and 30 surgeries, respectively.
As we know, the optimal solutions would be values between the lower bound and upper
bound (found by the GA). Hence, we conclude that the GA can find near-optimal solutions
(within 3.2% deviation on average) efficiently.

Table 9. The overall results of the GA.

LPT GA
Number of Surgeries LB
Cinax CPU (s) (Cimax—LB)/LB Cinax CPU (s) (Ciax—LB)/LB
10 354.57 388.90 0.04 9.71% 366.10 5.75 3.27%
15 378.28 412.10 0.05 8.95% 395.40 8.88 4.53%
20 491.73 522.40 0.05 6.25% 504.20 10.92 2.54%
30 589.66 623.60 0.05 5.74% 604.00 17.30 2.44%
Average 453.56 486.75 0.05 7.66% 467.43 10.71 3.20%
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6. Conclusions

In order to solve a daily three-stage operating room operation scheduling problem,
we propose and develop an LPT heuristic and a GA. Four cases that consider the various
surgical sizes under several material resource (PHU beds, ORs, and PACU beds) constraints
are tested. A lower bound is calculated to evaluate the performance of the proposed LPT
heuristic and the GA. The computational results show that the proposed GA outperforms
the LPT heuristic in terms of makespan. Overall, the LPT is 7.66% deviated from the lower
bound on average, while the GA is 3.20% deviated from the lower bound on average.
The overall average computation times of the LPT and the GA are 0.05 and 10.71 s. We
conclude that the daily three-stage operating room surgery scheduling problem can be
efficiently solved by the GA. In many real-world problems, a surgery scheduling prob-
lem’s precise data might not be known in advance. The scheduling problem is stochastic
because of unknowns regarding patient arrival and procedure length. Future work can
focus on expanding the GA to address scheduling issues in operating rooms under uncer-
tain conditions, such as unpredictable operation lengths, unpredictable cancellations, or
unpredictable emergency patient arrivals.
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Notations

The following notations are used in the present work:

n Number of surgeries waiting to be performed
i Index of the stage (i = 1,2,3)
j Index of surgery (j = 1,2,3...n)
Pij The duration of surgery j on stage i
Gij The completion time of surgery j on stage
Xk The kth solution
Pop Population size
Enlarged sampling space  Calculated by Pop + [P, x Pop]
P, Crossover rate
Py, Mutation rate
MIWOI Maximum number of iterations without improvement
Maxlteration Maximum number of iterations
Elite; The tth solution in elite list
MaxElite Number of elite solutions stored
References
1.  Gordon, T; Lyles, A.P.S.; Fountain, J. Surgical unit time review: Resource utilization and management implications. J. Med. Syst.

1988, 12, 169-179. [CrossRef]

HFMA. Achieving operating room efficiency through process integration. In Technical Report; Health Care Financial Management

Association: Westchester, IL, USA, 2005.

Cardoen, B.; Demeulemeester, E.; Belién, J. Operating room planning and scheduling: A literature review. Eur. J. Oper. Res. 2010,

201, 921-932. [CrossRef]


http://doi.org/10.1007/BF00996639
http://doi.org/10.1016/j.ejor.2009.04.011

Healthcare 2023, 11, 739 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.
34.

Zhu, S.; Fan, W,; Yang, S.; Pei, J.; Pardalos, PM. Operating room planning and surgical case scheduling: A review of literature. J.
Comb. Optim. 2019, 37, 757-805. [CrossRef]

Rahimi, I.; Gandomi, A.H. A comprehensive review and analysis of operating room and surgery scheduling. Arch. Comput.
Methods Eng. 2021, 28, 1667-1688. [CrossRef]

Fei, H.; Chu, C.; Meskens, N.; Artiba, A. Solving surgeries assignment problem by a branch-and-price approach. Int. ]. Prod. Econ.
2008, 112, 96-108. [CrossRef]

Lin, YK.; Chou, Y.Y. A hybrid genetic algorithm for operating room scheduling. Health Care Manag. Sci. 2020, 23, 249-263.
[CrossRef] [PubMed]

Fei, H.; Chu, C.; Meskens, N. Solving a tactical operating room planning problem by a column-generation-based heuristic
procedure with four criteria. Ann. Oper. Res. 2009, 166, 91-108. [CrossRef]

Zhu, S.; Fan, W,; Liu, T.; Yang, S.; Pardalos, PM. Dynamic three-stage operating room scheduling considering patient waiting
time and surgical overtime costs. J. Comb. Optim. 2020, 39, 185-215. [CrossRef]

Lin, Y.-K.; Li, M.-Y. Solving operating room scheduling problem using artificial bee colony algorithm. Healthcare 2021, 9, 152.
[CrossRef]

Bargetto, R.; Garaix, T.; Xie, X. A branch-and-price-and-cut algorithm for operating room scheduling under human resource
constraints. Comput. Oper. Res. 2023, 152, 106136. [CrossRef]

Fei, H.; Meskens, N.; Chu, C. A planning and scheduling problem for an operating theatre using an open scheduling strategy.
Comput. Ind. Eng. 2010, 58, 221-230. [CrossRef]

Liu, Y,; Chu, C.; Wang, K. A new heuristic algorithm for the operating room scheduling problem. J. Comput. Ind. Eng. 2011, 61,
865-871. [CrossRef]

Riise, A.; Mannino, C.; Burke, E.K. Modelling and solving generalised operational surgery scheduling problems. Comput. Oper.
Res. 2016, 66, 1-11. [CrossRef]

Guinet, A.; Chaabane, S. Operating theatre planning. Int. |. Prod. Econ. 2003, 85, 69-81. [CrossRef]

Jebali, A.; Hadjalouane, A.; Ladet, P. Operating rooms scheduling. Int. ]. Prod. Econ. 2006, 99, 52-62. [CrossRef]

Meskens, N.; Duvivier, D.; Hanset, A. Multi-objective operating room scheduling considering desiderata of the surgical team.
Decis. Support Syst. 2013, 55, 650-659. [CrossRef]

Xiang, W.; Yin, J.; Lim, G. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.
Artif. Intell. Med. 2015, 63, 91-106. [CrossRef] [PubMed]

Xiang, W.; Yin, J.; Lim, G. An ant colony optimization approach for solving an operating room surgery scheduling problem.
Comput. Ind. Eng. 2015, 85, 335-345. [CrossRef]

Belkhamsa, M.; Jarboui, B.; Masmoudi, M. Two metaheuristics for solving no-wait operating room surgery scheduling problem
under various resource constraints. Comput. Ind. Eng. 2018, 126, 143-148. [CrossRef]

Latorre-Nufiez, G.; Luer-Villagra, A.; Marianov, V.; Obreque, C.; Ramis, F; Neriz, L. Scheduling operating rooms with considera-
tion of all resources, post-anesthesia beds and emergency surgeries. Comput. Ind. Eng. 2016, 97, 248-257. [CrossRef]

Bhoj, N.; Bhadoria, R.S. Time-series based prediction for energy consumption of smart home data using hybrid convolution-
recurrent neural network. Telemat. Inform. 2022, 75, 101907. [CrossRef]

Bellini, V.; Guzzon, M.; Bigliardi, B.; Mordonini, M.; Filippelli, S.; Bignami, E. Artificial intelligence: A new tool in operating room
management. Role of machine learning models in operating room optimization. J. Med. Syst. 2019, 44, 20. [CrossRef] [PubMed]
Eshghali, M.; Kannan, D.; Salmanzadeh-Meydani, N.; Sikaroudi, A.M.E. Machine learning based integrated scheduling and
rescheduling for elective and emergency patients in the operating theatre. Ann. Oper. Res. 2023. [CrossRef] [PubMed]

Miller, L.E.; Goedicke, W.; Crowson, M.G.; Rathi, V.K.; Naunheim, M.R.; Agarwala, A.V. Using machine learning to predict
operating room case duration: A case study in otolaryngology. Otolaryngol. Head Neck Surg. 2023, 168, 241-247. [CrossRef]
[PubMed]

Zhao, B.; Waterman, R.S.; Urman, R.D.; Gabriel, R.A. A machine learning approach to predicting case duration for robot-assisted
surgery. J. Med. Syst. 2019, 43, 32-38. [CrossRef] [PubMed]

Bartek, M.A.; Saxena, R.C.; Solomon, S.; Fong, C.T.; Behara, L.D.; Venigandla, R.; Velagapudi, K.; Lang, ].D.; Nair, B.G. Improving
Operating Room Efficiency: Machine Learning Approach to Predict Case-Time Duration. J. Am. Coll. Surg. 2019, 229, 346-354.
[CrossRef] [PubMed]

Guido, R.; Conforti, D. A hybrid genetic approach for solving an integrated multi-objective operating room planning and
scheduling problem. Comput. Oper. Res. 2017, 87, 270-282. [CrossRef]

Marques, I.; Captivo, M.E.; Vaz Pato, M. Scheduling elective surgeries in a Portuguese hospital using a genetic heuristic. Oper.
Res. Health Care 2014, 3, 59-72. [CrossRef]

Graham, R.; Lawler, E.; Lenstra, J.; Rinnooy, K.A. Optimization and approximation in deterministic sequencing and scheduling:
A survey. Ann. Discret. Math. 1979, 5, 287-326.

Lenstra, ].K.; Rinnooy Kan, A.H.G,; Bricker, P. Complexity of machine scheduling problems. Ann. Discret. Math. 1977, 1, 343-362.
Holland, ].H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, 1st ed.; MIT Press: Cambridge, MA, USA, 1975.

Goldberg, D. Genetic Algorithm in Search, Optimization and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989.

Reeve, C.R. Genetic algorithms for the operations research. INFORMS ]. Comput. 1997, 9, 231-250. [CrossRef]


http://doi.org/10.1007/s10878-018-0322-6
http://doi.org/10.1007/s11831-020-09432-2
http://doi.org/10.1016/j.ijpe.2006.08.030
http://doi.org/10.1007/s10729-019-09481-5
http://www.ncbi.nlm.nih.gov/pubmed/30919231
http://doi.org/10.1007/s10479-008-0413-3
http://doi.org/10.1007/s10878-019-00463-5
http://doi.org/10.3390/healthcare9020152
http://doi.org/10.1016/j.cor.2022.106136
http://doi.org/10.1016/j.cie.2009.02.012
http://doi.org/10.1016/j.cie.2011.05.020
http://doi.org/10.1016/j.cor.2015.07.003
http://doi.org/10.1016/S0925-5273(03)00087-2
http://doi.org/10.1016/j.ijpe.2004.12.006
http://doi.org/10.1016/j.dss.2012.10.019
http://doi.org/10.1016/j.artmed.2014.12.005
http://www.ncbi.nlm.nih.gov/pubmed/25563674
http://doi.org/10.1016/j.cie.2015.04.010
http://doi.org/10.1016/j.cie.2018.10.017
http://doi.org/10.1016/j.cie.2016.05.016
http://doi.org/10.1016/j.tele.2022.101907
http://doi.org/10.1007/s10916-019-1512-1
http://www.ncbi.nlm.nih.gov/pubmed/31823034
http://doi.org/10.1007/s10479-023-05168-x
http://www.ncbi.nlm.nih.gov/pubmed/36694896
http://doi.org/10.1177/01945998221076480
http://www.ncbi.nlm.nih.gov/pubmed/35133897
http://doi.org/10.1007/s10916-018-1151-y
http://www.ncbi.nlm.nih.gov/pubmed/30612192
http://doi.org/10.1016/j.jamcollsurg.2019.05.029
http://www.ncbi.nlm.nih.gov/pubmed/31310851
http://doi.org/10.1016/j.cor.2016.11.009
http://doi.org/10.1016/j.orhc.2013.12.001
http://doi.org/10.1287/ijoc.9.3.231

Healthcare 2023, 11, 739 14 of 14

35. Murata, T.; Ishibuchi, H. Performance evaluation of genetic algorithms for flowshop scheduling problems. In Proceedings of the
First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, FL, USA,
27-29 June 1994; pp. 812-817.

36. Santos, D.L.; Hunsucker, J.L.; Deal, D.E. Global lower bounds for flow shops with multiple processors. Eur. J. Oper. Res. 1995, 80,
112-120. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/0377-2217(93)E0326-S

	Introduction 
	Literature Review 
	Problem Description 
	GA for a Three-Stage Operating Room Scheduling Problem 
	Computational Results 
	Conclusions 
	References

