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Abstract: The recent COVID-19 pandemic has hit humanity very hard in ways rarely observed before.
In this digitally connected world, the health informatics and investigation domains (both public
and private) lack a robust framework to enable rapid investigation and cures. Since the data in the
healthcare domain are highly confidential, any framework in the healthcare domain must work on
real data, be verifiable, and support reproducibility for evidence purposes. In this paper, we propose
a health informatics framework that supports data acquisition from various sources in real-time,
correlates these data from various sources among each other and to the domain-specific terminologies,
and supports querying and analyses. Various sources include sensory data from wearable sensors,
clinical investigation (for trials and devices) data from private/public agencies, personnel health
records, academic publications in the healthcare domain, and semantic information such as clinical
ontologies and the Medical Subject Heading ontology. The linking and correlation of various sources
include mapping personnel wearable data to health records, clinical oncology terms to clinical trials,
and so on. The framework is designed such that the data are Findable, Accessible, Interoperable, and
Reusable with proper Identity and Access Mechanisms. This practically means to tracing and linking
each step in the data management lifecycle through discovery, ease of access and exchange, and data
reuse. We present a practical use case to correlate a variety of aspects of data relating to a certain
medical subject heading from the Medical Subject Headings ontology and academic publications
with clinical investigation data. The proposed architecture supports streaming data acquisition and
servicing and processing changes throughout the lifecycle of the data management. This is necessary
in certain events, such as when the status of a certain clinical or other health-related investigation
needs to be updated. In such cases, it is required to track and view the outline of those events for the
analysis and traceability of the clinical investigation and to define interventions if necessary.

Keywords: data correlation; data linking; verifiable data; data analysis; explainable decisions; clinical
trials; COVID; clinical investigation; semantic mapping; smart health

1. Introduction

Pandemics are not new to this world or humanity. There have been pandemics in
the past, and they may happen again in the future. The recent COVID-19 pandemic is
different from the previous ones in that the virus is more infectious without being known,
symptoms are ambiguous, and the detection methods require a lot of time and resources. It
has caused more deaths than ever in the history of humankind, and the impact it has had
on the world economy and human lives (whether affected or not) is grave and is posing
questions about the future of diseases and pandemics. While humans advance knowledge
and technology, there is a need to investigate and put effort into overcoming the challenges
posed by these kinds of serious threats. This does not only require us to deal with the
current pandemic but also to look into the future, predict and presume the possibilities,
investigate, and develop solutions at a large scale so that there is a reduction in the risk of
losing lives and danger on a large scale.
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The majority of the existing systems and solutions in the healthcare domain are
proprietary and limited in their capacity to a specific domain, such as only processing
clinical trial data without integrating state-of-the-art investigation and wearable sensor
data. Hence, they lack the ability to present a scalable analytical and technical solution
and have limitations and lack the ability to trace back the analysis and results to the origin
of the data. Because of these limitations, any robust and practical solution does not only
have to account for clinical data but also present a practical and broader overview of
these catastrophic events from clinical investigations, their results and treatments that are
up-to-date, and combine them with medical history records as well as academic and other
related datasets available. In other words, the recent advancements and investigations in
the clinical domain specific to a particular disease are published in research articles and
journals, and they also need to be correlated to real human subjects that undergo clinical
trials so that up-to-date analysis can be carried out and proper guidelines and interventions
can be suggested.

Moreover, the majority of the record-keeping bodies maintain electronic health records
for patients and, recently, records of COVID vaccinations. However, they lack the ability to
link the data to individuals’ activities and clinical outcomes. There is also a lack of fusing
data related to the investigation of a particular disease from various data providers, such
as private trials, public trials [1–3], and public-private trials. The lack of these services is
not only because there is less literature on fusing these multiple forms of data but also
because of security and privacy concerns related to the confidentiality of healthcare data.
The current advanced and robust privacy and security infrastructure available is more
than enough to ensure personal and organizational interests. On the one hand, there are
governments and other organizations that publish their clinical research data to public
repositories to be available for clinical research using defined standards. On the other
hand, there are pharma companies, which mostly hold the analytics driven by these and
the respective algorithms and methods private. Furthermore, clinical trial data are not
enough since they only provide measurements for different subjects who underwent a trial,
while other data, such as electronic health records, contain real investigative cases and
the histories of patients. Therefore, fusing these data from variety of sources is helpful to
determine the effects of a particular drug/s or treatment plan in combination with other
vaccines, treatments, etc.

Given the above brief overview of the capabilities of the state-of-the-art, most of these
systems either tackle static or dynamic, relational or non-relational, noisy or cleaned data
without fusing, integration, or semantically linking. This paper proposes a solution to the
above problems by presenting a healthcare framework that supports the ability to acquire,
manage, and process static and dynamic (real-time) data. Our proposed framework is
a data format that focuses on fusing information from various sources. In a nutshell,
the proposed framework ideally targets the strategy FAIR [4]: F: Findable, A: Accessible,
I: Interoperable/Interchangeable, and R: Reusable.

Objectives and Contributions

In particular, we define the objectives and contributions of this research work as
follows: Propose a framework that is able to provide the following basic and essential
capabilities for health-care data:

• Design of a clinical ‘data lakehouse‘ that stores data in a unified format where the raw
data can be in any format loaded from a raw storage or streamed.

• Design of pipelines that support static and incremental data collection from raw
storage to a clinical data lakehouse and maintain the trace of any change to the
structure at the data level and at the schema level all the way to the raw data and raw
data schema.

• Design of a schema repository that versions the data when it changes its structure and
enables forward and backward compatibility of the data throughout.
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• Design of universal clinical schemas that can incorporate any clinically related concepts
(such as clinical trials from any provider) and support flexibility.

• Design processes to perform change data capture (CDC) as the data proceed down the
pipeline towards the applications, i.e., develop incremental algorithms and methods
to enable incremental processing of incoming data and keep a log of only the data
of interest.

• Build timelines for changing data for a specific clinical investigation from a clinical
trial data element such as Trial, Site, and Investigator, etc., and include the ability to
stream the data to the application.

• Provide for semantic linking and profiling of subjects in the data.

These capabilities are meant to provide evidence of data analysis (i.e., where does the
analysis go back in terms of data), traces of changes, and a holistic view of various clinical
investigations running simultaneously at different places related to a certain specific clinical
investigation. An example of that is when COVID-19 vaccination was being developed; it
was necessary to be able to trace the investigation of various efforts by independent bodies
in a single place where one could see the phases of clinical trials of vaccines, their outcomes,
treatments, and even the investigation sites and investigators. This could not only result in
better decision-making but also in putting resources in suitable places and better planning
for future similar scenarios.

2. State of the Art

Many works exist in the literature that deal with various aspects of clinical data,
ranging from data management and analysis to interoperability, the meaning of big data
in healthcare and its future course, the standardization of clinical data, especially clinical
trials, and the correlation and analysis of data from various sources. The following sections
present a brief overview of existing works in these various aspects.

2.1. Data Management

Much work exists in data management in the healthcare domain. These include
the design and analysis of clinical trials [5], big data in healthcare [6], and others [7]. A
detailed survey in [8] can be seen by the readers for an overview of big data in health
care. The crux of all the work in data management is to store data on a large scale and
then be able to process it efficiently and quickly. However, this is not the only scope of
this paper, since this paper does not only communicate and present information about
data management (where we resemble the existing work) but also presents additional key
features that distinguish our work from the existing work. Those distinguishing features
are presented as contributions in the introduction section.

2.2. Data Interoperability and Standardization

Data interoperability and standardization are two other key aspects of healthcare data
management and analysis. Unlike other traditional data management systems, healthcare
data, in particular clinical data, require more robust, universally known, and recognized
inter-operable methods and standards because the data are critical to healthcare and the
healthcare investigations and diagnoses that come with it. For example, HL7 standards
focus on standardizing clinical trials terminologies across various stakeholders in the world.
Multiple investigation research centers need to exchange results, outcomes, treatments, etc.
to come to a common conclusion for certain diseases and treatments. Therefore, a high
quality of standards, as explained in [9,10], exists, and ontological [11] representations have
been defined to represent the data in an interoperable manner universally. There are a wide
range of resources in this domain, and the readers can see further details in the survey
at [12]. Our research scope goes beyond this topic of standardization and interoperability
and focuses on a more abstract level where all data from all types of providers in all
standards can be brought together for analysis and be able to incorporate changes and
evolve as the timelines of investigations evolve.
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2.3. Data Analysis

Like any other field of data analysis, clinical healthcare data has also been widely
studied for analysis and preparation. Such as the strategies for dealing with missing
data [9], correlating data from various sources and generating recommendations for better
healthcare [13], and the use of machine learning approaches for investigating the diagnosis
of vaccines, e.g., COVID-19 vaccines [14]. Some examples of works related to this specific
field are presented in [12,15]. Moreover, we also find efforts that investigate supporting
clinical decisions by clinicians in various fields, and these types of systems are generally
referred to as the Clinical Decision Support System (CDSS) [16]. These types of systems
generally focus on generating recommendations using artificial intelligence (AI) and ma-
chine learning techniques. However, they lack the ability to discover, link, and provide
an analytical view of the process of clinical trials [2] under investigation. These trials may
still be under investigation and not yet complete. On the other hand, this research work
leaves the part of analysis for a specific disease, diagnosis, treatment, etc. to the user of
this solution and focuses on presenting a unified system where data from a variety of
sources can be obtained at one place and be able to perform any kind of analysis such as
machine learning, data preparation tasks, profiling, and recommendations [13] as listed
in the contributions and uniqueness section of this paper. This research does provide a
real-time and robust view of the processes to support fast and reliable clinical investigation
while the data are not yet complete or an investigation has been completed.

2.4. Comparison of the Proposed Solution to State-of-the-Art

The proposed framework differs from and supersedes the existing state-of-the-art
across several perspectives: Firstly, existing approaches either focus on data standardization
for interoperability and exchange of clinical data specifically or act on the data in silos.
Secondly, most of the analytical frameworks’ work is only with specialized datasets, such
as clinical trials only, electronic health records only, or sensory data only. Thirdly, all the
above-discussed systems do not capture the building timeline of events (changes) and
mostly work with static data by loading periodic batches. The proposed framework in this
paper addresses these problems by: fusing data from various sources; building profiles for
entities; maintaining changes in events over time for the entities of interest; and avoiding
silos of analysis and computation. Moreover, the solution is designed to support streaming,
batch, and static data.

3. Methodology

In this section, the terms and symbols used throughout this paper will be introduced
first as preliminaries, and then the overall architecture of the framework will be presented.

3.1. Preliminaries

The terms used in this paper are of two types: those that describe entities or subjects
for which a dataset is produced by a data provider, and those that describe or represent a
process that relates to the steps a dataset undergoes. A process may involve subjects as its
input or output, but vice versa is not possible.

• Terms

# Entity: An entity E is a clinical concept, disease, treatment, or a human being
related to data that can be collected, correlated to, and analyzed in combination
with other entities. For example, a vaccine for COVID under investigation is
considered an entity. Humans under monitoring for a vaccine trial comprise
an entity. Clinical concepts, diseases, treatments, devices, etc. are the types
of entities that will be referred to as “entity being investigated,” whereas
human beings on which the entities are observed are referred to as “entity
being observed”.
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# Subject: A subject S is an entity, i.e., SE for which a data item or a measurement
is recorded. For example, a person is a human entity, and a vaccine is a clinical
concept entity.

# Subject types: A subject type is a subject for which data items can be recorded
and can either be an entity being investigated or an entity being observed.

# Domain: A domain D is a contextual entity and can be combined with a specific
“entity being investigated” subject-type. For example, “breast cancer” is a
domain, and viral drug is a domain. Moreover, in clinical terms, each high-
level concept in Mesh ontology [17] is a domain. Similarly, “electronic health
record” (also called EHR) is a domain.

# Sub-domain: Just like a subject with sub-types, a domain has sub-domains,
e.g., “cancer” is a domain and “breast cancer” is a sub-domain. Furthermore,
sub-domains can have further sub-domains.

# Schema: S The template in which measurements or real values of a subject are
recorded is a schema. A schema specifies the types, names, hierarchy, and arity
of values in a measurement or a record. Schema is also called type level records.

# Instance: An instance I is an actual record or a measurement that corresponds
to a schema for the subjects of a particular domain. An instance of an EHR
record belongs to a subject “person” of entity “human,” with entity type as
an “entity being observed”. Similarly, a clinical trial record for “breast cancer”
investigation with all its essential data (as described in coming sections) is
an instance of entity “trial” in the domain “cancer” with sub-domain “breast
cancer” and is an entity of type “entity being investigated”. Moreover, a set {I}
of instances is referred to by a dataset D such that D has a schema S.

# Stakeholder: A person, an organization, or any other such entity that needs
to either onboard their data in the framework for analysis, use the framework
with existing data for insights, or do both is a stakeholder.

# Scenario: A scenario S is a representation of a query that defines the parameters,
domain, context, and scope of the intended use of the framework. For example,
a possible scenario is when a stakeholder wants to visualize the timeline of
investigations/trials for a certain “domain” (i.e., “breast cancer”) in the last
two years by a particular investigation agency/organization. The scenario is
then the encapsulation of all such parameters and context.

# Use case: A use case UC is a practical scenario represented by steps and actions
in a flow from the start of raw data until the point of analytical/processed data
intended to show the result of the scenario.

# Timeline: A timeline is normally the sequence of data-changing events in a
particular entity being monitored. For example, in the case of a clinical trial, it
is every change to any of its features, such as the number of registered patients,
the addition/removal of investigation sites and the investigators, and/or the
methods of investigation. These types of changing events need to be captured
and linked with the timestamp they were captured on. These data (a type of
time-series) are crucial for building time-series analysis of clinical entities and
investigations. An example of time-series analysis may be determining the
evolution of a vaccine over a certain time or between dates or determining the
role of certain investigators with a particular background in a clinical trial over
a certain period linked with the trials’ stages or phases.

• Processes

# Data on-boarding: It is the process to identify and declare (if needed) the raw
data schema S for a dataset D, identify and declare domain-specific terms (e.g.,
an ontology term), and declare limitations, risks, and use cases.

# Data management: It is the process to bring the raw data under management
that is already ‘on-boarded,’ as discussed above. It should declare and process
data and type lineage [18] and be able to represent each data item with a
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timeline, hence treat every dataset as a time-series dataset. There is more on
this in the following sections.

# Data correlation: The framework is designed to on-board and manage the
interrelated data coming from various resources. This process, which runs
across all other processes, is meant to declare the correlations at each step to link
technical terms to business/domain terms; for example, for a medical treatment
for people with obesity, it should find all datasets that provide insights into
these clinical terms. In each of the processes, this process is carried out at
various levels with different semantics, as shown in the following sections.

# Data analysis: This is the process to perform on-demand data processing based
on pre-configured and orchestrated pipelines. When a scenario is provided,
the pipeline is triggered, and various orchestrated queries are processed by the
framework generating derived results that can be streamed/sent to the user
and additionally stored in the framework (particularly in the lakehouse) for
future use.

# Reproducibility: It is a process to reproduce [19] the result of a scenario in case
of failure, doubt, or correctness checking of the framework system.

3.2. Architecture

In this section, we introduce the overall architecture of the framework. Figure 1
presents an abstract overview of the generic architecture with different components that
will address the above-described objectives. A detailed flow of the architecture follows
in the following paragraphs; however, firstly, a layer-wise functioning is presented in the
framework. This architecture consists of various components, such as raw data collection
at the bottom that acquires data that can be regularly scraped from data sources at the
bottom. Next is the data-cleaning pipeline powered by Apache Spark; it is the component
that is based on defined schemas and transforms all datasets to a unified data format (such
as Parquet) before storing them in the data lakehouse. Next are the layers of semantic
profiling and predictions. These layers are meant to process the data written to the data
lakehouse and perform analytical tasks such as fusing data from various sources (academic
clinical articles, clinical trials, etc.) and predicting profiles from clinical trial data. Finally,
the application layer at the top represents dashboards and external applications requesting
data from the bottom layers through some services.

Before any dataset is brought into the system, the raw data schema and any vocabu-
laries or ontologies must be declared. This initial step is called data “on-boarding,” and
it will become more visible in the following section when processes are discussed. After
this on-boarding process, the data flows through the layers discussed above as follows:
Storage of raw data to the data lake (right top in Figure 1), performing quality checking and
mappings declared in the on-boarding process, and storing to the clinical data lakehouse.
Clinical data lakehouse is also a file storage system with the ability to store each piece of
data in a time-series format. For that purpose, we propose the usage of Hudi [20] which
allows each piece of data written to the data lakehouse to be stamped/committed with
a timestamp, thereby providing the ability to travel back in time. This data movement
from the raw data to the data lakehouse is optional in the sense that the stakeholders who
want to store ‘raw data’ can store it in the blob storage, whereas for others, the data can
be directly brought to the data lakehouse. In either case, the framework can stream the
data either from an external source or from the raw data storage. For the streaming of
the data, we propose the use of “Kafka” along with akka-streaming technologies such as
“cloudflow” [21].
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Once the data are acquired and ingested into the data lakehouse, queries can be
performed to do analysis and perform data correlation between various data sources. The
analysis and correlation can be carried out on both static and inflight data, i.e., data ingested
in a streaming fashion and hence requires the ability to merge/fuse with other streams.

When the data are related to a particular “entity being investigated,” it requires the
correlation of these data to the appropriate academic research articles so that various
stakeholders can relate the investigation to the state of the art in academia. The correlation
methods and techniques are out of the scope of this paper; however, we do want to
emphasize that this correlation and the mapping are critical to this framework. The results
of the processing layer (the middle layer in Figure 1) are stored back in the data lakehouse
for re-usability and availability. The querying engine that can be employed for this purpose
is Apache Spark [22].

Finally, the data from the data lakehouse and the results of semantic analysis are meant
to be streamed to applications of various types by various stakeholders, thus requiring the
contracts to be defined before making such service requests. We emphasize the contracts
here since the contracts are key to managing data lineage and explainability, as detailed
in the following sections, and hence it is a prerequisite for an explainable system to have
control over the data being moved and have a clear understanding of at what time what
data in what format is being moved.

The framework is designed to be multi-tenant, having the flexibility to provide services
and processing capabilities for private and/or public data management services. Those
kinds of differences are made possible through proper access controls.

3.3. Processes and Methods

In this section, first an overview of clinical data sources will be presented, then some
specific processes and methods (used interchangeably) that acquire, manage, fuse, and
process these data sources to produce quality analytics will be presented. Next, all the
components of the architecture that include data analysis modes servicing data to external
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analytical applications are presented, and finally, the concepts of lineage and reproducibility
are presented since these concepts are at the core of the FAIR principal.

In the following subsections, each service is part of a layer in Figure 1. The layers in
Figure 1 are abstract and hence overlook these services. In each process explained below,
the respective layer of the architecture in Figure 1 is referred to.

3.3.1. Data Sources

As visible from the framework, this framework is designed to on-board data that are
related to real entities. These include various sources.

Public sources: First, there were data from clinical trial investigations conducted by
public agencies that were published in their publicly available repositories. In this case, the
data can be on-boarded by the published (as the stakeholder) to the framework so that it is
not just available to the public (because it already is in the form of a public repository), but
it is also available and meaningful because this framework makes the data integrated with
other sources and provides an intelligent and smart overview and analysis. The clinical
trial data mostly contain a wider range of information related to the sites of investigation,
the investigators, their affiliations, treatments, and outcomes, among others. See [23,24] for
a detailed overview of what a trial can contain. Moreover, publicly standardized clinical
ontologies are also one of the key sources of data that would be on-boarded and used in
multiple phases; they are used in the on-boarding process to map the raw data to clinical
entities and concepts and map the clinical trials, investigators, and sites to clinical concepts.

Private sources: A second source of the data is a private agency that would like to
analyze its own clinical investigation in the same domain as public data providers, hence
on-board data from its private repository and get the analysis results in the examples of use
cases and scenarios as described in sections below. Note that this framework is multi-tenant
with proper access control mechanisms; therefore, the on-boarding of private data can be
“timed” (delete or archive after a certain time limit).

Personnel/Electronic health records: These are data that can be on-boarded from
private and public data providers. However, these data might include sensitive and
personal information about valid and real human beings, who can be reluctant to share
their data for privacy reasons. In that case, proper consent must be obtained before data are
on-boarded, and the data must be anonymized using known anonymization techniques in
the industry [25].

Academic Data: “Entities being observed” are not only appearing in the data from
clinical trials as discussed above, but also occur as the latest research in these domains is
published in the form of academic journals and conferences such as biomedical engineering
and other journals. We consider these datasets (journals and conferences) as one of the
key datasets that are publicly available and brought to the framework in increments and
updates. As explained in the following sections, these datasets are correlated with clinical
concepts in ontologies such as Mesh and others and with clinical trials. The usefulness
of these datasets and their integration is of the utmost importance for clinicians and the
pharmaceutical industry to correlate their findings with state-of-the-art academic advances.

Derived datasets: These are the datasets that result when the data are managed and
correlation is performed and/or when there are updates and it is needed to pre-compute
some results so that these results can be provided when requested without computing them
on the fly, for obvious reasons such as the complexity of the analysis/query and the latency
it takes to compute those results. Examples of these include correlating academic journals to
clinical concepts, building trials and other timelines, generating time-series of certain data,
and resolving entities to concepts, among others. In other words, these derived datasets
could result in both semantic data (stored in ontologies) and non-semantic data stored
according to a particular schema S. Since it is only allowed for a dataset to be persisted in
the data lakehouse if and only if it has a schema, therefore each such derived dataset must
be declared, annotated, and searchable. These are described in the following section of the
‘on-boarding’ datasets, and on-boarding can be for both internal and external datasets.
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3.3.2. Data on-Boarding and Discovery Process

This subsection details how the on-boarding service is designed to operate. This
service is external to the framework as a separate entity since it needs to be independent
of whatever process the framework follows. It is critical to the whole framework as this
is the first point of entry for stakeholders that will likely be storing the data and requires
knowledge about the domain of the data. Figure 2 explains this with an example. The
data on-boarding process typically involves four entities/components. The sequence of
steps presented in Figure 2 is complemented by the business process presented in Figure 3.
We assume one wants to on-board a dataset D that contains or will contain the set {I} of
the instance of a domain D for an “entity being investigated”. In that case, to identify the
meaning of each field in D, e.g., if a field/variable has a certain value, it is needed/required
to identify the type, domain, and its business or conceptual meaning (as shown in Figure 3).
Therefore, in this process, defining both the technical schema S of the D as well as a
conceptual schema are required. The technical schema is used during the data acquisition
and processing, whereas the conceptual schema is used to construct the semantic meaning
of the assets, such as for discoverability of datasets by other users.
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Figure 4 presents the sequence of steps that showcase the discovery of assets after the
technical and conceptual schemas in Figures 2 and 3 have been defined. In this process,
an external user can be interested in using a particular dataset for the training of machine
learning algorithms or other analytical algorithms if the data provider has consented to it.
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3.3.3. Data Management Process

The data management process cannot be instantiated prior to or in parallel with
the on-boarding process. This is intended to make sure that each dataset that lands in
the management is queryable, understood well by the framework, and of use to the
stakeholders. This process relates to the two bottom layers in Figure 1. Once a dataset
D is on-boarded (See the Section 3.3.2), the technical schema S is version controlled (we
suggest using Git VCS for this) and stored in the schema repository. Figure 5 presents
the flow of events, essentially depicting the pipeline through which the data flow (both
static and dynamic). The technical schema S is first used by validating that the raw dataset
(read from Kafka) D conforms to the schema S. Then, the Ingestor component performs
necessary transformations such as validation on certain fields, extracting information from
file names, etc. Then, the validator validates real data values against the schema. Lastly,
the transformer components perform the transformation to match the table in the data
lakehouse, wherein all types and formats of data are stored irrespective of their formats. In
all these steps, the distributed framework Spark is leveraged, and all the steps can be traced
using the lineage tracking APIs. Note that the transformer supports additional mappings
(format changes/updates, time-zone information, among others) and creates a schema S for
the data under management (i.e., in the data lakehouse). However, it is strictly monitored
that the schema S’ does not alter the meaning, names, and bounds set in the initial technical
schema S in the on-boarding process. As visible in the diagram, the data can be streamed
directly from an external source through the means of a streaming framework such as
Apache Kafka [26], Akka streams [27], or any other such framework. The goal here is not to
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impose any technology but rather the capabilities of lineage and tracking. Note that by
having a proper schema and the conformance of the data to that schema, one can trace back
from the end to the start of the whole process to see where the data comes from and how
it comes.
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3.3.4. Data Correlation

Data correlation (layer semantic linking in Figure 1) is about mapping data from
various sources to one another such that it can easily be queried for understanding and
mapping. As an example, when data for entities being observed in some domain (i.e.,
cancer) are on-boarded, this will include updates related to investigators, sites, treatments,
medication, and outcomes. The first step is to map the personnel data (if available) from
health records to the clinical trial investigation study. Moreover, another aspect is that
each update to a dataset or to a clinical trial can contain a reference to a single instance
of a person or investigation site, say an investigator, but with changes in the name or the
spelling, among others. Similar is the case with sites, diseases, and medical conditions
(components of clinical trial data). In all such cases, the mapping of all such individual
occurrences from the data to real records in the system is carried out, and the ontology has
to be built.

Moreover, academic data include references to clinical concepts (entities being ob-
served) and sub-types and domains. Whenever an academic dataset is brought to be
managed, the data points are correlated with the “data correlation” component to perform
semantic search and produce records. These kinds of semantic results are useful for clin-
icians and pharmaceutical agencies to relate their outcomes to academic investigations.
Therefore, data correlation is a key process that takes place each time there is an update
or a new dataset in the system. Note that the clinical terms can also be referenced from
clinical trials, and in fact, each clinical trial always relates to at least one clinical term,
so the mapping must occur at the time of ingestion of each dataset. For this purpose,
semantic mappers can be developed that will use clustering and text-based techniques to
map incoming updates to certain entities to existing entities in the system, e.g., mapping
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updated clinical sites to existing sites, investigators to existing investigators, etc. Note that
the clinical data available in public repositories or with private owners do not necessarily
contain unique identifiers for these entities, and if they do, it is not synchronized across
various repositories and data providers.

3.3.5. Data Analysis

This subsection describes two types of analyses, and those can always be extended to
other types. This process is part of the layers of semantic linking and correlation processing
in Figure 1.

Offline/Periodic: As a first type of analysis, the vision is that data analyses that are
required to be performed on updates to data or periodically. These include analyses that are
heavy with high latency or analyses that are potentially going to be requested frequently
in scenarios by various stakeholders/user of the framework. As an example, building the
timeline of a clinical trial is performed each time there are updates to the datasets for that
trial. Similarly, building timelines for investigators, treatments, and sites is also offline but
actively performed when data arrive in the system. These kinds of datasets are referred to
as projections or derived datasets, as described in the data sources section.

Moreover, another example of such analysis is building a feature store of clinical trial
results; e.g., when an outcome of a trial is obtained, a feature is made out of it so that it
can be used as input for statistical learning in machine learning for predictions and for
further analysis.

3.3.6. Data Services

The architecture is presented in Figure 1. Data services serve two types of data: (1) data
about data (i.e., metadata) and (2) data itself. In the case of metadata, the framework offers
the ability to search and discover what types of data exist in the system–e.g., a data user
may want to know what data providers provide the data, which clinical trial repositories’
data exist in the system, what are the schemas of these data, how to obtain the data, and so
on. As mentioned earlier, for this purpose, datahub [28] is one of the best examples. This
service is closely coupled with a data on-boarding service; once data are on-boarded, they
can be searched as explained above. For this kind of service, we propose using an external
system called datahub, which is mature enough to perform this function. The separation is
mainly because metadata is a slowly changing dimension of the data. Hence, it does not
require streaming capabilities now, and redoing it is not wise either. Secondly, when the
data are in the system, the framework offers the ability to query and stream the data to the
user/end system. This service complements the metadata service since this cannot stream
data that cannot be discovered by the former. Here, we insist on streaming services since,
on the one hand, streams can be generalized to streaming larger chunks to support non-
streaming application endpoints and streaming data to support transporting large datasets
continuously and in mini chunks. The second service of serving data from the platform is
available for each layer in Figure 1 since all the data end up in the data lakehouse.

3.3.7. Lineage and Reproducibility

The ability to reproduce results retrieved from certain data using a set of algorithms
and techniques is a key requirement for explainable and trustable systems. To do so, the
framework supports techniques and methods to keep track of data lineage at the meta
level, and then the framework is designed in such a way that, if needed, one can reproduce
the expected result from the same data using the same algorithms. At the meta-data level,
for each change (update) in the dataset that is being ingested into the system, if there is a
certain modification (technical modifications such as a schema change), it is required to
create a schema and deal with it internally as a separate dataset–as earlier described as the
derived dataset or projected dataset. In this way, one can track the lineage at each point of
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each computation or calculation, and all these schemas for these datasets are available in
the meta-data discovery service. Moreover, ontology is built of related concepts with the
system to make sure that if an entity is related to, for example, a trial, then it can be tracked.
Secondly, the data can be queried using the scenarios as explained below; these scenarios in
fact define the various parameters such as time window and dataset, among others. With
these parameters, one can always reproduce an expected result from a certain point in the
pipeline since the windows and the scenarios are recorded.

3.4. Use Cases and Scenario

The framework supports a variety of use cases (UC), and we will explain some of
the preliminary and easily understandable ones in this section. We relate use cases to
stakeholders (users of the framework), and hence the design of the framework is intended
to be specific and address the objectives. Moreover, each use case is assumed to include
some steps, involving multiple parts of the framework in a certain order. In other words,
a use case is related to a business process. Therefore, with each use case, we also show
a tentative business process diagram. This can also be interpreted as an orchestration
scenario, where the steps in the process are orchestrated. An orchestration scenario is
different than the scenario described above in the sense that the orchestration scenario is
about the steps of a process, whereas a general scenario is analogous to defining the scope
of what data to retrieve as described above.

3.4.1. Use Cases

• UC1: As a data provider, I want to bring the data into the framework so that they are
available to other stakeholders for research and investigation.

• In this use case, a potential stakeholder can be a government organization that wishes
to make a dataset D that it owns for a domain D and/or continuously performs
investigations related to a particular “entity being investigated”. Therefore, with the
help of the “on-boarding” process, the stake-holder along with the technical support
should be able to declare related “concepts” domain terms, define a technical schema S
for D, a conceptual schema S’, and provide an API (application programming interface)
to access the data by the framework or place it in a raw data storage (again making it
accessible by the framework).

• UC2: As a data provider, I want to bring the data into the framework so that I can use
them in combination with other publicly available datasets, but I want my dataset to
be private.

• In this case, the process is similar to above; however, this time, the data are private
(tenant support) and can be queried through the service layer in combination with
other publicly available datasets based on scenarios.

• UC3: As a stakeholder, I want to know the available datasets related to the domain
breast cancer [28] and the timelines of trials in the last 3 years of investigation in this
domain for the entities being investigated correlated with “entities being observed.”

• This particular use case deals with querying data that is correlated. The process
starts by first using the on-boarding service to query existing available data using
business/conceptual terms. This will enable the stakeholder to choose which datasets
he/she is interested in. Then, a scenario is created based on the use case definition
and forwarded to the service layer for execution. The service layer, with pre-executed
correlation and mapping, answers the query in a streaming fashion.

3.4.2. Scenarios

• S1: As a user (stakeholder), I want to get the set of instances {I} (data) for the last two
months for the “entities being observed” E in the “viral disease” domain D with a
sub-domain “COVID-19”.
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• S2: As a user, I want a timeline (an analysis) of the entities E being observed in the
“breast cancer” sub-domain for data providers from the Americas (or for a specific
clinical trial data provider).

• S3: I want to get the analysis of successful trials in the last two years in the “intestinal
disease” domain.

• S4: I want to get all the instances {I} for all the entities {E} in the “cancer” do-
main D with trial outcomes (see [23,24] for details on outcomes) to train a machine
learning algorithm.

• S5: As a pharmaceutical company analyst (stakeholder), I want to see the duration of
affiliation of all investigators from sites in Europe associated with clinical trials in the
domain of “cancer”.

Online: These are the analyses, the scenarios (see examples in the following “Scenarios”
section), that will be executed by the “data service” and might result in two options:
(1) when the analysis (query) completes, stream/send the result back to the requested;
(2) store the result in the data lakehouse and stream/send the result back. The second case
needs to be implemented such that one can cache the analysis result in memory; if the
request is repeated after a certain threshold (or another such metric can be defined), one
can persist the analysis result to the data lakehouse.

All such analysis results at the time of deciding to persist to the data lakehouse
will first go through the process of on-boarding. As described in the on-boarding pro-
cess, each dataset that lands in the data lakehouse must have a schema S. In this case,
a schema is registered, semantically annotated, and then the dataset is written to the
data lakehouse for reasons described in the framework description and the ‘derived’ data
sources description.

Figure 6 shows the sequence of activities that are performed to execute a scenario by
interacting with the platform. Here, the internals of the platform are hidden, and only the
interactions between components are shown.

Healthcare 2023, 11, x FOR PEER REVIEW 15 of 20 
 

 

Online: These are the analyses, the scenarios (see examples in the following “Scenar-
ios” section), that will be executed by the “data service” and might result in two options: 
(1) when the analysis (query) completes, stream/send the result back to the requested; (2) 
store the result in the data lakehouse and stream/send the result back. The second case 
needs to be implemented such that one can cache the analysis result in memory; if the 
request is repeated after a certain threshold (or another such metric can be defined), one 
can persist the analysis result to the data lakehouse. 

All such analysis results at the time of deciding to persist to the data lakehouse will 
first go through the process of on-boarding. As described in the on-boarding process, each 
dataset that lands in the data lakehouse must have a schema S. In this case, a schema is 
registered, semantically annotated, and then the dataset is written to the data lakehouse 
for reasons described in the framework description and the ‘derived’ data sources descrip-
tion. 

Figure 6 shows the sequence of activities that are performed to execute a scenario by 
interacting with the platform. Here, the internals of the platform are hidden, and only the 
interactions between components are shown. 

 
Figure 6. Sequence of activities in a scenario. 

Similarly, Figure 7 shows the process of a scenario based on parameters provided in 
the scenario. For example, if the scenario asks for the analysis of sites of clinical trials, then 
the data service invokes those particular components to perform those functions seam-
lessly, and so on. 

Figure 6. Sequence of activities in a scenario.

Similarly, Figure 7 shows the process of a scenario based on parameters provided in
the scenario. For example, if the scenario asks for the analysis of sites of clinical trials, then
the data service invokes those particular components to perform those functions seamlessly,
and so on.
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4. Experiments, Results and Evaluation

This section presents implementation details, followed by results and the evaluation
of results and computational advantages.

4.1. Implementation

A prototype version of the proposed framework is implemented with each component,
as presented in Figure 1, to reflect the use cases and provide a minimal viable prototype
(MVP). More specifically, we took the case of managing “clinical” trials as a case study
for this prototype. Clinical trial data are obtained from the aforementioned repositories
available publicly, where one can obtain a history of trials as well. The specific clinical
trial repositories used are BSMO trials and CityGov trials, and for academic research
manuscripts, we used research articles from well-known research journals such as “Journal
of Clinical Investigation” [29] and Sage Journals [30]. We used Apache Hudi as the data
storage format (using parquet file format), which is compact, provides time-series data
checkpointed by any update/upserts, and provides efficient query processing using the
query engine Spark. Apache Hudi was used since it supports parquet, which is format-
agnostic, succinct, and fast.

For storage of data, Azure blob storage is used as the clinical datalake, where the raw
data are stored, and it has also been used to store the ingested data in the Hudi format
as Hudi tables (which are time-series and checkpointed), which is also called the data
lakehouse. This storage selection is purely optional, and it can be any file system storage.
Scala is used as a programming language, with Apache Kafka as a message-passing and
data streaming framework and Apache Spark as a distributed data processing framework.
Moreover, Lightbend cloudflow is integrated with these technologies and hence used in
the replacement of microservices.

The process of data acquisition, management, and processing takes place as follows:
First, we scrape data from available public repositories provided by providers and log it
to two places: Kafka messages and datalake. Then, we ingest the data from Kafka (each
Kafka message conforms to a schema defined in the Avro format specific for that dataset)
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in a streaming pipeline integrating Kafka and write to the data lakehouse (bottom layer
in Figure 1). This step brings any format of data into a single format, and we can use our
processing framework Spark with ease to perform any type of analytics (next layer from
bottom in Figure 1).

We implemented a data analysis service (3rd layer from bottom in Figure 1) to correlate
information from profiles, clinical trials, and trial subjects to identify the clinical profiles
of people. This included various forms of information extraction and knowledge creation,
such as the creation of the ontology to construct the relationship between these various
datasets. Similarly, we also implemented a front-end to register assets (datasets and
providers) so that we could later query and prove that such a concept does exist. We
leveraged the ‘datahub’s data model [28] for that purpose and found that it is one of the
best metadata models for registering and managing assets linked with glossary terms and
business vocabularies as well as technical vocabularies and defining roles and ownerships.

Moreover, the clinical trial data contain textual data wherein personnel and investiga-
tion site profiles repeat. This type of data needs correlational and contextual analysis to
deduce the real person from it. That is mainly because the person profiles are manually
filled in by various people in the trial data or because the people are active in various sites
and organizations, and hence a single profile can have a lot of variations. For example,
a person’s name “Kasper Sukre” can be written as “K. Sukre”, “Kasper S”, “K. S”, etc.
We therefore needed to resolve all those names to a single person entity. This entity is
essentially a person entity in the relational schema of the clinical trial data that we take as a
case study.

4.2. Results and Evaluation

We implemented textual person profile prediction using clustering algorithms (2nd
layer from the top in Figure 1). We compare the results of two clustering algorithms
with two different types of distance algorithms. In the first distance algorithm, since a
person profile contains various features such as name, address, cell, email, association, and
similarly, address and association can have further sub-fields; therefore, we compute the
edit distance between each sub-field separately, which is a nested distance. Finally, we
take an average of all distances. In the second distance algorithm, we apply a generic edit
distance to the whole person profile as a string and then apply the clustering algorithms.
Table 1 shows the results of the two algorithms for the two variants separately.

Table 1. The results of the two clustering algorithms for two different variants of distance algorithms.

General Edit Distance Feature-Wise Edit Distance

K-Means 79.43% 85.4%
EM 83.54% 88.9%

As can be seen in Table 1, the algorithm EM consistently performs better than K-Means
on both variants of the distance algorithm. Since the algorithms are not 100% accurate, and
it makes sense, we therefore employ a quality check on the results to verify the final person
recommendation that is also required since we cannot completely rely on algorithms for
personnel data.

Next, we must also indicate that we were able to stream data from the scraper that
scrapes the data from various repositories simultaneously in parallel and were able to
write to the same table (the Apache Hudi table) time-series data at around 5 times faster
than normal upserts to a relational database. Since the framework is designed to poll data
sources regularly and as soon as data are available, it is seamlessly brought into the system
using the automated pipeline, and the algorithms to link and personalize are performed
on the fly on the incoming data. Note here that, when any new data arrives in the system,
the algorithms implemented above (analytical and predictive) are also part of the pipeline
orchestration. Therefore, this avoids any cron jobs, periodic, and/or manual jobs to perform
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these tasks, and if necessary, data can already be streamed or made available to applications
such as Kafka messages. This kind of automation, fusion, and parallelism makes this
framework unique in that it speeds up the manual process used by the existing systems that
follow the process of scraping data, ingesting it periodically, and then running cron jobs to
perform analytics. Apart from the automation of the process, existing systems, as explained
in the state-of-the-art, also lack data fusion of trial data, academic articles, Medical Subject
Heading ontologies, and linking profiles.

5. Discussion

In this paper, we present a healthcare framework that enables us to handle health-
related data. When clinical trials are under investigation and need an advanced and
automated system to speed up the trial process and monitor the treatments, investigations
at sites, their outcomes, and other related aspects of trial management, we presented a
framework that streams data from various sources, fuses the data semantically, applies
algorithms to resolve duplicates, and handles the history of events. This does not only
speed up the trial analysis process compared to the existing methods; it also enriches
the trial analysis and gives a complete context with the latest research from academia,
semantic ontologies, and a holistic view of events. The framework is designed to support
the declaration of schemas (type-level information) and metadata related to various data
that comes into the framework. This enables exploring any analysis being made over the
data and making it accessible to third parties as well as government and other agencies to
use data from data providers, express interests, and/or bring their own data to the system
to be used by other such users of the system.

We have presented scenarios in which this framework can be utilized. Not limited
to these scenarios, the framework can be extended to support a variety of specialized
data systems; for example, they include complex event processing, weather monitoring,
and traffic and air management, among others. This is all because we have leveraged the
data lakehouse technology and provided abstractions that can be used for any kind of
querying of the data. Moreover, the framework is designed to support data lineage, which
helps in achieving data accuracy and provenance. This is mainly obtained by keeping
track of each transformation and operation performed within the framework, and thus it
can be reproduced either at the operation level, data level, or type level. All these help
in evidence-based decision-making and thus prove that the framework conforms to and
fulfills the critical needs of a system needed for healthcare-related sensitive data.

Furthermore, the framework is designed to be extensible, and it envisions the inclusion
of automated feature engineering required to generate recommendations from historical
data based on statistical models and methods. This can further be used to plug and
play models in the framework, which leads to using data from one model provided by
a model provider or a third party using the model and data from separate users. Hence,
this framework in this paper is limited to clinical data processing, lineage tracking, and
governance and applies and extends to other areas of research as well.

6. Conclusions

In this research article, we presented a detailed overview of the need for a frame-
work for clinical investigation to speed up the process of clinical trials for medical equip-
ment, vaccines, and other such products, especially in the event of pandemics such as
COVID-19 [4,31]. This is necessary since a delay in such matters causes the death of hu-
mans, and saving a single life is analogous to saving humanity. Moreover, the presented
framework has the potential to provide evidence-based data analysis through lineage
tracking; data governance capability to explore, visualize semantics and links, and possibly
make decisions among various data sets available in the framework for use; and process
data at state and in motion. We have presented use cases that showcase the usage of the
framework in different scenarios and how it can be used by both private, public, and
private-public organizations. The framework is extendable, encapsulates the abilities to
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include other domains, provides support for semantic querying at the governance level (i.e.,
at the data assets and type assets level), and is designed towards a data and computation
economic model. Finally, it supports evidence-based decision tracking, and hence nothing
is lost or unknown in the process of evaluation and analysis, which follows the FAIR
principle presented earlier in the introduction section. Future work includes a detailed
investigation of the specifics of each part of the framework in the domains of semantics,
learning models, and the incremental evaluation of queries that need to be evaluated on
updates in real-time data processing.

Author Contributions: Conceptualization, methodology, and validation, M.H.S. and M.I.; formal
analysis, M.H.S.; resources, M.A.; data curation, M.A. and M.I.; writing—review and editing, M.H.S.
and M.I.; funding acquisition, M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Jouf University under
Grant number DSR-2022-RG-0101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Friedman, L.M.; Furberg, C.D.; DeMets, D.L.; Reboussin, D.M.; Granger, C.B. Fundamentals of Clinical Trials; Springer:

Berlin/Heidelberg, Germany, 2015.
2. Clinical Trials by U.S National Library of Medicine. Available online: https://www.clinicaltrials.gov/ (accessed on 29

August 2022).
3. BSMO Trials by The Belgian Society of Medical Oncology. Available online: https://www.bsmo.be/clinical/clinical-trials/

(accessed on 29 August 2022).
4. Plug, R.; Liang, Y.; Basajja, M.; Aktau, A.; Hadi, P.; Jati, P.; Amare, S.Y.; Taye, G.T.; Mpezamihigo, M.; Oladipo, F.; et al. FAIR

and GDPR Compliant Population Health Data Generation, Processing and Analytics. In Proceedings of the 13th International
Conference on Semantic Web Applications and Tools for Health Care and Life Sciences—SWAT4HCLS, Leiden, The Netherlands,
10–14 January 2022.

5. Meinert, C.L. Clinical Trials: Design, Conduct and Analysis; Oxford Academic: New York, NY, USA, 2012; Volume 39.
6. Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data

2019, 6, 54. [CrossRef]
7. Dziura, J.D.; Post, L.A.; Zhao, Q.; Fu, Z.; Peduzzi, P. Strategies for dealing with missing data in clinical trials: From design to

analysis. Yale J. Biol. Med. 2013, 86, 343. [PubMed]
8. Bahri, S.; Zoghlami, N.; Abed, M.; Tavares, J.M.R. Big data for healthcare: A survey. IEEE Access 2018, 7, 7397–7408. [CrossRef]
9. Schulz, S.; Stegwee, R.; Chronaki, C. Standards in healthcare data. In Fundamentals of Clinical Data Science; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 19–36.
10. Hussain, M.; Afzal, M.; Ali, T.; Ali, R.; Khan, W.A.; Jamshed, A.; Lee, S.; Kang, B.H.; Latif, K. Data-driven knowledge acquisition,

validation, and transformation into HL7 Arden Syntax. Artif. Intell. Med. 2018, 92, 51–70. [CrossRef] [PubMed]
11. Ethier, J.F.; Curcin, V.; Barton, A.; McGilchrist, M.; Bastiaens, H.; Andreasson, A.; Rossiter, J.; Zhao, L.; Arvanitis, T.;

Taweel, A.; et al. Clinical data integration model. Methods Inf. Med. 2015, 54, 16–23. [PubMed]
12. Brundage, M.; Blazeby, J.; Revicki, D.; Bass, B.; De Vet, H.; Duffy, H.; Efficace, F.; King, M.; Lam, C.L.; Moher, D.; et al. Patient-

reported outcomes in randomized clinical trials: Development of ISOQOL reporting standards. Qual. Life Res. 2013, 22, 1161–1175.
[CrossRef] [PubMed]

13. Banos, O.; Bilal Amin, M.; Ali Khan, W.; Afzal, M.; Hussain, M.; Kang, B.H.; Lee, S. The Mining Minds digital health and wellness
framework. Biomed. Eng. Online 2016, 15, 165–186. [CrossRef] [PubMed]

14. Alballa, N.; Al-Turaiki, I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review.
Inform. Med. Unlocked 2021, 24, 100564. [CrossRef] [PubMed]

15. Majumder, J.; Minko, T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021, 23, 14.
[CrossRef] [PubMed]

16. Hussain, M.; Khattak, A.M.; Khan, W.A.; Fatima, I.; Amin, M.B.; Pervez, Z.; Batool, R.; Saleem, M.A.; Afzal, M.; Faheem, M.; et al.
Cloud-based Smart CDSS for chronic diseases. Health Technol. 2013, 3, 153–175. [CrossRef]

17. Zhu, D.; Li, D.; Carterette, B.; Liu, H. An Incremental Approach for MEDLINE MeSH Indexing. In Proceedings of the BioASQ@
CLEF, Valencia, Spain, 27 September 2013; Volume 1094.

https://www.clinicaltrials.gov/
https://www.bsmo.be/clinical/clinical-trials/
https://doi.org/10.1186/s40537-019-0217-0
https://www.ncbi.nlm.nih.gov/pubmed/24058309
https://doi.org/10.1109/ACCESS.2018.2889180
https://doi.org/10.1016/j.artmed.2015.09.008
https://www.ncbi.nlm.nih.gov/pubmed/26573247
https://www.ncbi.nlm.nih.gov/pubmed/24954896
https://doi.org/10.1007/s11136-012-0252-1
https://www.ncbi.nlm.nih.gov/pubmed/22987144
https://doi.org/10.1186/s12938-016-0179-9
https://www.ncbi.nlm.nih.gov/pubmed/27454608
https://doi.org/10.1016/j.imu.2021.100564
https://www.ncbi.nlm.nih.gov/pubmed/33842685
https://doi.org/10.1208/s12248-020-00532-2
https://www.ncbi.nlm.nih.gov/pubmed/33400058
https://doi.org/10.1007/s12553-013-0051-x


Healthcare 2023, 11, 1713 19 of 19

18. Ikeda, R.; Widom, J. Data Lineage: A Survey; Technical report; Stanford InfoLab: Stanford, CA, USA, 2009.
19. Mobley, A.; Linder, S.K.; Braeuer, R.; Ellis, L.M.; Zwelling, L. A survey on data reproducibility in cancer research provides insights

into our limited ability to translate findings from the laboratory to the clinic. PLoS ONE 2013, 8, e63221. [CrossRef] [PubMed]
20. The Apache Hudi by Apache Foundation. Available online: https://hudi.apache.org/ (accessed on 20 August 2022).
21. De Lucia, A.; Xhelo, E. Data Science Pipeline Containerization. 17th SC@ RUG 2019, 2020, 39.
22. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
23. Ali, R.; Afzal, M.; Hussain, M.; Ali, M.; Siddiqi, M.H.; Lee, S.; Kang, B.H. Multimodal hybrid reasoning methodology for

personalized wellbeing services. Comput. Biol. Med. 2016, 69, 10–28. [CrossRef] [PubMed]
24. Lipscomb, C.E. Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 2000, 88, 265. [PubMed]
25. Murthy, S.; Bakar, A.A.; Rahim, F.A.; Ramli, R. A comparative study of data anonymization techniques. In Proceedings of

the 2019 IEEE 5th International Conference on Big Data Security on Cloud (BigDataSecurity), High Performance and Smart
Computing (HPSC) and Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 306–309.

26. Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, Athens,
Greece, 12–16 June 2011; Volume 11, pp. 1–7.

27. Davis, A.L. Akka streams. In Reactive Streams in Java; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–70.
28. Mamounas, E.P. NSABP breast cancer clinical trials: Recent results and future directions. Clin. Med. Res. 2003, 1, 309–326.

[CrossRef] [PubMed]
29. Available online: https://journals.sagepub.com/home/ctj (accessed on 28 May 2023).
30. Available online: https://www.jci.org/ (accessed on 28 May 2023).
31. Platto, S.; Xue, T.; Carafoli, E. COVID19: An announced pandemic. Cell Death Dis. 2020, 11, 799. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0063221
https://www.ncbi.nlm.nih.gov/pubmed/23691000
https://hudi.apache.org/
https://doi.org/10.1145/2934664
https://doi.org/10.1016/j.compbiomed.2015.11.013
https://www.ncbi.nlm.nih.gov/pubmed/26705863
https://www.ncbi.nlm.nih.gov/pubmed/10928714
https://doi.org/10.3121/cmr.1.4.309
https://www.ncbi.nlm.nih.gov/pubmed/15931325
https://journals.sagepub.com/home/ctj
https://www.jci.org/
https://doi.org/10.1038/s41419-020-02995-9
https://www.ncbi.nlm.nih.gov/pubmed/32973152

	Introduction 
	State of the Art 
	Data Management 
	Data Interoperability and Standardization 
	Data Analysis 
	Comparison of the Proposed Solution to State-of-the-Art 

	Methodology 
	Preliminaries 
	Architecture 
	Processes and Methods 
	Data Sources 
	Data on-Boarding and Discovery Process 
	Data Management Process 
	Data Correlation 
	Data Analysis 
	Data Services 
	Lineage and Reproducibility 

	Use Cases and Scenario 
	Use Cases 
	Scenarios 


	Experiments, Results and Evaluation 
	Implementation 
	Results and Evaluation 

	Discussion 
	Conclusions 
	References

