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Abstract: A spatial survival analysis was performed to identify some of the factors that influence
the survival of patients with COVID-19 in the states of Guerrero, México, and Chihuahua. The data
that we analyzed correspond to the period from 28 February 2020 to 24 November 2021. A Cox
proportional hazards frailty model and a Cox proportional hazards model were fitted. For both
models, the estimation of the parameters was carried out using the Bayesian approach. According
to the DIC, WAIC, and LPML criteria, the spatial model was better. The analysis showed that the
spatial effect influences the survival times of patients with COVID-19. The spatial survival analysis
also revealed that age, gender, and the presence of comorbidities, which vary between states, and the
development of pneumonia increase the risk of death from COVID-19.

Keywords: bayesian methodology; proportional hazard frailty model; spatial correlation;

survival time

1. Introduction

The coronavirus disease COVID-19, which is caused by the SARS-CoV-2 virus (Severe
Acute Respiratory Syndrome Coronavirus type 2), was first reported in Wuhan City, China,
on 31 December 2019, and on 11 March 2020, COVID-19 was declared a pandemic by the
World Health Organization (WHO) [1]. The first person with COVID-19 in México was
detected on February 27 of the same year [2].

México is a country with a high prevalence of comorbidities, such as hypertension,
obesity, and diabetes. Given that it has been shown that the existence of comorbidities
associated with SARS-CoV-2 infection increases the risk of mortality [3], México faced a
severe crisis during the COVID-19 pandemic.

The risk factors of SARS-CoV-2 have been investigated using the survival analysis
methodology [4]. In México, previous studies have investigated the risk factors associated
with deaths due to COVID-19 using survival analysis. It was reported that male gender;
advanced age; the presence of comorbidities such as chronic kidney disease, diabetes, and
arterial hypertension; the development of pneumonia; hospitalization; admission to an
intensive care unit (ICU); intubation; geographic location; and the health sector where
the patient was treated are associated with lower survival in patients affected by SARS-
CoV-2 [5-7]. Furthermore, [8] found that poorer population groups have lower COVID-19
survival rates.

Survival data are analyzed using proportional hazards regressions [9,10]. Considering
that data can come from different locations, regions, or zones and that the number of cases

Healthcare 2024, 12, 306. https:/ /doi.org/10.3390 /healthcare12030306

https://www.mdpi.com/journal /healthcare


https://doi.org/10.3390/healthcare12030306
https://doi.org/10.3390/healthcare12030306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0002-5488-9656
https://orcid.org/0000-0001-9035-2699
https://orcid.org/0000-0001-5531-8989
https://orcid.org/0000-0003-4120-5718
https://orcid.org/0000-0001-9428-3619
https://orcid.org/0000-0002-8516-4738
https://doi.org/10.3390/healthcare12030306
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare12030306?type=check_update&version=1

Healthcare 2024, 12, 306

2 of 20

varies between locations, it is appropriate to include location information in a survival
model. The variability of data in space can be included in a survival model by means of a
random effect or term [11].

Statistical models that take geographic location into account are increasingly used
in survival analysis [12]. This is because they (i) incorporate spatial variation in survival
times [13]; (ii) implement the Bayesian approach for parameter estimation and the new tools
of Geographic Information Systems [13-15]; (iii) surpass the classical models by reducing
the bias in the estimates and incorporating geographic information of the data [16,17]; (iv)
introduce information about the spatial locations of the data, which plays an important
role in predicting survival as it serves as a proxy for unmeasured regional characteristics
such as access to medical care [13,18]; and (v) provide relevant information for public
health decision making, such as the extent and direction of disease spread or the locations
of disease hotspots, allowing control measures to be more effective and facilitating the
adequate allocation of health resources [19].

Some papers using survival analysis in the health field that take the spatial infor-
mation of data into account include Bayesian spatial survival modeling for dengue fever
in Indonesia [20]; modeling the time to detection of urban tuberculosis in Portugal [21];
modeling of spatially correlated survival data for people with different types of cancer [22];
modeling of spatial variation in leukemia survival data [23]; parametric normal transforma-
tion models for spatially correlated, right-censored survival data [24]; Bayesian Weibull and
Cox semi-parametric spatial models to describe a data set on dengue hospitalization [25];
an estimate of recovery times of COVID-19 patients in India [26]; a hierarchical conditional
autoregressive model for colorectal cancer survival data [27]; a semi-parametric model with
the cure fraction for multivariate time-to-event data [28]; a proportional hazards spatial
frailty model to determine risk factors associated with under-five mortality in Kenya [29];
a hierarchical Bayesian model to jointly model longitudinal and survival data considering
the effects of spatial and temporal frailty for AIDS data [30]; and a proportional hazards
models with marginal cure rates to identify risk factors for tooth loss and predict the
remaining useful life of a patient’s teeth [31].

Previous studies conducted in México did not consider the spatial effect on the survival
of patients with COVID-19. Therefore, this paper aims to investigate the risk factors
associated with COVID-19 deaths in three Mexican states, considering the spatial variability
of the data in the statistical model.

2. Study Area

México is a country located in North America; it has 32 Federal Entities, also known
as states. Each state is made up of a certain number of municipalities; there are a total
of 2475 municipalities throughout the country. The state with the most municipalities is
Oaxaca with 570, followed by Puebla with 217, Veracruz with 212, and Jalisco and the State
of México with 125 municipalities each. The states with the fewest municipalities are Baja
California with five and Baja California Sur with five (Figure 1). In the year 2020, México’s
total population was 126,014,024 people [32]. The states with the highest populations were
the State of México with 16,992,418 people, México City with 9,209,944 people, Veracruz
with 8,062,579 people, Jalisco with 8,348,151 people, and Puebla with 6,583,278 people,
while the states with the lowest populations were Colima with 731,391 people and Baja
California Sur with 798,447 people (Figure 1).

According to the 2020 Population and Housing Census conducted by the National
Institute of Statistics and Geography (INEGI), the population density in México was 64 in-
habitants per square kilometer (hab/km?) [32]. The INEGI categorizes the 32 Federal
Entities as high, medium, or low population density (Figure 1).

The states with high population densities are Colima, Aguascalientes, Guanajuato,
Querétaro, Hidalgo, the State of México, Morelos, México City, Puebla, and Tlaxcala; the
states with medium population densities are Baja California, Sinaloa, Nuevo Leodn, Jalisco,
Michoacédn de Ocampo, Guerrero, Veracruz de Ignacio de la Llave (Veracruz), Tabasco,
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Chiapas, and Yucatan; and the states with low population densities are Baja California
Sur, Campeche, Chihuahua, Coahuila, Durango, Nayarit, Oaxaca, Quintana Roo, San Luis
Potosi, Sonora, Tamaulipas, and Zacatecas (Figure 1).
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Figure 1. States of México with number of municipalities (bars and left axis) and total population
(lines and right axis).

To analyze the survival times of people infected with SARS-CoV-2 in space, we worked
with the State of México (red polygon in Figure 2) with high population density, 125 mu-
nicipalities, and a population of 16,992,418; Guerrero (orange polygon in Figure 2) with
medium population density, 81 municipalities, and a population of 3,540,685; and Chi-
huahua (yellow polygon in Figure 2), with low population density, 67 municipalities, and a
population of 3,741,869.

Statistical analyses were performed in R software version 4.1.2 [33] (The R Foundation
for Statistical Computing, Vienna, Austria).

2.1. Database

This study used the open-access database of suspected cases of COVID-19 published
by the Ministry of Health of México through the Epidemiological Surveillance System for
Respiratory Viral Diseases [34]. In México, as of 24 November 2021, a cumulative total of
3,872,263 cases had been confirmed. However, the open-access database contains 2,028,000
records of confirmed COVID-19 patients reported by the laboratory of the National Network
of Epidemiological Surveillance Laboratories and private laboratories endorsed by the
Institute of Epidemiological Diagnosis and Reference [33]. The analyzed data correspond
to the period from 28 February 2020, to 24 November 2021.
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Figure 2. States of México selected for this study.

The variables considered in this study were age, gender, pneumonia, diabetes, chronic
obstructive pulmonary disease (COPD), cardiovascular disease (CVD), obesity, asthma,
chronic kidney disease (CKD), and hypertension (Table 1).

Table 1. Variables considered in this study.

Variable Code Description

Age Number of years Patient’s age

Gender 1: Male; 2: Female Identifies the gender of the patient
Pneumonia 1: Yes; 2: No Indicates if the patient has pneumonia
Diabetes 1: Yes; 2: No Indicates if the patient has diabetes
Chronic obstljuctlve 1: Yes; 2: No Indicates if the patient has COPD
pulmonary disease

Cardiovascular disease 1: Yes; 2: No Indicates if the patient has CVD
Obesity 1: Yes; 2: No Indicates if the patient has obesity
Asthma 1: Yes; 2: No Indicates if the patient has asthma
Chronic renal disease 1: Yes; 2: No Indicates if the patient has CKD
Hypertension 1: Yes; 2: No Indicates if the patient has hypertension

The patients’ sociodemographic variables were not considered because the Ministry
of Health, which collected the information, did not include them and there was no way to
obtain them for the patients considered in this study.

The response variable was survival time, which was defined as the time between the
date of symptom onset and patient death. The data were censored on 24 November 2021,
for people who were alive at the end of the study period.

2.2. Spatial Autocorrelation

To study the survival times in the three states of México, we first determined, using
the Moran index, the degree of spatial association that existed in the confirmed cases of
COVID-19. Moran’'s index (I) is defined as

my " Y wi (Y —Y) (Y - Y)

. 1)
Yy win (Y — V)2

Ic =

where Y; and Y; are the values of the variable Y in localities i and j, respectively; Y is the
average of the variable Y in the m localities under study; and w;; indicates the proximity
between units i and j. When locations i and j are neighbors, w;; = 1. Otherwise, w;; = 0.
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Fori = j, w;j = 1. The hypotheses set for I are given as follows: Hp: the spatial pattern of
Y is random vs. Hy: the spatial pattern of Y is not random. Hy is rejected if p-value < o.

In this work, the localities are the municipalities of each of the three states. Variable Y
is the number of confirmed cases of COVID-19. Two municipalities are neighbors if they
share at least one point on the border, which can be a vertex and/or at least one border
(Queen). Thus, the distance function is given by an indicator function, where w;; = 1 if the
municipalities share a vertex and/or at least one border. Also, w;; = 1if i = j. Otherwise,
wij =0and i,j = 1,...,m. With the w;; values, we constructed the weight matrix (W) of
dimension m x m, assuming that Y/ ; Z]m:1 = m. For the State of México, m = 125; for
Guerrero, m = 81; and for Chihuahua, m = 67. The calculation of the Moran index was
performed with the moran.mc function of the spded package in R statistical software version
4.1.2 (The R Foundation for Statistical Computing, Vienna, Austria) [33].

2.3. Statistical Model

Very often, time-to-event data are grouped into strata (clusters), such as clinical sites,
geographic regions, and so on. t;; is the time to death or censoring for the j-th subject at
location s;; i = 1,...,m; j = 1,...,n; and the total number of subjects under study is
n = Y7, n;. x;j is a vector of covariates of dimension p, and g = (B1,---, ,Bp)/ is a vector
of regression coefficients. The proportional hazard (PH) model (Model (2)) is shown below:

h(tij) = ho(t;)expP™i (2)

where  is the baseline hazard.
The proportional hazard frailty model (Model (3)) is shown below:

h(ti) = ho (tij) e it (3)

where v; is an unobserved frailty associated with s; and is designed to capture differ-
ences among the strata. In the spatial survival analysis, subjects are in m distinct regions

(51, -+, 5m)-
The PH frailty model has a survival function:

eﬁ"fz‘/”i

S(tij) = So(tij) @
with a density function:

ﬁ’xij+vi_1

fr(tij) = ePortoisy (t;)° folti) ©

where Sy(+) is the baseline survival function and fy(+) is the baseline density function,
which are assumed to be unique for all individuals. For this study, t;; values are right-
censored (ui]-, oo). tij is a survival time if d;j = 1, and it is a censoring time if d;j = 0 [35].
The likelihood of a PH frailty model is given by

L= TTLT )15 ) ©
i

2.3.1. Prior Distributions

The parameters of the PH model have the following prior distributions:
B ~ Np(Bo, So) 7)
So(+) | «,0 ~ TBPL(a,Se(-)), & ~ T'(ag, bo), 0 ~ N2(6o, Vo) ®)

(01, ., om) | T, ~ GRF(TZ, gb),T_z ~T(az,be), ¢ ~T(ag, by) )
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where TBP] refers to the transformed Bernstein polynomial [35]. For a fixed positive
integer (L), the prior TBPy («, S¢(+)) is defined as

L
So(t) = ) wil(Se(t) | j,L —j+1),wy ~ Dirichlet(a,...,x) (10)
=1

where w; = (wy, ..., wr) is a vector of positive weights, I(- | 4,b) is a beta cumulative
distribution function with parameters (a,b), and {Sg(-) : 0 € O} is a parametric family of
survival functions with support on positive reals. Furthermore, a log-logistic distribution
for Sp(t) is assumed; that is,

-1

So(t) = {1 + (eel tf” (92)} (11)

where 8 = (61,6,)’.

For v; = v(s;), a Gaussian random field (GRF) {v(s),s € S} is assumed, where
v = (vq,.. .,vm)/ follows a multivariate Gaussian distribution, v ~ Ny, (0, TZR), 72
measures the amount of spatial variation across locations, and the (i, j) element of R is
modeled as

R[i,f] = p(sirs;:¢) = exp{—(9 Il si = s; )"} (12)

which is a correlation function controlling the spatial dependence of v(s). ¢ > 0is a range
parameter controlling the spatial decay over distance, k € (0, 2] is a shape parameter, and
| si —s; || is the distance between s; and s;. The prior GRF (7%, ¢) is defined as

0; | {Z)]}]#l ~ N(_Z{]]7éz} 1’1']'7]]'/7’1‘1'/ ’172/1’1'1‘) i=1,...,m (13)

where 7;; is the (i, j) element of R [35].
The spatial dependence of COVID-19 survival times is captured in the covariance
structure (R) of the Gaussian random field v, which is assumed to be a stationary process.

2.3.2. Posterior Distributions

For Equation (2), the likelihood function is

S

m_ N s 705
Leoe = [T [ho(t)e1) 'S0 1) (14)
i
Therefore, the posterior distribution is

TlCox & LCoxT[(w] | 0()7'[(1)()7'[([;)7'[(6) (15)

For Equation (3), the likelihood function is

m_ M Blx;to; 5ij gﬁ’xij+vi
Lspatiar = [ [T 1 {ho(tij)e i ’} So (tij) (16)
i
Therefore, the posterior distribution is
nSputiul & LSpatialn(wf | a) n(a)n(ﬁ)n(ﬂ)n(r’z) 7'[((1)) (17)

A Bayesian fitting of the proportional hazard frailty model was obtained using R
software and several libraries, such as spBayesSurv [36]. The function survregbayes set the
following hyperparameters as defaults: By = 0, Sp = 10'°I,,, 6g = 6, Vy = 10V, a9 = 1,
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by =1, a; = 0.001, and by = 0.001, where 8 is the maximum likelihood estimate of 6 and
Cov(0) = V.

To analyze the survival times of people with COVID-19, the proportional hazard frailty
model was used (Model (3)). Right censoring was used, and the model’s covariates were
age, gender, pneumonia, diabetes, chronic obstructive pulmonary disease, cardiovascular
disease, obesity, asthma, chronic kidney disease, and hypertension. For Guerrero, the
analysis was carried out with the 37,278 registered cases of COVID-19; for Chihuahua, we
worked with the 45,954 observed cases of COVID-19; and for the State of México, a sample
of 100,000 observations out of the 176,268 available observations were used. The initial
values of the hyperparameters of the prior distributions (Equations (5) and (6)) were set
atay = 4 and by = 4 for Chihuahua and the State of México and at ag = 1 and by = 1 for
Guerrero. For the three states, the hyperparameters were fixed at L = 15, a; = 5, by =5,
ay = 6,and by = 3. For the estimation of the parameters of Model 3, Markov Chain Monte
Carlo MCMOC) algorithms were used, which consisted of two chains of 25,000 iterations,
with a thinning of 10 and a burning of 5000 samples.

The MCMC procedure is carried out with the Gelman and Rubin convergence diag-
nostic (R) [37,38], which is implemented in the library coda [39]. Values of R close to one
give evidence of the convergence of the MCMC [37]. Another diagnostic is the MCMC
traceplot (plot of the values in the simulated chains vs. the iteration). Good mixing of the
chains indicates convergence of the MCMC. Cox-Snell residuals [35] can be used to verify
the proportional hazards assumption [40]. However, testing this assumption numerically
or graphically is complicated since the proportional hazards hypothesis only approximates
the correct model for one covariate and any formal test based on a sufficiently large sample
will reject the null hypothesis of proportionality [41]. In any case, Cox—Snell residuals
should be considered to determine the model fit [42].

A classical survival analysis was also performed using the Cox model (Model (2)). For
the three states, a9 = 6, bp = 6, L = 15, ar =5, by =5, ap = 6, and by = 3 were considered.
However, only the results of the best model are reported, which for the three states, was
the proportional hazard frailty model. We used three criteria to compare the fitted models:
the deviance information criteria (DIC) [43], the Watanabe—Akaike information criterion
(WAIC) [44], and the log pseudo marginal likelihood (LPLM) [45]. Generally, smaller DIC
and WAIC values show good model fitting, while larger LPML values indicate a better
predictive performance of a model.

The figures were created using the INEGI's shapefiles (https:/ /www.inegi.org.mx/
app/biblioteca/ficha.html?upc=889463807469 (accessed on 26 November 2021)), which are
freely available for academic use and other non-commercial uses [46].

3. Results
3.1. State of México

As of 24 November 2021, 176,268 confirmed cases of COVID-19 were registered in the
State of México. The municipalities with more than 10,000 cases were located in the east and
center of the state: Ecatepec de Morelos (22,613 cases), Nezahualcdyotl (16,992 cases), Toluca
(13,647 cases), Naucalpan de Judrez (12,450), and Tlalneplantla de Baz (10,605 cases). The
municipalities with less than 20 cases were located in the southeast of the state, including
Zacazonapan (18 cases), Ixtapan del Oro (14 cases), and Otzoloapan (12 cases) (Figure 3).

According to the Moran index, in the State of México, confirmed COVID-19 cases were
more correlated in the municipalities that are neighbors than in the municipalities that are
not (Ig = 0.363, p — value < 0.05). Therefore, it was convenient to use the proportional
hazard frailty model to model COVID-19 survival times.

The estimations of the posterior means and medians of the parameters, as well as their
95% credible intervals (Crls), and the Gelman and Rubin convergence diagnostic values for
the spatial model (proportional hazard frailty model) of the State of México are presented in
Table 2. Because the values of R are close to 1, there is convergence in the model chains [37].
The chains show good mixing in Figure A1l (Appendix A). However, there is no indication


https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463807469
https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463807469

Healthcare 2024, 12, 306

8 of 20

that the Cox assumption is violated since no large deviations from the Cox-5Snell residuals
are observed in Figure A2 (Appendix A).
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Figure 3. Confirmed cases of COVID-19 in the municipalities of the State of México from 28 February
2020 to 24 November 2021.

Table 2. Estimated parameters of the spatial PH model for the State of México.

Variable Mean Median 95% Crl R CrI-Upper

Age 0.042 0.042 (0.041, 0.043) ** 1.01 1.02
Sex (male) 0.341 0.341 (0.308, 0.373) ** 1.00 1.01
Pneumonia 1.680 1.679 (1.645,1.719) ** 1.00 1.02
Diabetes 0.164 0.164 (0.130, 0.197) ** 1.01 1.03
COPD 0.017 0.017 (—0.066, 0.096) 1.00 1.00
CVD —0.096 —0.094 (—0.186, —0.011) ** 1.01 1.04
Obesity 0.129 0.129 (0.085,0.170) ** 1.01 1.07
Asthma —0.228 —0.226 (—0.389, —0.081) ** 1.02 1.08
CKD 0.463 0.463 (0.394, 0.535) ** 1.01 1.05
Hypertension 0.063 0.064 (0.026, 0.098) ** 1.00 1.00
& 0.068 0.066 (0.036,0.110) ** 1.66 297
2 1.551 1.464 (0.901, 2.692) ** 1.01 1.05
$ 0.273 0.263 (0.133, 0.470) ** 1.01 1.03

0, —4.167 4173 (—4.182, —4.131) ** - -

6, —0.059 -0.061 (—0.071, —0.045) ** - -

Crl: credible interval, R: Gelman and Rubin’s convergence diagnostic, CrI-Upper: upper limit of the credible
interval, ** 95% credible interval does not include zero.

Male gender and age were factors that increased the risk of death from COVID-
19, while the COPD variable was not significant. According to Table 2 and taking into
account the hazard ratios (HRs) of the regression coefficients, CKD (HR = 1.588, 95%
Crl: 1.482-1.707), diabetes (HR = 1.178, 95% Crl: 1.135-1.217), obesity (HR = 1.137, 95%
Crl: 1.088-1.1852), and hypertension (HR = 1.065, 95% Crl: 1.026-1.102) were the comor-
bidities identified as risk factors. People who developed pneumonia had an increased risk
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of death (HR = 5.365, 95% CrI: 5.181-5.578). The estimated risk of death was 20% lower for
people with asthma (HR = 0.796, 95% CrI: 0.677-0.922).

The estimates of TBP;, and GRF were also significant. The variance of the spatial term
v, which was given by 2 = 1.540, was significant, with a 95% CrI of 0.936-2.668 (Table 2).
Therefore, the inclusion of the random effect was relevant, which means that the risk of
death from COVID-19 was not homogeneous across the 125 municipalities of the State
of México.

Figure 4 shows the average values of posterior sampling for frailties (v;). We can
identify clusters of municipalities. The inhabitants of the eastern municipalities had the
highest risk of mortality adjusted for the effects of covariates.

100.5°W 100.0°W 99.5°W 99.0W 98.5W
N

20.0°N 1 L20.0°N

19.5°N - L 195N

19.0°N- L19.0°N
Frailties
I:] (-3.92—-3 56]
[ ] 356337
. (-3.37—-3.21]

18.5°N L1g.5°N
B 321275

I T W 50km
100.5°W 100.0°W 99.5°W 99.0°W 98.5°W

Figure 4. Quantiles of posterior samples for frailties in the State of México.

3.2. State of Guerrero

As of 24 November 2021, 37,278 confirmed cases of COVID-19 were registered in
Guerrero. The municipalities with more than 1000 cases were located in the south, center,
and north of the state: Acapulco de Juarez (14,639 cases), Chilpancingo de los Bravo
(6773 cases), Zihuatanejo de Azueta (1984 cases), Iguala de la Independencia (1664 cases),
and Taxco de Alarcon (1007 cases). The municipalities with the fewest cases were located
in the east and north of the state: General Canuto A. Neri (nine cases), Atlamajalcingo
del Monte (eight cases), Tlacoapa (six cases), Pedro Ascencio Alquisiras (four cases), and
Iliatenco (four cases) (Figure 5).

According to the Moran index, in the state of Guerrero, the confirmed COVID-19 cases
were more correlated in the municipalities that are neighbors than in the municipalities
that are not (I = 0.135, p — value < 0.05).

Estimates of the means and posterior medians of the parameters, their corresponding
95% Crls, and the values of R (which indicate convergence) are presented in Table 3.
Figure A3 (Appendix A) reveals that the MCMC chains of the estimated parameters
show good mixing. On the other hand, there is no indication that the Cox assumption is
violated since no large deviations from the Cox—Snell residuals are observed in Figure A4
(Appendix A).
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Figure 5. Confirmed cases of COVID-19 in the municipalities of Guerrero from 28 February 2020 to
24 November 2021.

Table 3. Estimated parameters of the spatial PH model for the state of Guerrero.

N

Variable Mean Median 95% Crl R CrI-Upper

Age 0.035 0.035 (0.033, 0.037) ** 1.00 1.00
Sex (Male) 0.191 0.192 (0.127, 0.252) ** 1.00 1.00
Pneumonia 2.819 2.818 (2.718,2.913) ** 1.00 1.01
Diabetes 0.304 0.305 (0.239, 0.368) ** 1.00 1.00
COPD 0.140 0.140 (0.001, 0.277) ** 1.00 1.00
CVD 0.206 0.206 (0.063, 0.354) ** 1.00 1.00
Obesity 0.219 0.218 (0.146, 0.296) ** 1.00 1.00
Asthma —0.120 —0.119 (—0.343,0.103) 1.00 1.02
CKD 0.196 0.197 (0.073, 0.325) ** 1.01 1.03
Hypertension 0.070 0.071 (0.004, 0.132) ** 1.00 1.00
a 0.076 0.072 (0.041, 0.126) ** 1.03 1.11
12 1.838 1.731 (1.072, 3.166) ** 1.00 1.00
¢ 0.083 0.077 (0.032, 0.163) ** 1.00 1.00

6 —4.315 —4.280 (—4.520, —4.198) ** - -

6, 0.174 0.174 (0.152, 0.208) ** - -

Crl: Credible interval, R: Gelman and Rubin’s convergence diagnostic, CrI-Upper: Upper limit of the credible
interval, ** 95% credible interval does not include zero.

Asthma was not significant, while male gender and age were factors that increased
the risk of death in patients with COVID-19.

Based on Table 3, the comorbidities associated with an increased risk of death from
COVID-19 were diabetes (HR = 1.355, 95% Crl: 1.270-1.444), obesity (HR = 1.243,
95% Crl: 1.157-1.344), CVD (HR = 1.228, 95% Crl: 1.065-1.424), CKD (HR = 1.217, 95%
Crl: 1.075-1.384), COPD (HR = 1.150, 95% CrI: 1.001-1.320), and hypertension (HR = 1.073,
95% Crl: 1.004-1.141), as well as the development of pneumonia (HR = 16.776, 95% CrI:
15.150-18.411).

The estimates of TBP; and GRF were also significant. The posterior mean of the
variance (22 = 1.753) of the spatial PH model was significant, with a 95% CrI of 1.015-3.255
(Table 3). Therefore, the random effects had an influence. This means that the risk of
COVID-19 was not homogeneous across the 81 municipalities of the state of Guerrero.

Figure 6 shows the quantiles of the average values of the posterior samples of the
spatial term v. We can identify clusters of municipalities. People with COVID-19 in the
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southern municipalities of Guerrero and, in general, those located on the periphery of the
state presented the highest mortality risk adjusted for covariate effects.

102°W 101°W 100°W 99°W 98°W
19.0°N 4 3 1 1 1 ——19.0°N
NN
18.5°N 4 F18.5°N
18.0°N 4 F18.0°N
17.5°N 4 F17.5°N
Frailties
17.0°N 4 I:l (74.93-—-4.77] F17.0°N
|:| (~4.77—-4.66]
(~4.66—-4.55]
(-4.55--4.29]
16.5°N - F16.5°N
100 km

102w 101w 100°W 9g°W 08°W
Figure 6. Quantiles of posterior samples for frailties in Guerrero.

3.3. State of Chihuahua

As of 24 November 2021, 45,954 confirmed COVID-19 cases were registered in the state
of Chihuahua. The municipalities with more than 1000 cases were located in the central
and eastern parts of the state: Chihuahua (12,582 cases), Delicias (1842 cases), Hidalgo del
Parral (1750 cases), and Cuauhtémoc (1687 cases). The municipalities with less than five
cases were located in the west of the state: Matachi (three cases), Huejotitlan (two cases),
and Maguarichi (one case) (Figure 7).

Although the confirmed cases of COVID-19 in the state of Chihuahua presented a
random pattern (I = —0.0423, p — value = 0.72), we used the proportional hazard frailty
model to study the COVID-19 survival times.

Table 4 presents the means and medians of the estimated parameters with their
respective 95% Crls and R values. The Gelman and Rubin statistic (R) has values close to
1, which implies that there is convergence in the Markov chains. Figure A5 (Appendix A)
shows a good mix of the chains of the parameters of the PH frailty model. On the other
hand, there is no indication that the Cox assumption is violated since no large deviations
from the Cox-Snell residuals are observed in Figure A6 (Appendix A).

As in the State of México and Guerrero, male gender and age were associated with a
higher risk of death. The variables that were not significant were COPD, CVD, and asthma.

According to Table 4, the comorbidities associated with a higher risk of death were
CKD (HR =1.704, 95% CrI: 1.521-1.883), diabetes (HR = 1.406, 95% Crl: 1.327-1.493), obesity
(HR = 1.320, 95% CrI: 1.235-1.407), hypertension (HR = 1.277, 95% CrI: 1.200-1.351), and
the development of pneumonia (HR = 5.408, 95% Crl: 5.103-5.754).

The variance of v (2 = 2.175) was significant, with a 95% CrI of 1.221-3.706 (Table 4).
The random effect had an influence, which means that the risk of COVID-19 was not
homogeneous across the 67 municipalities of the state of Chihuahua. In general, the
municipalities with the most cases of COVID-19 presented larger values of v. This was the
case for the municipalities in the north and southeast of the state of Chihuahua, which had
the highest risk of mortality adjusted for the effects of covariates (Figure 8).
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Figure 7. Confirmed cases of COVID-19 in the municipalities of Chihuahua from 28 February 2020 to
24 November 2021.

Table 4. Estimated parameters of the spatial PH model for the state of Chihuahua.

N

Variable Mean Median 95% Crl R CrI-Upper
Age 0.048 0.048 (0.046, 0.050) ** 1.01 1.03
Sex (male) 0.310 0.310 (0.257, 0.365) ** 1.00 1.00
Pneumonia 1.689 1.688 (1.630, 1.750) ** 1.00 1.02
Diabetes 0.341 0.341 (0.283, 0.401) ** 1.00 1.00
COPD 0.068 0.070 (—0.072, 0.209) 1.00 1.00
CVD —0.021 —0.022 (—0.130, 0.087) 1.00 1.00
Obesity 0.277 0.277 (0.211, 0.342) ** 1.00 1.00
Asthma —0.141 —0.144 (—0.313, 0.029) 1.00 1.00
CKD 0.531 0.533 (0.420, 0.633) ** 1.00 1.01
Hypertension 0.245 0.245 (0.183, 0.301) ** 1.00 1.00
& 0.099 0.096 (0.051, 0.160) ** 1.00 1.01
72 2.158 2.035 (1.261, 3.724) ** 1.00 1.01
) 0.099 0.093 (0.043, 0.185) ** 1.00 1.01
6, —4.384 —4.362 (—4.593, —4.286) **
6, 0.155 0.159 (0.133, 0.178) **

Crl: credible interval, R: Gelman and Rubin’s convergence diagnostic, CrI-Upper: upper limit of the credible
interval, ** 95% credible interval does not include zero.

Finally, according to the DIC and WAIC, models that incorporate the spatial effect
have better fits than models that do not (Table 5).

For the LPML, the three spatial models also have better predictive fits than the non-
spatial models. Therefore, the relevance of using the proportional hazard frailty models to
model COVID-19 survival times is verified.
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Table 5. DIC, WAIC, and LPML of models.
State PH Model DIC WAIC LPML
5 £ Méxd Spatial 186,805.2 186,809.3 —93,404.61
tate of Mexico Cox 193,904.9 194,385.3 —97,192.46
G Spatial 46,866.87 46,871.20 —23,435.59
uerrero Cox 48,396.29 48,395.89 —24,197.94
, Spatial 63,225.16 63,232.3 —31,616.2
Chihuahua Cox 65,013.54 65,014.24 ~32,507.11
10$?°W 10£?°W 107.°W 1OE§°W 105|°W 104.°W
32°N 4 F32°N
Frailties
(-5.21--4.47]
(-4.47—-4.23)
31°N1 (~4.23--4.08] [31’N
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Figure 8. Quantiles of posterior samples for frailties in Chihuahua.

4. Discussion

In this study, we present a different approach to modeling the spatial dependence of
the survival times of patients with COVID-19 in three Mexican states. Spatial heterogeneity,
sociodemographic variables, and individual characteristics, such as comorbidities, were
found to be associated with the severity of COVID-19, as reported in several investigations.

According to the DIC and WAIC, models incorporating a spatial term have a better
predictive fit than Cox models without a frailty term. This is because classical survival
models cannot account for the spatial correlation of the data and, therefore, should not
be considered as the standard model in research when geographic information is avail-
able [12,16]. These results are in agreement with those reported by Thamrin et al. [20], who
compared a Bayesian spatial survival model with a nonspatial one to analyze the factors
influencing the survival of dengue patients and found that the spatial model was more ap-
propriate. Daniel et al. [29] found that a spatial Cox proportional hazards model performed
better compared with a nonspatial model in identifying risk factors for under-five mortality.
In a study by Mahanta et al. [26] related to recovery times in patients with COVID-19, a
spatial survival model presented a better fit than a model without a frailty term.

According to the obtained results, men have a higher risk of dying than women, age
is associated with a higher risk, and certain comorbidities can increase this risk, which is
consistent with several studies reported in the literature [5-8,47].
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Diabetes, hypertension, obesity, and CKD were the only statistically significant co-
morbidities in the three spatial survival models. The impact of comorbidities on the risk
of death from COVID-19 is well known; however, the Mexican population has a high
prevalence of metabolic diseases, which makes it vulnerable to developing complications
from COVID-19. Mexico is second worldwide in the prevalence of obesity; according to the
ENSANUT 2018 survey, 75.2% of the Mexican population over 20 years of age is overweight
or obese. In addition, the prevalence of diabetes in Mexicans over 20 years of age is 10.3%,
and the prevalence of hypertension is 18.4% in patients over 20 years of age [48]. For
Chihuahua and the State of Mexico, CKD was associated with a higher probability of dying.
According to other studies on comorbidities recorded in Mexican data sets, CKD posed the
highest risk of severe COVID-19 in Mexico [49]. In contrast, in the state of Guerrero, the
highest risk was posed by diabetes.

It is worth mentioning that for the State of México, people who had asthma had a
lower risk of dying compared with people who did not have asthma. Previous studies
have reported this “protective” effect [50,51]. Some authors report that asthma may protect
against the fatal outcomes of COVID-19 due to several possible mechanisms, such as the use
of inhaled corticosteroids, chronic inflammation, reduced viral exposure due to protection,
and/or mucus hypersecretion [51,52].

People with pneumonia in the state of Guerrero had a higher risk of dying compared
with people in the states of Chihuahua and México (HR = 16.776, 95% Crl: 15.150-18.411).
A probable cause of this high risk of death is that Guerrero is one of the states with
the worst health services in México, both in the perception of its population and due
to a lack of supplies and medicines, and the lack of medical coverage is particularly
severe in rural areas, which could have led to poor care for people who developed severe
pneumonia. In fact, living in the southern region of the country is related to the severity
of COVID-19. These disparities based on geographic location and ethnicity are closely
linked to socioeconomic inequality: the southern region has higher rates of poverty and
a concentration of indigenous people, which shows how different forms of inequality
intersect [53].

There is evidence of geographic disparities in COVID-19 survival times in the three
states that were analyzed, which may be influenced by socioeconomic factors, demographic
factors, and health-related lifestyle factors. The impacts of these comorbidities vary by
geographic location, and some are more important predictors of the risk of COVID-19
death in some states than in others. This demonstrates the importance of using global and
local models, in this case, at the state level, to investigate the determinants of geographic
disparities in health outcomes and health services utilization [54,55].

To our knowledge, this is the first study in México to use the spatial survival anal-
ysis approach to study risk factors associated with COVID-19 deaths that exhibit spatial
variability across these three states.

The limitations of this work are as follows: First, the data set did not include clinical
variables related to the evolution of the diseases due to COVID-19, which could have been
useful for adjusting the model. Secondly, the variables that allowed us to identify the
presence of comorbidities were self-reported; therefore, misclassification bias is very likely.
Thirdly, the sociodemographic variables of the patients, such as age and income deciles,
or access to basic services, such as drinking water and drainage, among others, were not
recorded in the database. In future work, we intend to consider information related to
socioeconomic aspects at the municipal level, such as the level of social progress, the level
of urbanization, the level of poverty, and climatic conditions. In addition, this study will be
extended to more states in the country.

5. Conclusions

In this paper, the survival times of patients with COVID-19 in three states of the
Mexican Republic were studied, taking into account the geographical locations of the
cases, comorbidities, age, gender, and the development of pneumonia. Patient survival
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times differed by geographic location. Therefore, patient location is an important factor for
COVID-19 survival times. The proportional hazard frailty model performed better than
the Cox model. According to the results, the COVID-19 survival times of male patients
were shorter compared with women; age also influenced the survival times of patients with
COVID-19. Obesity, diabetes, CKD, and hypertension were comorbidities that increased
the risk of death from COVID-19 in all three states. In the State of México, patients with
asthma had a lower risk of dying than patients without asthma.
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Figure A1. Traceplots of the parameters in the proportional hazard spatial model for the State of
México. a: Transformed Bernstein polynomial parameter (Equation (10)); T2: spatial variation across
locations of GRF; ¢: range parameter.
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Figure A2. Cox-Snell residuals for the PH frailty model of the State of México.
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Figure A3. Traceplots of the parameters in the proportional hazard spatial model for the state of
Guerrero. a: Transformed Bernstein polynomial parameter (Equation (10)); T2: spatial variation
across locations of GRF; ¢: range parameter.
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Figure A4. Cox-Snell residuals for the PH frailty model of Guerrero.
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Figure A6. Cox-Snell residuals for the PH frailty model of Chihuahua.
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