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Abstract: Body surface potential mapping (BSPM) is a noninvasive modality to assess cardiac bioelec-
tric activity with a rich history of practical applications for both research and clinical investigation.
BSPM provides comprehensive acquisition of bioelectric signals across the entire thorax, allowing
for more complex and extensive analysis than the standard electrocardiogram (ECG). Despite its
advantages, BSPM is not a common clinical tool. BSPM does, however, serve as a valuable research
tool and as an input for other modes of analysis such as electrocardiographic imaging and, more
recently, machine learning and artificial intelligence. In this report, we examine contemporary uses of
BSPM, and provide an assessment of its future prospects in both clinical and research environments.
We assess the state of the art of BSPM implementations and explore modern applications of advanced
modeling and statistical analysis of BSPM data. We predict that BSPM will continue to be a valuable
research tool, and will find clinical utility at the intersection of computational modeling approaches
and artificial intelligence.
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1. Background

Body surface potential mapping (BSPM) has a long and rich history as a noninvasive
technique used to sample the heart’s electrical activity by sampling over the entire surface
of the thorax. There are numerous reviews that cover the history and utility of BSPM [1–7].
BSPM differentiates from other forms of electrocardiograms (ECGs) by its comprehensive
acquisition of bioelectric potentials with the goal of capturing all that is available from
the body surface, at the cost of substantial redundancy in information. BSPM was first
reported widely by Taccardi et al. as a tool to demonstrate the inadequacies of single-dipole
source models to describe cardiac electric sources [8] and many other investigators have
demonstrated its superior ability to reveal a wide range of pathologies [6]. Despite its
advantages, BSPM is rarely available as part of routine clinical management. However, it
remains a useful tool for both research studies and as the input for an imaging modality that
seeks to reconstruct cardiac electrical activity noninvasively. In this report, we provide a
contemporary view of BSPM and its value in exploring mechanisms of electrocardiography
as well as its clinical potential in the setting of electrocardiographic imaging and emerging
applications of machine learning.

1.1. BSPM Analysis Approaches

Once the raw electrocardiograms are acquired (see Section 2), there are three main
pathways of processing and interpreting BSPM measurements: (1) signal-based analyses,
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(2) mapping approaches, and (3) reconstructions of the cardiac sources. Figure 1 illustrates
the three approaches. Signal-based analysis encompasses the same set of temporal analysis
techniques used for standard ECG signals, applied to many more channels under the
assumption that richer sampling will generate richer information. Even though there
are multiple signals, each is typically analyzed separately—essentially a one-dimensional
approach. The results of the analysis across leads are, of course, also combined to yield a
diagnosis or interpretation of events. Mapping approaches are two-dimensional because
they leverage both the temporal (signal) and explicitly the spatially dense sampling of BSPM
to create maps of bioelectricity. The resulting mapping analysis approaches resemble other
two-dimensional imaging modalities, e.g., X-rays or, even more accurately, fluoroscopic
images that contain both space and time. Another similarity to medical imaging lies in the
distortion intrinsic to these modalities. Medical images are smeared by tissues of differing
densities and are captured as shadows of the objects of interest. BSPM signals and the
maps constructed from them are also smeared and attenuated compared to potentials
measured invasively from the heart, in this case because of the variable electrical resistance
of the torso. The third approach in BSPM encompasses additional information in order
to remove these distortions and reconstruct the underlying cardiac sources. A medical
imaging parallel is computed tomography (CT), which encompasses multiple views and
explicit knowledge of the projection direction of each view to reconstruct three-dimensional
anatomy. Electrocardiographic reconstruction is known as ECG imaging (ECGI) and like
CT, it removes the attenuating and distorting effects of interfering tissues by applying laws
of physics, implemented with numerical methods in a computer, to estimate the desired
sources or objects of interest.

Figure 1. BSPM analysis approaches. BSPM signals are analyzed using one of three different
pathways and using two types of mathematical models. Signal analysis methods generally operate
on the BSP signals isolated from their geometry. Map analysis extends signal analysis by including the
geometry of the torso from which the BSP are recorded. Both signal analysis and map analysis usually
rely predominately on statistical models. ECG imaging is based predominately on a deterministic
model to reconstructing the cardiac activity at the heart (see the cutaway in the last panel) using the
BSP signals and the geometry of the thorax.
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1.1.1. Signal-Based Approaches

These methods generally focus on features embedded in the time signals, either single
instants during the heartbeat, e.g., ST-segment deviations or peak values of the QRS or T
wave, or signal shapes, e.g., P, QRS, or T-wave shapes, durations, and symmetry. Most such
features are represented in any type of ECG and their use in BSPM assumes that enhanced
spatial sampling will yield improved diagnostics, a hypothesis supported by many clinical
applications [4,6,9–13]. Signal-based analysis can also be based on transformations of the
time signals into the frequency domain, again similar to frequency domain approaches
first reported in standard ECGs. The key feature of all these approaches is that there is no
explicit attention to the spatial component of placement or organization of the electrodes,
but rather to the signals and the parameters included in the signals. From the image analysis
perspective, such approaches resemble using one or more single beams of ultrasound to
estimate cardiac motion.

1.1.2. Mapping Approaches

Incorporating explicitly the spatial organization of BSPM measurement into the anal-
ysis approaches yields more value from BSPM at the same time as it presents challenges
for clinical interpretation. Clinicians are well versed in signal-based approaches from their
training and experience with standard ECG. However, there is very little training available
to learn how to read the maps that BSPM yields. Maps can take the form of static images
in which the body surface voltage distribution at a particular time instant is captured in
the form of isovalues, often mapped to color for clarity (see the center panel of Figure 1).
The isovalues can be raw electric potentials or parameters derived from the potentials,
e.g., specific amplitudes or features from each individual ECG, integral values taken over
durations such as the QRS complex, ST segment, or the T wave [6,14]. With the advent of
computing and scientific visualization tools [15,16], interactive displays are now common
and allow for time-evolving maps under interactive control. When geometric models of
the torso surface are available, it is possible to localize the recording electrodes on the
surface, even achieve a subject-specific rendering, and display BSPM data over the entire
thorax. From this spatial perspective arise new metrics that have been used to identify
features of cardiac bioelectricity and disease, both in normal subjects at rest [17,18] and
during exercise [19] as well as pathophysiological states such as acute ischemia [7,10,20–23],
infarction [24–27], coronary artery disease [28–34], sudden infant death [35], pre-excitation
of the ventricles [36], vulnerability to ventricular arrhythmias [37–40], ventricular repolar-
ization [41,42], or the effects of cardiac resynchronization therapy [43].

1.1.3. Reconstruction Approaches

As with all image-reconstruction processes, ECG imaging (ECGI) requires additional
information to estimate the sources from remote measurements. Medical image reconstruc-
tions, e.g., CT, require multiple views from known directions as well as information about
the X-ray opacity of tissues to estimate the anatomy of the hidden objects. ECGI takes raw
BSPM signals and augments them with knowledge of the torso anatomy, the locations of
the BSPM electrodes, and the electrical tissue conductivities within the thorax to estimate
the bioelectric sources in the heart. All reconstruction approaches are based on physical
laws; for ECGI, these laws come from electrostatics and lead to solutions to Laplace’s and
Poisson’s equations [44–46]. While these equations are straightforward, solving them in
ways that reveal bioelectric sources leads to ill-posed problems, which further results in
ill-conditioned numerical problems [47–49]. Thus, every application of ECGI requires a
series of related choices, including the bioelectric source model for the heart, the form of
the thoracic geometric model and its passive conductivity values, the numerical techniques
used to implement the underlying equations describing the electrostatics, and the ap-
proaches to deal with the ill-posed nature of the problem. We outline some of these choices
in subsequent sections of this paper and refer to excellent reviews for details [45,47,48,50].
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Despite the many required choices and challenges, ECGI has been applied to a wide
range of clinical situations and is the only BSPM approach implemented commercially. Fol-
lowing a 20 year series of groundbreaking validation studies in animals [51–58] and then in
humans [59,60], ECGI has been applied to explore ischemia and myocardial infarction [61],
dispersion of repolarization [49], localization and characterization of ventricular [62–65]
and atrial arrhythmias [66–68], and the effects of cardiac resynchronization therapy [69].
In addition to diagnostic and mechanistic insights, ECGI can also provide essential guid-
ance for ablation therapies [70–73] and novel, noninvasive treatments of severe arrhythmias
by means of radiation therapy [74,75].

1.2. Deterministic versus Statistical Models

A second perspective on the analysis of BSPM is based on the underlying assump-
tions about cardiac sources (and their reflection on the body surface) and the associated
mathematical models. We can re-contextualize the modes of analysis explored above based
on what type of model they rely on. The first model is statistical, based on the notion that
robust relationships exist between features in the signals and associated aspects of cardiac
function or dysfunction. These relationships have little physical basis or physiological ori-
gins but instead are gleaned from linking signal features—in time and space—to behaviors
of the heart obtained by other means. Once such relationships are identified and verified,
they can serve as diagnostic indicators or part of a clinical differential. These statistical
models can be based on linear regression or other well-established correlation methods,
or they may also derive from the rapidly emerging fields of machine learning and neural
networks, in which the statistical model comes from the data. We will focus below on these
machine learning approaches as they clearly have enormous potential for new insights that
make maximal use of the rich data the BSPM provides.

The second family of models in BSPM analysis is deterministic and is based on
physical laws and physiology. Each deterministic approach starts with an explicit model
of the cardiac sources and then incorporates the effects of the volume conductor between
the heart and body surface. The goal then becomes to manipulate this model in order to
reconstruct the cardiac source(s) from the recorded BSPM signals. Deterministic models
enable the reconstruction approaches described above and are most common in the setting
of ECGI.

Because of their complementary nature, these two families of models are not exclusive,
but can rather both be incorporated into a complete analysis technique. Both the signal-
based and the mapping analyses rely heavily on the statistical model, while reconstruction-
based analyses typically have a greater deterministic component associated to a small
statistical one. However, crossover between models exists throughout, e.g., deterministic
models assume quasi-static conditions [76], which dictates assumptions in the statistical
models that use features of the ECG wave to diagnose disease states [10,11]. Similarly,
statistical approaches guide many of the parameter choices required for ECGI, an approach
based on deterministic assumptions [77–79].

2. Technical Requirements

The recording, processing, storing, and visualizing of up to hundreds of individual
body surface electrograms is a daunting task, with each step between body and com-
puter representing years of progressive innovations and improvements in technology and
methodology. In order to understand the contemporary applications and novel break-
throughs in BSPM, it is necessary to appreciate the workflow and technical requirements
for acquiring, processing, and visualizing BSP maps. We first assess the added require-
ments BSPM introduces over standard clinical 12 lead ECG techniques. We then cover the
technical requirements for leveraging the spatial information provided by BSPM.

BSPM requires increased sampling over standard 12 lead clinical ECG and many of
technological advances have been directed to this goal. Researchers recorded some of
the earliest body surface maps using custom silver or steel 5 mm diameter electrodes [8].
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Researchers placed these electrodes three to five at a time at pre-determined locations
across the entire torso, front and back, and displayed the electrogram traces on cathode
ray tube oscilloscope screens. The researchers then took photographs of each set of ECG
tracings in sequence and time aligned the resulting 200+ signals using a standard reference
signal recorded concurrently. Visualization and evaluation of the resulting signals took
place by projecting the films, selecting discrete timepoints across all of the signals, and hand
drawing isopotential curves across a flattened map of the torso surface. To capture the
time course of the BSP maps required overlaying the isopotential contours on photos of
the subject’s torso for each time instant and concatenating the resulting frames to form
a movie. This process was clearly laborious, with the initial recordings requiring an
average of three hours [8], driving a crucial assumption of stability of signal morphology
so that subsequent time alignment was possible. These initial BSP maps, with their sparse
temporal sampling and laborious acquisition requirements, laid the foundation for decades
of technical improvement and a growing understanding of the rich volume of information
available. Modern BSPM systems have benefited from decades of advances in recording,
storage, processing, and visualization techniques, but still follow roughly the same steps as
they did in the 1960s.

2.1. Electrodes

Recording of BSPM differs from recordings of clinical 12 lead ECGs in large part due
to the number and placement of electrodes. BSPM recordings usually utilize a leadset
consisting of 64 to 300 electrodes spread across the torso surface. These hundreds of
leads represent a marked increase from standard clinical ECG systems that commonly use
ten physical electrodes (nine recording electrodes and one ground electrode). Modern
electrodes are made of either silver, silver-silver chloride, or in some cases graphite and
often utilize conductive gel to increase the skin-electrode conductivity, improving signal to
noise ratio. For BSPM, these same electrodes can be stitched into strips or even entire vests
to aid in rapid and reproducible electrode placement. There is a split in preference between
single-use electrodes (higher per-use cost, but ease of manufacture and use) versus reusable
electrodes (lower overall cost but more complex design and more constrained placement
due to the arrangement of the electrodes and other medical equipment). A common
problem is finding a reliable source of electrodes for use in both research and clinical settings.
The standard clinical ECG systems utilize single-use electrodes that are often not suitable for
BSPM applications due to the high costs and complexity of placement of all 100–300 leads
individually. There is a unsolved need to produce high-quality torso surface electrodes for
use in BSPM applications such that many institutions turn to internal production. Such
custom electrode manufacturing across multiple institutions leads to heterogeneous—and
often incompatible—electrode specifications, configurations, and interfaces.

2.2. Leadsets

The selection of lead numbers and locations varies across institutions and scenarios,
and a common problem when working with BSPM is the conversion among different lead
sets. These differences in number and placement are motivated by various concerns such
as diverse philosophies of optimal lead placement, limited acquisition capacity, electrode
packaging (individual, strips, or vests), and the need to integrate with other clinical or
research equipment (Figure 2). Fortunately, there exist schemes to convert between lead
sets and this enables comparisons across institutions [80,81]. Modern lead set placements
depend heavily on the use case with a general rule that electrodes should be placed evenly
across the thorax, with modifications to increase density in the precordial area [82]. Several
studies have sought to identify reduced leadsets based on specific clinical targets [83,84]
or reconstruction of full BSPM using linear predictions trained from a database of full-
resolution recordings [85–87]. Leadsets such as the Medtronic “ECG Belt” or even the
standard 12-lead ECG can drive estimation algorithms that either generate the full BSP
maps numerically or may provide enough information for BSPM analysis approaches that
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are focused on specific diagnostic questions. Researchers developed these techniques to
save time and storage space; however, computational resources and storage improvements
have made the latter a less relevant concern. Overall, the number and placement of leads
are primarily driven by the design of the electrodes themselves, and the use case for the
BSP maps.

Figure 2. Body surface mapping lead arrangements and torso geometry examples. Bordeaux Torso
Tank array (A) [88]. Utah Torso Tank array (B) [89]. Utah Large Animal Body Surface Map (C) [90].
Maastricht Dog Torso Map (D) [58]. EP Solutions patient 24 (E) [91]. KIT 20 PVC torso (F) Karlsruhe
Institute of Technology. Nijmegen Human Torso 2004-12-09 (G) University of Nijmegen. Dalhausi
Human Torso (H) ([82]). These geometries and associated body surface data (except C) can be found
on EDGAR, a cardiac electrophysiology open database (edgar.sci.utah.edu) (accessed date 29 October
2021) [92].

2.3. Analog Signal Processing

With the electrodes in place on the torso, the main concern becomes maintaining the
quality of the recorded signals. Torso surface electrogram voltages are on the order of a
few (1–3) millivolts therefor electrical noise is a constant challenge, due mainly to the long
connecting wires and the noise generated by other nearby electrical equipment. Analog
processing of the recorded signals usually consists of buffering, amplification by a factor
of 100–1000, filtering to limit the bandwidth to the physiologically relevant range, e.g.,
0.2–300 Hz, and optionally to remove power line noise [93,94]. This analog processing
ideally occurs as close to the electrode-tissue interface as possible, with some systems using
amplifier circuits built into electrode strips such as the “Active Electrodes” from BioSemi
(https://www.biosemi.com/strip_electrode.htm (accessed date 29 October 2021)) [95].
Clinical ECG systems often use a bandpass filter with an upper cutoff as low as 200 Hz.
However, BSPM systems have a higher cutoff frequency in the 200 to 1000 Hz region to
capture more complex high-frequency components of the ECG signals [93,94]. The cost
of higher cutoff frequencies is susceptibility to noise, often requiring special care during
acquisition to limit noise at the source, e.g., proper grounding of recording equipment,
electrical isolation of the subject, shielding of sensitive devices, and minimizing the use
of other electrical equipment during BSP signal acquisition. A further requirement of this
stage is subject safety, often requiring optical isolation to limit the maximum ground current
to a few µamps even in the face of defibrillation voltages of 600 V. Similarly, protective
circuitry is also necessary to protect the recording equipment, including over-voltage
protection, electrical isolation via optical coupling, and in some cases, manual disconnects
between recording leads and the recording system.

https://www.biosemi.com/strip_electrode.htm
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2.4. Signal Acquisition and Digitization

Modern BSPM recording equipment captures the output of the analog stage and
converts the signals to digital form to enable subsequent, processing, display and quan-
titative analysis. Such acquisition occurs with highly multiplexed systems that allow for
simultaneous capture of up to 1000 channels at suitable temporal sampling, typically
1000–2000 samples/s. of recordings to be made at a high-temporal and -voltage resolution
while also allowing for further digital processing of the signals to improve their quality
and aid in analysis. Once digitized, the signals can be processed on a computer using
techniques such as simple digital noise filters and complex algorithms to remove baseline
drift and other noise sources as well as to segment recorded signals into single beats or
other time periods of interest [96]. Ongoing studies comparing the resulting techniques
and their impact on subsequent evaluation of BSPM findings suggest that even subtle
variations in approaches and parameters can impact the results of BSPM analysis such as
ECGI [79,97,98].

2.5. Map Construction

Once the digitized signals have been recorded and processed, the next step is to
visualize the signals. Traditionally, recording systems visualize ECG leads as time signals,
similar to a standard ECG, often by selecting groups of leads and displaying them in ways
that provide either a comprehensive overview of the entire body surface or focused views
covering limited areas. However, displaying more than a handful of time series signals
becomes overly complex (see the top image in Figure 1). A more common approach is to
create spatial maps of body-surface potential that incorporate spatial information from
the lead placement into the display of the electrical information. The creation of such a
body surface potential map requires a geometric representation of the torso, such that the
recorded signals can be arranged relative to each other in space. Such a torso geometry can
be generic or patient specific and can either be two-dimensional, based on some form of
flattening or unwrapping of the torso surface, or truly three-dimensional such as those in
Figure 2. Subject-specific torso geometries are derived from measurements of the electrode
locations, typically using a 3D camera, CT or MRI imaging, or a mechanical digitizer.
In each case, the electrode positions define a surface mesh, usually via triangulation of
the points. Visualization software maps voltage values at the mesh nodes to color and
then interpolates the colors over the triangular elements, resulting in a potential map that
displays the potential (or other derived quantities) across space. By stepping through time
instants, it is possible to create controlled, often interactive, animations of the temporal
progression of the spatial patterns of cardiac bioelectricity. Individual timepoints of interest
can then be highlighted as in Figure 3. A wide array of visualization options, such as scaling,
cropping, or adjusting the color-mapping function provide a rich toolset to interpret the
measured values [15,16,99–101].
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Figure 3. An example BSP map with timepoint of interest visualized. The signal shown is from a
stimulated ventricular activation from the anterior left ventricle. The time singnal (bottom) is the
RMS of the torso surface signals. The time instances shown are the peak of the RMS QRS, the end of
the QRS, and the peak of the T-wave.

2.6. Current State of Mapping Systems

Modern BSPM recording systems can be broken generally into the electrode config-
uration and the back-end recording hardware and software. This distinction highlights
the ability of multiple electrode configurations to be used with a single acquisition system.
However, the interface between any given electrode configuration and acquisition system
depends heavily on the design of both components, and some electrode systems are custom
built for their acquisition hardware. Contemporary electrode configurations typically con-
sist of 100 to 300 electrodes spread across the torso surface. The CardioInsight commercial
system, for example, utilizes 242 electrodes stitched into a wearable vest, allowing for
rapid and reproducible electrode placement [102]. However, a challenge with such vest
systems is ensuring inadequate fitting to different torso shapes and maintaining adequate
contact between the electrodes and skin. Other systems such as that from EP Solutions
utilize strips of electrodes placed around the thorax up to a maximum of 224 electrodes.
The strips allow for more flexible placement at the expense of a more complicated proce-
dural setup. Another innovation to improve signal quality is to include signal amplifiers
for each electrode integrated into the strips, called ‘active electrodes’ by the authors [95].
Studies by other groups describe multiple strips consisting of between 4 and 12 electrodes
each that connect to a variable interface system before analog processing [17,86,94,103,104].
An example recording system for experimental use is shown in Figure 4.

Signal acquisition hardware and software are based on either commercial products
such as the Biosemi active two system (biosemi.com), or are custom-built systems with
integrated analog processing, analog to digital conversion, digital processing, and acqui-
sition [105–107]. While older systems were limited in their recording resolution (both in
time and voltage level) and number of simultaneous recording electrodes, modern systems
can often record up to a thousand or more inputs at a sampling frequency of over 1000 Hz
and voltage resolution in the milli to micro volt range, which is more than sufficient for
most BSPM applications. Zenger et al. described a hybrid system (Figure 4) based on
custom-designed hardware to interface BSP electrode systems with a commercial recording
system (intantech.com) initially designed for neural signals [94]. Such custom systems built
for experimental use are designed to be flexible and can often record from electrode arrays
on the heart surface or embedded within the cardiac tissue. Commercial systems such as
Medtronic, CardioInsight, or EP Solutions use purpose-built hardware and software to
process, record, save, and visualize the BSPM, and any post-processed outputs.

Processing pipelines pass the recorded BSP through a range of signal cleaning and
visualization software. Rodenhauser et al. describes a software pipeline for filtering, base-

biosemi.com
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line correcting, and segmenting the BSP signals [96]. Visualizing these time series signals
as they are recorded is often a feature of the recording system software, allowing for live
interrogation of individual or groups of leads. Reconstruction of the torso geometry is typi-
cally accomplished via computed tomography, magnetic resonance imaging, or mechanical
digitizer. In some cases, a generic torso shape is assumed instead of a patient-specific
geometry. In the experimental torso-tank system, the torso geometry is fixed and known
ahead of time. The creation of the torso surface meshes is accomplished using segmentation
and meshing software. Mapping the processed electrogram data onto the torso meshes to
create BSPM is done either by proprietary software, custom algorithms, or open-source
software such as map3d [16] and SCIRun [99]. Researchers or clinicians can construct
the torso maps either during recording, or after all the recordings have been finished and
processed. Since BSPM systems save the recorded signals, they can be reviewed later and
post-processed using various tools and approaches to aid in interpretation.

Figure 4. Custom signal acquisition system described by Zenger et al. [90]. This system includes
custom electrode arrays, a front-end interface for connecting various electrode array configurations,
analog processing, analog to digital conversion by a commercial intan recording system, and data
visualization and saving software. The ADC and display software are designed by Intan Technologies
(intantech.com) (accessed date 29 October 2021).

intantech.com
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3. Technical Extensions

Beyond their inherent information content, BSP maps can serve as inputs for fur-
ther analysis. BSP maps can be challenging to interpret in their original form and post-
processing and advanced analysis techniques are often necessary to leverage the abundance
of information present to provide both clinical and research insights. A natural division
among these modes of analysis is between deterministic models, based on physical systems
of bioelectric sources and simulations, and data-driven statistical models, without rigid
underlying assumptions of physical systems. We will explore here promising and insightful
implementations of such analyses of BSP maps, beginning with their technical descriptions.

3.1. Deterministic Modeling: Electrocardiographic Imaging

The first step in a deterministic modeling approach is to devise a method to simulate
the potentials on the body surface. In the context of cardiac bioelectricity and BSP mapping,
this class of modeling and the associated problems are collectively known as the “forward
problem” of electrocardiography. The forward problem relies on assuming an underlying
model that expresses the activity of the cardiac bioelectric source (the source model) and a
way to project that activity to the measurement location, the torso surface. Source models in
cardiac bioelectric activity vary in complexity depending on the specific aspect of interest.
For example, a single time-varying current dipole can approximate the bulk activation
of the heart, the basis for the Einthoven lead system [108] and still a common source
used for clinical interpretation [109]. At the other extreme are models that consider the
cellular membrane potentials of each myocyte in the cardiac tissue [14,50]. Across this
range of source models, there are specialized methods to project these cardiac source
representations to the torso surface. This forward projection takes the geometries and
electrical conductivities of the heart and torso along with the source model as inputs
to predict the BSP signals. Different implementations cater to different source models,
and can include additional details such as the geometries and conductivities of other organs
in the torso. Each one of these forward methods implements a physics-based model of
bioelectricity to accomplish the projection from cardiac source to BSP signal. The forward
problem leads naturally to the more clinically relevant scenario where BSPM is an input to
reconstruct the cardiac source itself, known as the “inverse problem” of electrocardiography
or electrocardiographic imaging.

Electrocardiographic imaging (ECGI) is an approach that falls into a broad category
of inverse problems which focus on reconstructing a source given distant measurements.
Figure 5 shows an example ECGI implementation to estimate the cardiac source given
BSP recordings via the inverse problem. Inverse problems are generically ill conditioned
and ill posed, meaning there is rarely a single unique solution, and small perturbations
in the input, such as noise, can have nonlinear effects on the output [48]. A technique
known as regularization addresses these numerical instabilities by enforcing additional
assumptions on the inverse reconstructions, thereby limiting the solution space to mean-
ingful solutions [48,110]. The ECGI inverse problem takes the mathematical relationship
established by the forward problem and applies numerical methods to achieve an estimate
of the cardiac source that would give rise to the observed body surface potentials [48]. This
reconstruction converts the BSPM into a form that has more direct clinical interpretations
than the original BSPM, displaying clinically relevant aspects of the cardiac activity such as
sites of early or abnormal activation, abnormal repolarization, re-entrant circuits, or regions
of myocardial ischemia [50]. ECGI also enables researchers to noninvasively characterize
the heart electrical activity under various experimental scenarios, providing a record of
the response of the heart to stimuli without the need for invasive measurements. Such
insights come at a cost, a set of additional constraints and considerations above what BSPM
alone require.
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Figure 5. Example ECGI implementation. Recorded body surface potentials (left) are combined with
a geometric model and a source model. The geometric model is made up of the relative positions of
the cardiac geometry and torso geometry. The source model in this case is extracelular potentials,
and the relationship used for the forward model is the boundary element method. The resulting
inverse estimation is extracellular potentials on the cardiac surface. The final column shows a
comparison between the inverse solution and the measured extracellular potentials on a flattened
version of the cardiac geometry. The cardiac and torso geometries were generated as described in
Bergquist et al. [111] where the cardiac geometry is a 256 electrode pericardiac cage array and the
torso geometry is a 192 electrode torso tank. Tikhonov 2nd order regularization with L curve was
used. The peak of the RMS of the QRS was visualized in all steps.

The costs associated with ECGI are diverse and represent a set of compromises as-
sociated with each key aspect of the reconstruction process. The need for precise torso
and cardiac geometries is often a complicated addition to a BSPM procedure. Imaging
techniques such as CT or MRI usually provide this geometric relationship. However, these
modalities bring additional procedural complexities and costs to the ECGI setup. Recent
studies have investigated reconstructing the cardiac geometry location using only body
surface recordings, which would allow for so-called “imageless ECGI” that does not rely
on costly CT/MRI [89,112]. Such “imageless” techniques rely instead on iterative opti-
mization frameworks that estimate cardiac position on a beat by beat basis. The selection
of a source model and forward/inverse framework is an additional consideration that
depends on the cardiac activity of interest. Extracellular potential source models can be
susceptible to line-of-block artifacts in subsequent activation sequence estimations, whereas
transmembrane potential source models can avoid this problem via smoothing of the recon-
struction [113]. However, transmembrane potential source models require a more complex
cardiac geometry and can be difficult to interpret, where as extracellular potential source
models are readily interpretable. The regularization of the inverse problem remains one
of the most challenging aspects of ECGI. A range of regularization techniques have been
developed to enforce constraints on the inverse solution based on various assumptions
about the cardiac source. Common regularization methods target features of the cardiac
source such as its amplitude, spatial gradients, smoothness in space, and presence of edges.
Assumptions about these features are formulated into constraints that for example enforce
low amplitude (Tikhonov 0 order), enforce small spatial gradients (Tikhonov 1st order),
enforce spatial smoothness (Tikhonov 2nd order), or preserve edges (Total Variation) which
are all assumed characters of the cardiac source. Other regularization approaches leverage
assumptions about the nature of the inverse problem to avoid unstable solutions such as
truncated singular value decomposition which removes small singular value components
of the forward matrix to avoid the exaggerated effects of noise in these singular vectors
when the inverse solution is computed [110]. The amount of influence the regularization
has on the inverse solution is determined by a weight associated with the regularization.
This weight can be determined in a myriad of ways but always represents a trade off
between an over-regularized solution (a solution biased by the assumptions of the regular-
ization) and an under-regularized solution (a solution vulnerable to numerical instabilities
of the inverse estimation). Techniques to develop novel regularization methods, imple-
mentations, weight selections, and even combination of regularization techniques are an
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area of active research. Commercial and open-source tools have been developed to address
the need to integrate all of the many steps associated with ECGI and allow for extensive
exploration of the underlying methods and parameters [50,114,115].

3.2. Uncertainty Quantification

Error and uncertainty are often inherent when identifying parameter values for cardiac
simulations such as ECGI, and understanding how variation in the input parameters
affects the model output is a field of study known as Uncertainty Quantification (UQ).
Techniques for assessing model output uncertainty given variation in input parameters
come with a range of complexity and computational cost. Modern UQ methods leverage
sophisticated mathematical approaches such as polynomial chaos expansion (PCE), which
leverages assumptions about the nature of the stochastic field or process to minimize the
number of samples necessary for the computation of accurate statistics [116–120]. ECGI can
benefit from such approaches as they allow for the robust exploration of parameter choices
along every step of the ECGI pipeline. Previous studies have applied UQ to investigate
the effects of organ and tissue conductivity, cardiac position, parameters of ion channel
models, and cardiac fiber orientation on various aspects of cardiac electrophysiological
models [121–126].

Most UQ studies focus on forward problems; however, there is a need to apply
the same UQ techniques to the inverse problem more directly. By understanding how
parameter variation affects inverse solutions, both clinicians can better understand the
variability of ECGI solutions and researchers can explore which parameters are more or
less important when designing new ECGI approaches. Application of UQ to the inverse
problem is an area of active research, for example Tateet al. examined heart shape variability
and its effect on ECGI inverse solutions [127].

3.3. Statistical Modeling: Machine Learning

In contrast to deterministic approaches such as ECGI, statistical approaches derive
their output from features identified and learned in example data. Under these statistical
models, the relationship between model input and output does not need to explicitly
rely on an underlying physical model. BSPM analysis has benefited from statistical ap-
proaches, based either on linear regression approaches [83,128] or decomposition tech-
niques [39,86,129–132]. Machine learning (ML) encompasses a related set of statistical
approaches where the data provided to train the model dictates how the model converts
the input into the output. These techniques tend to perform best on large datasets, which
have become increasingly available in many domains. ML techniques are becoming a vital
part of the research and clinical landscape of cardiac electrophysiology [133–136]. They
have the advantage of providing concise and interpretable outputs using complex inputs
such as BSPM, making them attractive in both clinical and research settings. Here, we will
lay out some of the foundational principles of ML and how they may apply to the analysis
of BSPMs.

3.3.1. Supervised Approaches

ML approaches can be used to simplify BSPM analysis by answering specific clinical
and research questions such as absence or presence of a disease using BSPM as an input.
The generation of such ML models occurs in a process called supervised learning, in which
the parameters of the underlying ML model, often called ‘weights’, are generated via a
data-driven mechanism termed ’training’, which optimizes values of these parameters to
produce accurate label outputs on the training data. Training data consists of a set of inputs
paired with desired outputs such as labels, quantities of interest, or transformations of the
input. In the case of BSPM analysis, these target outputs could be any clinical or research
value of interest, including presence of a disease, value of some physiological parameters,
or location of a feature of cardiac activity or anatomy to name a few. After training,
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the resulting algorithm can then receive new BSPM recordings as inputs and output an
estimate of the target variable, a process termed ‘inference’.

There is an enormous variety in the structure of supervised learning techniques, also
called architectures, each with trade-offs regarding task performance, ability to detect
relevant signal features, and computational cost. Many architectures were developed in
the context of other problems, such as estimation on tabular data (where each column in
the dataset represents some descriptive quantity or categorization about a phenomenon),
computer vision, and natural language processing [137]. There is not yet a consensus on
which architectures perform best in the context of BSPM; thus, it is crucial to consider how
to use BSPMs as inputs to a variety of model architectures and to consider the trade-offs
associated with these architectures.

Traditional machine learning models were designed for use with vector data, where
each input is an n-dimensional vector of real numbers. These architectures include logistic
regression, support vector machines, k-nearest neighbors, decision trees, and ensembled
forests such as AdaBoost and XGBoost [133]. An intuitive way to apply these architectures
to BSPM analysis would be to extract relevant features from the BSPMs (e.g., ST-segment
potential, QRS amplitude, T wave integral) and use those features as inputs to the model,
as shown in Figure 6. This deliberate feature extraction ensures that the algorithm uses
only information that the designer of the architecture has already deemed relevant a priori.
However, there is evidence that these architectures can perform well when the entire BSPM
recordings are used rather than relying on extracted features [138]. Such an approach
requires that the BSPM, which is typically represented as an n × m matrix of n electrodes by
m time instances, is linearized into a single n ∗ m × 1 vector (Figure 6). While this approach
does not represent a traditional usage of these algorithms, it does allow traditional ML
models to determine relevant signal features rather than relying exclusively on features
already assumed to be relevant. Such traditional models usually have fewer parameters and
thus require less computational resources at inference, increasing the feasibility of clinical
deployment but perhaps limiting the scope of problems they can address. Additionally,
these traditional model architectures neglect the availability of spatial information that
BSPM provide in the form of relative electrode locations and spatial-potential maps.

One can also consider BSPM as images in the context of computer vision ML. Com-
puter vision tasks focus on identifying features or labels given inputs that are images.
Tensors represent these images with a shape c × w × h where c is the number of channels
(usually three for RGB images), w and h are the image width and height, respectively. In the
same way, a stack of BSPM leads could be structured as a c × m × n tensor where c is 1
(analogous to a single channel grayscale image), m is the number of leads, and n is the
number of timepoints in each recording Figure 6. Convolutional neural networks (CNN)
are a foundational family of architectures for computer vision that have promise for BSPM.
These architectures help detect features with variable locations within an image, and uti-
lize filters that span across all dimensions of the input images. Thus, CNN architectures
can leverage the spatial information implied in the BSPM input via the ordering of the
electrodes in tensor form. Such an approach, however, does not fully realize the available
spatial information, as physical distances between electrodes are not explicitly embedded
in the tensor ordering. Additionally, by ordering the BSP recordings into a BSPM tensor,
there will inevitably be some electrodes that are physically distant but close to each other
along the spatial dimension and other that are physically close but distant in the tensor.
Despite this limitation, the incorporation of spatial information implied by tensor ordering
can be facilitated with careful architecture design, particularly with respect to the shape
and stride of the convolutional filters used. Application of CNNs to 12-lead ECG analysis is
perhaps the most common supervised learning approach implemented successfully using
these concepts [139], and for this reason, a CNN approach is likely to have success when
applied to BSPM. Furthermore, the spatial information present in BSPM could be explicitly
included in a CNN-based ML analysis via graph analysis. Graph analysis allows for the
encoding of complex spatial relationships into a structured and regular sized input such
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as the tensors used as inputs for CNN. Dhamala et al. demonstrated such a graph-based
approach to characterize spatially heterogeneous scar tissue in a 3D cardiac model via
a CNN architecture [140]. Such a graph input could be constructed for the BSPM torso
geometry in order to leverage all of the advantages provided by the spatial information
encoded in BSPM recordings.

Other models, initially developed in natural language processing (NLP), might also be
helpful for BSPM analysis. In NLP, the model input is often a series of embedded words in
a space that stores relationships between words. A model then takes all the word as inputs
and learns parameters that relate each word to the words before it. Popular architectures in
this domain include recurrent neural networks (RNN), long short-term memory (LSTM),
and transformers. BSPMs can be restructured for these models by splitting each BSPM
recording into different subsets representing the word tokens of the signal. Each BSPM
would take the shape of a w × m × s matrix, where w is the number chunks (words), m is
the number of leads, and s is the number of timepoints per word (calculated as s = n/w
where n is the number of timepoints per recording). It is worth noting that of the common
architectures, transformers are generally the cheapest computationally and have become a
favorite in many NLP applications [141,142]. Transformer networks have also been used
with some success in 12-lead ECG analysis tasks, indicating that they may be suited for
BSPM analysis as well [139]. NLP architectures carry many of the same benefits of image-
based networks when the words are constructed as described above, by splitting the time
domain. In this way, each input still carries the spatial relationship of the electrodes implied
by their ordering in the inputs. A separate approach would be to break up the BSPM into
words based on the electrode configuration across the torso, with similar positions grouped
into words.

Figure 6. Transformation of BSP maps into inputs for various types of machine learning. BSPM
signals are first preprocessed, which varies depending on the type of ML model. For feature-based
models, characteristics of the BSP signals (QRS integral, T wave peak, activation time, etc.) are
calculated and provided as the input signals. For simple linear neural networks and other vector-
based ML models the BSP signals are linearized, concatenating the signal form each electrodes into a
single vector. For image- and natural language-based ML models, the BSP signals are arranged into a
matrix of m leads by n electrodes, which can then be spilt into s length words. For graph-based ML
models, the torso geometry is used to create a computational graph that relates the BSP signals to
each other based on their spatial relationships.

Finally, it is possible to combine these families of models. One example, the winner of
the PhysioNet 2020 challenge using 12-lead ECGs as inputs, used CNN layers to embed
ECG signal features which fed into a transformer architecture [143]. The final layer of
this transformer then combined with the top-ranked extracted features as determined by
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a random forest model. There are many opportunities for creativity and innovation in
architecture design and selection so that BSPM ML applications will likely grow. When
selecting a model architecture or combination of architectures for a BSPM supervised
learning task, it is likely easiest to start with simpler model architectures and increase
complexity as needed.

3.3.2. Unsupervised ML Approaches

Machine learning can also simplify BSPM analysis by learning characteristics of a
BSPM dataset without explicit labels. The goal of this form of ML is usually to reduce
the dimensionality of BSPMs such that they are more easily interpretable in a clinical
or research context. Because these algorithms explore relationships in the data without
explicit labels related to a specific problem, this type of ML is described as unsupervised.
The lower-dimensional BSPMs may be directly visualized or labeled as input to a super-
vised learning architecture predicting some target label. Some examples of unsupervised
learning techniques have been used previously for BSPM and include principal compo-
nent analysis (PCA) [129,131,132] spectral clustering, and k-means clustering [144–146].
In each case, the BSPM recordings can be restructured to fit the input requirements of
the technique. While the lack of a requirement for explicit predefined labels lowers the
requirement for use of unsupervised methods to only requiring the data to train on, the re-
sulting lower dimensional outputs can be difficult to interpret. These outputs often require
further processing such as in Good et al., where Laplacian eigenmaps was used detect
myocardial ischemia [147]. Good et al. computed a secondary metric based on the lower
dimensional representation of the electrogram data which they leveraged to detect my-
ocardial ischemia. Additionally, unsupervised networks do not always have an explicit
method for incorporating the spatial information that BSP maps provide. Unsupervised
methods are often considered to be able to learn any necessary spatial relationships without
direct enforcement.

4. Contemporary Applications of Body Surface Mapping

As outlined in Section 1, the interpretation of signals acquired at the body surface
can be accomplished using various techniques with a wide range of complexity. These
techniques include direct manual examination of the BSP signals and BSP maps, extraction
of key features via signal processing, and applying models to convert the input BSP data
to readily interpretable outputs such as reconstructions of the cardiac source or clinical
variables such as presence or absence of a disease.

4.1. Direct Interpretation of BSP Signals

One goal of research applications of BSPM is on detecting and localizing ischemic
cardiomyopathy through experimental models, cardiac stress testing, and acute MI events.
Research from our group has focused on interpreting body surface potential changes during
hyperacute episodes of ischemia [90,148,149]. Zenger et al. recorded electrical activity on
the torso surface using a large-animal experimental model while simultaneously inducing
partial occlusion of a coronary artery and applying cardiac stress to create controlled acute
myocardial ischemia. We have used these experimental recordings to explain complex
physiological differences between various types of cardiac stressors, e.g., pharmacological
versus exercise cardiac stress [148]. Furthermore, we identified a complex epicardial
shielding phenomenon of ischemic potentials visible within the heart that propagated
only partially to the torso surface [149]. Other groups have focused on understanding
and improving exercise stress test diagnosis of myocardial ischemia by leveraging BSPM.
Kania et al. showed improved sensitivity and specificity of BSPM over 12-lead ECG, when
used during an exercise stress test [150]. Specifically, they observed over 20% increase in
sensitivity when using BSPM compared to standard 12-lead ECGs. Other groups have
replicated these results [151,152]. The reason for the improved sensitivity and specificity
is associated with an improved overall coverage of body surface potentials, allowing for
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capture and examination of ST-segment changes that may not appear initially within the
region observed by 12-lead ECGs [152]. Others have validated these results across multiple
patient groups, and with gold-standard SPECT imaging [152].

Another major focus for the research uses of BSPM has been the detection and local-
ization of acute myocardial infarction (AMI). Despite many decades of research, detecting
AMI from 12-lead ECGs has low sensitivity and specificity. Therefore, further devel-
opment has targeted new avenues for analysis. Daly et al. showed that BSPM could
significantly improve the detection of left main coronary artery stenosis and left circumflex
stenosis [153,154]. They found that BSPM demonstrated 89% sensitivity at identifying left
main coronary AMI compared to 49% using 12-lead ECG, which the authors attributed
to increased coverage of the BSPM system. Other groups have replicated results across
broader populations of patients treated at different tertiary care centers [23,155]. Wang
et al. identified changes to the U-wave as seen on BSPMs, which correlated to specific
locations of AMIs throughout the heart [156]. Finally, other groups have used BSPM to
predict overall MI size and severity, and identified changes to the Q-wave on BSPM as
moderately correlated with the overall AMI chronic scar formation [157].

Researchers have applied BSPM to examine both the diagnosis and mechanistic
development of atrial fibrillation. Recent developments include examining BSPMs in AF
patients to understand the role of the dominant frequency. The motivating hypothesis is
that sites where AF electrical abnormalities anchor, or dominant frequency sites, could
be a target for AF treatment with catheter ablation. Guillem et al. found that the highest
dominant frequency sites on the torso showed a significant correlation with dominant
frequencies found in the nearer atrium (ρ = 0.96 for the right atrium and ρ = 0.92 for the
left atrium) [158]. Other groups have targeted AF analysis using principal component
analysis and wavelet transform on BSPM data to reduce the dimensionality of the signals
and gather further insights into the mechanistic underpinnings of AF [159,160]. One study
found maps of patients with atrial fibrillation had atrial activity that was dispersed around
standard ECG leads and out of recording range, suggesting that noninvasive assessment of
AF complexity by the standard 12-lead ECG is not adequate [160].

Ultra high frequency (UHF) has seen applications to ECG analysis that could also
readily be transferred to BSP map analysis. UHF has been applied to assess a range of
cardiac conditions such as dyssynchrony and myocardial ischemia [161–163]. Extensions
of UHF analysis to BSPM could leverage the increased spatial sampling of BSP maps in
combination with the increased temporal sampling incorporated into UHF.

BSPM analysis has also been applied in several other research settings that all tar-
get electrical changes during complex cardiac disease. These examinations include the
development of ventricular fibrillation, ideal parameters and device design for cardiac
resynchronization therapies, better understanding the nuances of Brugada syndrome,
and investigations into heterogeneity of repolarization times [164–170].

4.2. BSPM Simplification and Interpretation Techniques

The contemporary application of BSPM to clinical needs is primarily focused on
simplification. The overwhelming amount of spatial and temporal data available during
body surface mapping makes meaningful clinical quantification difficult. Furthermore,
in the rush of routine clinical care, a test result must be quickly and easily assessed with high
sensitivity and specificity to be incorporated into a standard clinical workflow. Reviewing
complex spatial and temporal data of BSPM is essentially impossible without years of
training in addition to standard clinical experience. Therefore, advances in BSPM in the
clinical setting have primarily targeted the analysis of BSPM data for interpretability.

4.2.1. Deterministic Approach: ECGI

Both the forward and inverse problems of electrocardiography have been used in
BSP map analysis. Researchers have used simulation of BSP maps via the forward prob-
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lem to investigate the presence of different ventricular ectopic activation on BSPM using
simulation models to produce the cardiac source [171].

The emergence and development of ECGI as a deterministic tool for the interpretation
of BSPM has driven several advances and innovations for BSPM recording and processing.
ECGI researchers have developed a range of signal processing techniques to improve
BSPM signal quality and address the ill-conditioned nature of the inverse problem [48,110].
These include techniques such as signal averaging across multiple heartbeats, baseline
correction, and various noise filters and noise reduction algorithms. The ill-posed nature of
the inverse problem has also driven the exploration of the optimal number, and placement
of BSPM recording electrodes [83,85,86,172]. Studies by Dogrusoz et al. have investigated
various interpolation techniques to reconstruct BSPM measurements lost due to either
poor signal quality or obstruction of the leads by other equipment [98]. The notion of
reconstructing an entire BSPM from a limited set of leads has been explored by Lux et al. to
both reduce data size and enable BSPM to be more readily recorded [85]. ECGI also adds
a requirement to measure the cardiac geometry in addition to the torso geometry. Thus,
the emergence of ECGI has driven the development of BSPM procedures that include torso
and cardiac imaging via CT or MRI. Recent studies by Bergquist et al. and others have
investigated reconstructing the cardiac position using only BSPM, opening the avenue for
“imageless ECGI” that does not require costly and complex MRI/CT imaging studies [173].
The output of an ECGI system represents the electrical activity of the heart as activation
times or electrograms. These reconstructions can be projected onto the cardiac anatomy
and allow physicians and researchers to interrogate activity occurring at the heart itself,
rather than making inferences from body surface recordings.

ECGI has demonstrated clinical success in several scenarios, including premature
ventricular contraction localization, cardiac resynchronization therapy, atrial fibrillation,
and ventricular scar-related tachycardia. Contemporary results of these applications have
shown success; however, there are still ample avenues for improvement [174–176]. PVC
localization via ECGI has shown variable performance, with some approaches reporting
95% accuracy in correctly identifying the site of PVC origination within the AHA 17-
segment anatomy [174]. Other studies have shown less promising results with localization
accuracy [175,176]. These studies have explored the technical achievements and limitations
of PVC localization by ECGI. However, the utility of ECGI through reduced procedure
times and better patient outcomes has yet to be thoroughly validated. We hypothesize that
as ECGI techniques continue to mature, this transition into meaningful clinical application
and assessment of clinical importance will be an area of active research and development.

ECGI has also been used to explore and improve treatment methods of cardiac resyn-
chronization therapy (CRT) [177–179]. Ghosh et al. utilized ECGI to characterize the
activation and repolarization patterns of CRT patients [178]. Berger et al. utilized ECGI
to explore endocardial and epicardial activation patterns in CRT patients. These authors
suggest that ECGI can be used to guide CRT lead placement and pacing strategies [177].
Ploux et al. showed that analysis of ECGI reconstructions in CRT patients could better
predict the therapeutic success of CRT than traditional ECG-based metrics [179]. In each
of these studies, ECGI provided additional insight into the cardiac bioelectric behavior
that allowed for better therapeutic planning or better mechanistic understanding than is
possible with standard ECG.

Clinicians and researchers have used ECGI to visualize the electrical patterns of ven-
tricular tachycardia (VT) that occur after significant regions of myocardial scar have formed
through other disease processes such as myocardial infarction or ischemic cardiomyopa-
thy [61,115,180–182]. Some studies have investigated VT formation in humans studies
and reported accurate results in reconstructing epicardial circuits for re-entry [182] and
location of the epicardial and endocardial circuits [183]. Others have used ECGI to detect
regions of scar tissue within the myocardial wall and compared these ventricular scar
patterns to the gold standard of MRI imaging [181]. Specifically, Horacek et al. examined
an improved method for identifying intramural myocardial scar compared to epicardial
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only approaches [181]. This study showed good agreement to gold-standard MRI imaging
with the intramural detection approach. Finally, Cuclich et al. demonstrated that ECGI
could be used in a clinical workflow to aid in the identification of re-entrant tachycardic
circuits and allow for more precise preoperative planning, reducing overall treatment
time [61,115]. These studies demonstrate a promising clinical application of ECGI that has
shown promise and progress in recent years. We theorize that the continued development
of these techniques will allow clinicians to leverage BSPM via ECGI to improve their
clinical workflows.

Atrial fibrillation has also become a focus of ECGI research efforts. ECGI allows for
the noninvasive construction of dominant frequency maps on the atria, aiding in driver
localization and ablation planning. ECGI has been used to identify regions of dominant
frequency and assist physicians in targeting these regions for treatment. Recent studies in
this domain have explored the use of ECGI to identify atrial fibrillation drivers using both
simulated data and real-world clinical data [159,184–186]. While these methods are still in
development, the results show promise for ECGI in the context of AF.

A handful of companies have developed commercial systems to translate ECGI into
clinical workflows. The most long-standing of these systems is CardioInsight by Medtronic,
primarily used to target ventricular and atrial arrhythmia mapping [71,72]. The Amy-
card 01c by EP Solutions is another ECGI system that targets both ventricular mapping
approaches (CRT planning and ventricular arrhythmia mapping) as well as atrial map-
ping [187]. Finally, the Acorys system by Corify is a relatively new system that targets
arrhythmia localization and pre-ablation/operative planning applications.

4.2.2. Statistical Approach: Machine Learning/Artificial Intelligence

There has been a steadily growing interest in machine learning application (ML)
techniques to analyze cardiac bioelectric signals. To date, most AI/ML studies addressing
electrocardiography data utilize 12-lead ECG recordings because of the large volume of data
needed across large populations to create accurate and representative ML models. However,
ML may provide new and unique insights into using BSPM data to significantly improve
diagnostic accuracy without adding significant user training. Applications of ML tools in
BSPM are primarily focused on easing interpretation by lowering the dimensionality of
BSP maps or by training models to estimate specific clinical variables.

Dimensionality reduction in BSPM via ML represents the complex phenomena cap-
tured by the hundreds of body surface recordings in a more compact form. Good et al.
demonstrated this by using Laplacian Eigenmaps, a method of unsupervised ML dimen-
sionality reduction, to more quickly and accurately identify myocardial ischemia from
recorded electrograms when compared to traditional metrics [147]. While this study pri-
marily focused on electrogram data recorded at the heart surface, Good et al. also explored
a limited use case with BSPM data [188]. The output of the Laplacian Eignemap model
is a 3D representation of the electrogram time series recorded from hundreds of leads.
While this method does compress the data into a smaller dimension, interpretation of
the resulting Eigenmap manifold is not straightforward and requires custom metrics and
modes of analysis. Interpretation of the output of an unsupervised ML method such as
Laplacian Eigenmaps can often be an additional layer of complexity, making direct analysis
unsuitable for clinical implementation. Supervised ML models, however, can be designed
to output a clinical variable of interest directly.

Supervised ML models have been applied with increasing frequency to identify clini-
cal variables using ECGs as an input. Many of these studies focus on 12-lead ECG data
and are associated with competitions such as the Computing in Cardiology Physionet 2020
Challenge, which challenged contestants to detect 26 common cardiac pathologies using
ML approaches [189]. Common deep learning architectures used include convolutional
neural networks (CNN), long short-term memory models (LSTM), and transformer net-
works. However, there is some early evidence indicating that combinations of CNNs with
Transformers or LSTMs seem to perform well on a variety of tasks [139,143]. Despite the
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differences in data, we hypothesize that many of the same architectures and innovations
developed by these studies can be readily applied to BSPM data. We also predict that the
additional information content provided by the increased spatial sample of BSPM data
may provide additional benefits such as reduced model complexity, improved performance
and allow for the investigation of more complex tasks. Brundage et al. applied both
logistic regression (a simple ML architecture) and XGBoost (a low parameter decision
tree-based architecture) models to detect myocardial ischemia using 96 lead BSPM animal
data which was collected according to Zenger et al. [90]. These models demonstrate >0.95
and receiver operator area under the curve, indicating excellent model performance despite
being less complex than the architectures commonly applied to 12-lead ECG classification
problems [138].

Others have used ML as a personalization tool rather than strictly for increasing
the ease of interpretation. Giffard et al. investigated the use of ML tools which take
baseline BSPM recordings as input in predicting two critical parameters of a forward
model of cardiac electrocardiography, that estimated the response of the heart to various
pacing conditions [190]. Personalization-focused ML tools could be used clinically to tune
CRT to patients and improve outcomes. The same group later demonstrated that after
training an initial model from scratch on simulated data, including data accounting for
various pacing and heart positions, this model could be fine-tuned on patient-specific torso
geometries and used to predict the same key forward modeling parameters with greater
accuracy and less compute at inference [191]. The significant decrease in computational
time achieved by transfer learning on patient-specific geometries makes clinical deployment
much more feasible. These results suggest that data from heterogeneous sources, including
simulations and animal models, may help develop ML models that could be personalized
on a subject-specific basis. Given the lack of large publicly available BSPM datasets for
humans, an opportunity to use simulated and animal model data would ease the difficulty
of data acquisition.

5. Conclusions and Prospective View

Body surface potential maps represent a wealth of information to serve both clinical
and research goals that can be easily and safely acquired from any patient or subject. BSP
maps provide increased sampling of cardiac electrical activity over the standard 12-lead
ECG. This increased coverage and density have been exploited in a number of research
applications to explore the effects of various pathophysiological process and develop
diagnosis tools. Another advantage of BSPM is that the analysis of maps can follow a range
of diverse pathways. The signals can be directly analyzed to assess cardiac bioelectric
response under a variety of conditions, or used as inputs to computational models designed
to identify key features of physiology including noninvasively reconstructing cardiac
activity on or within the heart. No other ECG modality allows for such detailed examination
while also remaining completely noninvasive.

Contemporary BSPM systems see the bulk of their use in research settings and only to a
lesser extent in clinical practice, despite the existence of commercial ECGI devices. Research
BSPM systems consist almost entirely of custom built acquisition hardware and software,
coupled with custom built electrode systems. This heterogeneity between implementations
makes comparisons between datasets difficult, but not insurmountable, another byproduct
of the rich coverage and sampling density. One challenge that all mapping systems face is
the shortage of sources of high-quality electrodes that can readily interface with a BSPM
system. Most researchers turn to in-house production of electrodes, leading to further
heterogeneity among BSPM datasets. We see the need for a consistent source of high-
quality, reasonably priced body surface electrode arrays purpose built for body surface
mapping as a major challenge preventing BSPM from being a common research tool.

Implementing BSPM in clinical practice is also hindered by the complexity of BSP
map interpretation, the heterogeneity of acquisition and electrode systems, and the lack
of established diagnostic tests and routines based on BSP maps. Most contemporary
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applications of BSPM approach some of these challenges by leveraging methods that take
BSP maps as inputs to produce an output that is more readily interpretable than the raw
signals. For example, ECG imaging (ECGI) transforms the BSP map, a representation of
the cardiac bioelectric activity measured from distant sensors, into a direct representation
of the bioelectric activity at the heart. Using ECGI, relevant clinical features such as paths
of re-entry, sites of abnormal activation or conduction, and tissue heterogeneities can
be directly observed rather than inferred. Acquiring the same information from direct
measurements would require invasive procedures that carry significant extra risk and cost
when compared to the relative ease of a BSPM measurement.

ECGI has been successfully integrated into some clinical workflows; however, it is far
from a common, clinical procedure, despite the apparent advantages. This paucity of use is
likely because ECGI still lacks a specific application or a use case that makes a dramatic im-
provement to clinical practice. Additionally, ECGI still suffers from a number of limitations
and common difficulties that likely inhibits its uptake into common clinical workflows.
The ill-posed nature of the ECGI inverse problem can lead to erroneous solutions even with
sufficient regularization. These errors result in misleading features in reconstructed signals
such as errant lines of conduction block. Contemporary research in the development of
ECGI seeks to address such errors by a combination of approaches that include advances in
pre-processing of BSP maps, improvements to regularization and ECGI implementations,
and advances in post-processing of the resulting ECGI reconstructions [97,98,113,192]. Such
methodologies have shown promise in resolving these difficulties in ECGI. We hypothesize
that as ECGI is developed, honed, and applied to more pathologies in research settings,
these improvements will result in a clinical ECGI system that is more fit for a common
clinical workflow.

Machine learning models also present an opportunity to use BSP maps as an input
to generate a clinically useful diagnostic output. The design and specific output of an ML
model is more flexible than ECGI, as ML does not traditionally rely on specific underlying
physical relationships but rather learns a highly nonlinear mapping between the inputs
and desired outputs. This flexibility in design allows for the development of ML models to
address very specific clinical questions, with model outputs such as presence or absence
of a specific disease, or value of some relevant physiological measure that would assist
in patient diagnosis and treatment planning. ML models can be tuned to answer a much
larger set of specific questions than ECGI, so long as there is sufficient data available to
train the model. ML present an opportunity to utilize BSPM for diagnosis of more than
just cardiac-related pathophysiology. Clinical outcomes such as likelihood of an adverse
cardiac event after a procedure may be predictable using ML with BSP maps as the input.
While ML has yet to be extensively applied to BSPM data, based on successes of ML models
in other biomedical fields and in 12-lead ECG analysis, we anticipate that ML applications
leveraging BSPM data will open the door to a wide variety of clinical applications.

Across all instances of BSPM implementation and subsequent interpretation, there
has been a common restriction based on the computational power and storage needed
to acquire and manage BSP maps. Once a BSPM system is set up, recording additional
heartbeats is relatively trivial except for the need for additional computational resources to
store and process the additional signals. This restriction based on computational resources,
which in early analyses constrained investigations to single heartbeat recordings or even
sub-sections of single heartbeats, has rapidly become less of a limiting factor in BSP map
analysis. Modern computational resources greatly facilitate the incorporation of entire
BSP maps from multiple heartbeats due to dramatically increased storage capacity and
processing power. This additional capacity allows for more comprehensive investigations
into scenarios with highly dynamic cardiac behavior such as response to pharmaceuticals,
acute disease progression, and response to exercise. Modes of analysis, whether traditional
signal processing, ECGI, or AI, have the potential to leverage information from multiple
heartbeats to better explore the utility of BSP maps and further develop our understanding
of the underlying physiology of dynamic beat-to-beat change.
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We have so far considered a division between models that are deterministic (e.g.,
ECGI) and models based on statistical data driven relationships (e.g., ML). However, such a
distinction does not preclude the opportunity to combine aspects of each of these modeling
approaches. For example, recent studies have demonstrated the ML techniques can account
for geometric inaccuracies in the ECGI forward model. Additionally, physics informed
neural networks (PINN), which incorporate physics-based deterministic models into ML
neural network architectures, have emerged recently as a promising bridge between ML
techniques and deterministic models. Machine learning based approaches are well suited
for addressing complex nonlinear relationships in a form that can be less computationally
taxing and easier to establish than a deterministic model of the same phenomena. However,
ML approaches can often neglect physiologically relevant constraints, leading to models
that produce non-meaningful outputs under certain circumstances. The combination of ML
and deterministic models could offer the best of both worlds, allowing for both accurate
and efficient models that are constrained in part by physiological and physical models. We
suspect that this intersection between statistical and deterministic models will provide the
most fertile ground for the development of future BSPM analysis methods and models.
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