
Citation: Ciccone, G. ChatGPT as a

Digital Assistant for Archaeology:

Insights from the Smart Anomaly

Detection Assistant Development.

Heritage 2024, 7, 5428–5445. https://

doi.org/10.3390/heritage7100256

Academic Editors: Paolo Rosati,

Marco Raoul Marini and

Augusto Palombini

Received: 1 August 2024

Revised: 23 September 2024

Accepted: 27 September 2024

Published: 30 September 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

heritage

Article

ChatGPT as a Digital Assistant for Archaeology: Insights from
the Smart Anomaly Detection Assistant Development
Gabriele Ciccone

Department of History, Humanities and Society, University of Rome Tor Vergata, 00133 Rome, Italy;
cccgrl01@uniroma2.it

Abstract: The introduction of generative AI has the potential to radically transform various fields
of research, including archaeology. This study explores the potential of generative AI, specifically
ChatGPT, in developing a computer application for analyzing aerial and satellite images to detect
archaeological anomalies. The main focus was not on developing the application itself but on
evaluating ChatGPT’s effectiveness as an IT assistant for humanistic researchers. Starting with
a simple prompt to analyze a multispectral orthophoto, the application was developed through
successive iterations, improved through continuous interactions with ChatGPT. Various technical
and methodological challenges were addressed, leading to the creation of a functional application
with multiple features, including various analysis methods and tools. This process demonstrated
how the use of large language models (LLMs) can break down the barriers between humanities and
computer science disciplines, enabling researchers without programming skills to develop complex
applications in a short time.

Keywords: artificial intelligence; ChatGPT; cultural heritage

1. Introduction

The recent surge of Generative Artificial Intelligence on the global market is revolu-
tionizing several fields of research, including archaeology. Archaeologists’ interest in AI
algorithms is not new; for years, researchers have recognized the potential of machine
learning and computer vision algorithms in archaeology [1–13]. However, the advent of
generative AI applications, such as large language models (LLMs), which allow researchers
to interface using common language, marks a significant step forward in the use of AI in
the archaeological field, even though we are still in the early stages of development.

Since November 2022, when ChatGPT-3.5 became publicly available, cultural heritage
researchers have increasingly focused on the potential of generative AI. Most contributions
have concentrated on integrating LLMs into the museum field [14–16], while other research
has examined LLMs’ capabilities to answer academic questions [17,18]. Additionally, some
studies have analyzed LLMs’ potential in archaeological remote sensing [19–21] and others
are debating about ethical implications and sustainable applications of AI [22,23].

One of the latter studies highlights what is, in the writer’s opinion, one of the most
interesting aspects of LLMs: “ChatGPT 3.5 (. . .) quickly and efficiently understands, gen-
erates, and edits complex JavaScript codes at the user’s textual request” [21] (p. 7648),
demonstrating the ability to transform common language into complex programming code.
As Jerry Kaplan, a pioneer of AI, states, “soon, LLMs will provide expert medical care,
dispense legal advice, draft our documents, (. . .), write computer programs” [24] (p. 1).

We are witnessing a radical shift in perspective, which has not gone unnoticed in
the IT world [25]. However, it is in the humanities, particularly archaeology, that this
change will be most appreciated. Applications such as ChatGPT, Claude, Gemini, Bard,
and others can revolutionize the approach of humanist researchers to using algorithms and
computer systems for research. The ability to interact using common language can bridge

Heritage 2024, 7, 5428–5445. https://doi.org/10.3390/heritage7100256 https://www.mdpi.com/journal/heritage

https://doi.org/10.3390/heritage7100256
https://doi.org/10.3390/heritage7100256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/heritage
https://www.mdpi.com
https://orcid.org/0000-0002-4341-9296
https://doi.org/10.3390/heritage7100256
https://www.mdpi.com/journal/heritage
https://www.mdpi.com/article/10.3390/heritage7100256?type=check_update&version=1

Heritage 2024, 7 5429

the gap between humanistic researchers, especially archaeologists, who have long utilized
technological innovations, and applied computing.

Rather than adapting computer applications—most of which were developed for
other purposes—to archaeological research (e.g., GIS, initially created for military purposes
and later adapted for general geostatistical uses, now indispensable in archaeology [23]),
researchers can now interrogate the technology itself to develop workflows or applications
best suited for their research purposes. Those who have collaborated with computer
scientists to modify or develop applications for archaeological research (or perhaps any
humanities field) have experienced the challenges of interacting with technicians from
vastly different backgrounds. This often results in either settling for an application that
approximates what is needed or learning programming languages to develop the desired
application independently [26–29].

Today, these challenges can be overcome with the use of LLMs. This paper highlights
the possibilities of using one of these systems (in this case, ChatGPT-4) to develop a
complete application, delegating the task of writing the entire programming code to the
generative AI. In the example discussed, ChatGPT was used to develop a program to assist
archaeologists in analyzing aerial and satellite photographs to detect terrain anomalies
indicative of possible archaeological elements, using different methodologies.

The research presented here does not focus on the application’s potential, which may
not be groundbreaking for those familiar with remote sensing techniques in archaeology.
Instead, it emphasizes the potential of using generative AI as a computer assistant in
archaeological research. We will analyze the difficulties encountered, the time spent in dia-
logue with ChatGPT, the development process, the shortcuts identified, the improvements
proposed by the AI, and the prompts used to achieve the desired results. The aim is not
to showcase the developed application but to examine the approach that emerged from
interacting with the LLM during the development process, enabling other researchers to
develop entirely different applications using similar methods.

In the following paragraphs, two different fonts will be used to distinguish ChatGPT
prompts and responses, transcribed in full, from the rest of the text.

2. Materials and Methods

The research presented here starts with a simple ChatGPT-4 test for detecting anoma-
lies in a multispectral orthophoto taken from a drone survey. The initial prompt was
as follows:

Analyze the following multispectral image created using the NDVI vegetative index.
Identify possible anthropic anomalies. Finally, process a new image using the uploaded
one as a base and highlight the identified anomalies.

ChatGPT’s reply:
Analyzing a multispectral image with the NDVI (Normalized Difference Vegetation

Index) can help identify vegetation anomalies and possible signs of anthropogenic activity.
I will proceed with the following steps:

1. Loading and displaying the image.
2. Analyzing the image to identify anomalies.
3. Highlighting anthropogenic anomalies.
We begin by loading and displaying the image.
At this point, ChatGPT loaded the image loaded in the prompt (Figure 1) and began to

analyze it. After a few moments, it provided the following response, explaining the process
by which it was carrying out the instructions expressed in the initial prompt.

Heritage 2024, 7 5430
Heritage 2024, 7, FOR PEER REVIEW 3

Figure 1. Multispectral image, with NDVI vegetative index, uploaded to ChatGPT.

The multispectral image with the NDVI vegetation index shows various areas of veg-

etation, some of which exhibit anomalies that could be anthropogenic.

Next steps:

1. Anomaly analysis: Visually identify areas with anomalies compared to natural veg-

etation.

2. Highlighting the anomalies: “Create a modified image with the anomalies high-

lighted”.

Anomaly analysis:

1. Dark areas: These may indicate areas with human intervention such as roads,

buildings, or deforested areas.

2. Regular geometries: Regular geometric shapes, such as squares or rectangles, often

indicate man-made structures.

I will proceed with the analysis and highlighting of anomalies.

After another brief pause, ChatGPT finished processing and presented the image

with the anomalies highlighted (Figure 2) and provided the following final response:

Figure 2. Image with red highlighting of the anomalies identified by ChatGPT.

The image above shows the anthropogenic anomalies highlighted in red. These areas

may include the following:

• Roads and paths: Highlighted along transit areas.

• Buildings: Areas with regular, dark geometries.

• Cleared or modified areas: Parts that show significantly different or absent vegetation.

Figure 1. Multispectral image, with NDVI vegetative index, uploaded to ChatGPT.

The multispectral image with the NDVI vegetation index shows various areas of
vegetation, some of which exhibit anomalies that could be anthropogenic.

Next steps:
1. Anomaly analysis: Visually identify areas with anomalies compared to natural

vegetation.
2. Highlighting the anomalies: “Create a modified image with the anomalies high-

lighted”.
Anomaly analysis:
1. Dark areas: These may indicate areas with human intervention such as roads,

buildings, or deforested areas.
2. Regular geometries: Regular geometric shapes, such as squares or rectangles, often

indicate man-made structures.
I will proceed with the analysis and highlighting of anomalies.
After another brief pause, ChatGPT finished processing and presented the image with

the anomalies highlighted (Figure 2) and provided the following final response:

Heritage 2024, 7, FOR PEER REVIEW 3

Figure 1. Multispectral image, with NDVI vegetative index, uploaded to ChatGPT.

The multispectral image with the NDVI vegetation index shows various areas of veg-

etation, some of which exhibit anomalies that could be anthropogenic.

Next steps:

1. Anomaly analysis: Visually identify areas with anomalies compared to natural veg-

etation.

2. Highlighting the anomalies: “Create a modified image with the anomalies high-

lighted”.

Anomaly analysis:

1. Dark areas: These may indicate areas with human intervention such as roads,

buildings, or deforested areas.

2. Regular geometries: Regular geometric shapes, such as squares or rectangles, often

indicate man-made structures.

I will proceed with the analysis and highlighting of anomalies.

After another brief pause, ChatGPT finished processing and presented the image

with the anomalies highlighted (Figure 2) and provided the following final response:

Figure 2. Image with red highlighting of the anomalies identified by ChatGPT.

The image above shows the anthropogenic anomalies highlighted in red. These areas

may include the following:

• Roads and paths: Highlighted along transit areas.

• Buildings: Areas with regular, dark geometries.

• Cleared or modified areas: Parts that show significantly different or absent vegetation.

Figure 2. Image with red highlighting of the anomalies identified by ChatGPT.

Heritage 2024, 7 5431

The image above shows the anthropogenic anomalies highlighted in red. These areas
may include the following:

• Roads and paths: Highlighted along transit areas.
• Buildings: Areas with regular, dark geometries.
• Cleared or modified areas: Parts that show significantly different or absent vegetation.

If you need further analysis or another representation, let me know!
The element that immediately appeared interesting, apart from the speed of the

response and even more than the processing result itself, which, as you can see, has several
errors, was the possibility of reading the code used for processing by clicking on the [>-]
icon (Algorithm 1).

Algorithm 1: the code used by ChatGPT to process the image.

python

import numpy as np

Convert image to numpy array for analysis
image_array = np.array(image)

Assuming the anomalies are the darkest areas, let’s highlight them
This is a simplistic approach, usually more advanced techniques are used
anomalies = image_array[:, :, 0] < 100 # Threshold to find dark areas

Create a copy of the image to highlight anomalies
highlighted_image = image_array.copy()

Highlight anomalies in red
highlighted_image[anomalies] = [255, 0, 0]

Convert back to image
highlighted_image_pil = Image.fromarray(highlighted_image)

Display image with highlighted anomalies
plt.figure(figsize=(10, 10))
plt.imshow(highlighted_image_pil)
plt.axis(‘off’)
plt.show()

Equally interesting is the fact that the code produced by ChatGPT already includes
explanations of the individual strings used and, in one case, even a hint at possible im-
provements (#This is a simplistic approach, usually more advanced techniques are used).
At this point, the next step was to ask ChatGPT to create an application to reproduce the
same processing with other images. Having found that ChatGPT had automatically used
the Python language to process the first image, ChatGPT was asked to continue using
Python to create the application.

This was the response:
To create an application in Python that can perform this same process on other images,

you can follow these steps. We will use libraries such as Pillow for image manipulation
and matplotlib for visualization. You can use the following script as a base (Algorithm 2):

Heritage 2024, 7 5432

Algorithm 2: the script proposed by ChatGPT to initiate the development of the application.

Python

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

def load_image(image_path):
Uploads an image from the specified path.
return Image.open(image_path)

def find_anomalies(image, threshold=100):
Find the anomalies in the image, assuming that the darker are-as
represent anomalies.
image_array = np.array(image)
anomalies = image_array[:, :, 0] < threshold
return anomalies

def highlight_anomalies(image, anomalies):
Highlight anomalies in red on the image.
highlighted_image = np.array(image).copy()
highlighted_image[anomalies] = [255, 0, 0]
return Image.fromarray(highlighted_image)

def display_image(image):
Display the image using matplotlib.
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.axis(‘off’)
plt.show()

def main(image_path):
Performs the entire process of image loading, anomaly detec-tion
and result display
image = load_image(image_path)
anomalies = find_anomalies(image)
highlighted_image = highlight_anomalies(image, anomalies)
display_image(highlighted_image)

Input image path
image_path = ‘image_path/image.jpeg’
main(image_path)

Steps for Executing the Code

1. Install Dependencies:

Make sure you have Pillow and matplotlib installed. You can install them using pip
(Algorithm 3):

Algorithm 3: instruction by ChatGPT.

sh
pip install Pillow matplotlib

2. Save the Script:

Save the code in a Python file, e.g., image_anomalies.py.

3. Run the Script:

Heritage 2024, 7 5433

Execute the script by running the following (Algorithm 4):

Algorithm 4: instruction to execute the application.

sh
python image_anomalies.py

• Threshold for Anomalies: You can change the threshold value in the find_anomalies
function to better suit your specific images.

• Image Path: Change the value of image_path to the path of the image you wish
to analyze.

This script will provide you with a solid basis for analyzing other images and highlight-
ing anomalies in a similar way as before. If you need further functionality or modifications,
please let me know!

It is immediately apparent that ChatGPT did not just create the code but also worked
out the instructions for installing the necessary dependencies, executing the code, and
modifying certain parameters to suit its own specifications. At this point, ChatGPT was
asked to directly create the Python file and name it “main”. The file thus created was
loaded into the PyCharm working environment, version 2023.1, and executed, resulting in
the following error (Algorithm 5):

Algorithm 5: script of the first error.

Traceback (most recent call last):
File “/. . ./main.py”, line 48, in <module>
main(image_path)
File “/. . ./main.py”, line 43, in main
highlighted_image = highlight_anomalies(image, anomalies)
File “/. . ./main.py”, line 25, in highlight_anomalies
highlighted_image[anomalies] = [255, 0, 0]
ValueError: shape mismatch: value array of shape (3,) could not be broadcast to indexing result of
shape (1,123,078,4)

At this point, it is important to emphasize one thing: although the writer’s rudimentary
Python basics made it possible to point out a few errors in some cases, it was decided not to
intervene independently in the code under any circumstances. The purpose of the research
was precisely to assess the capabilities of ChatGPT as an IT assistant and code processor
for those who, like most archaeologists or researchers in the humanities in general, have no
knowledge of programming languages. For this reason, the error highlighted above was
simply copied and pasted into the dialogue with ChatGPT, exactly as was performed with
all subsequent errors, so that the corrections would be made exclusively by ChatGPT. The
answer derived was as follows:

The problem seems to stem from the fact that the loaded image has an alpha (trans-
parency) channel that is not handled correctly in the code. We need to ensure that the image
only has three channels (RGB) before highlighting the anomalies.

Here is how you can correct the code:

1. Remove the alpha channel if present.
2. Ensure that the array of values to be assigned has the same shape as the array of anomalies.

At this point, ChatGPT processed the new corrected code and subsequently generated
a new downloadable .py file. Once executed, this file showed no problems. This file
was titled v0.1, as it was the first version of the application which, although basic in its
functions, did not present any issues. The application loads the image specified in the
code, analyzes the possible color variations, assuming that areas with darker pixels than
the threshold value indicated in the code are the anomalies sought, and then generates a
plot with the original image on which the darker pixels are highlighted in red. This mirrors

Heritage 2024, 7 5434

what ChatGPT had carried out directly following the first prompt run (see above). By now,
the test continued by asking ChatGPT to gradually add new features. The following is a
list of the improvements made in the individual versions of the application, up to version
0.5. The errors that emerged will not all be presented here; only the main ones will be
discussed in the following section, as they are useful for a better understanding of the
method performed:

- v0.2: Selection of a single image area to be analyzed.
- v0.3: Development of a basic graphical user interface (GUI) to directly select the image

from the hard disk, without having to specify the new path in the code each time.
ChatGPT independently specified the tkinter library to process this GUI.

- v0.4: Display of the original image and the image processed by the analysis directly
within the GUI canvas, without separate plots. Addition of the buttons ‘select image’,
‘select area’, ‘analyze image’, ‘save’, and ‘reset’ to load an image, select a part of it,
perform the analysis, save the processed image with the highlighted traces, and return
to the original image.

At this stage, ChatGPT was asked directly how to proceed, using the following prompt:
Everything works; how can we further improve the application?
This is the answer:
Here are some ideas to further improve the application:

1. Add configuration options:

• Allow the user to adjust the threshold value for anomaly detection.
• Add an option to choose the color of highlighted anomalies.

2. Enhanced visualization:

• Show the selection in real time with continuous updates as the user drags the mouse.
• Add a zoom to enlarge selected areas or display the entire image.

3. Processing history:

• Save a log of operations performed, such as area selection and image saving, for
possible later retrieval or analysis.

4. Add undo/redo functionality:

• Allow users to undo and redo the last selection and analysis operations.

5. Improved user interface:

• Use dynamic layouts to adapt the interface to different screen sizes.
• Add a status bar to display information on the current status of the program (e.g.,

‘Image loaded’, ‘Area selected’, ‘Anomalies detected’).

Implement some of these ideas in the code (. . .)
Then, ChatGPT worked out the entire new code with added configuration options as

suggested.

- v0.5: Improvement of the entire application with all the suggestions proposed by
ChatGPT; request and implementation of a possible name for the application (of
the four provided by ChatGPT, Smart Anomaly Detection Assistant (S.A.D.A.) was
chosen); addition of an image as the initial logo of the application, positioned in the
center of the canvas at opening and then resized and moved to the top right-hand
corner after loading the image to be analyzed; choice of color with which to highlight
the traces with a combobox.

Analyze the following multispectral image created using the NDVI vegetative index.
Identify possible anthropic anomalies. Finally, process a new image using the uploaded
one as a base and highlight the identified anomalies.

Having reached this point, ChatGPT was asked to produce a report of what had been
conducted so far, highlighting the functionality of the application, the time taken to produce
it, the changes made for errors in the code, and requested improvements.

Heritage 2024, 7 5435

The report indicated a total conversation time of approximately 4 h, with twelve code
changes due to ChatGPT errors and four changes due to requested improvements. It should
be emphasized that the code changes were certainly more numerous, considering that often
several improvements were requested or several errors were corrected in a single prompt.
However, the time taken, approximately 4 h, is noteworthy. This does not include the time
required to copy the code produced by ChatGPT and paste it into the Python file, copy and
paste the errors that emerged in the opposite direction, and test the application following
each change. The exact time for all these operations was not recorded, but if we estimate
the total time taken and round up, it can be said that it took no more than 8 h to develop
code that expanded from 84 lines in version 0.1 to 437 lines in version 0.5, resulting in an
application with more than 10 fully functional features.

Later, given the size the code had reached, ChatGPT was given the following prompt:
The code is starting to seem a bit long. Can we break it down into several .py files?

The answer: Sure, we can split the code into multiple files to make it more organized
and manageable. We can separate the code into separate modules as follows:

1. main.py—Contains the entry point of the application.
2. gui.py—Contains the GUI logic.
3. image_processing.py—Contains the functions for image processing.
4. config.py—Contains the configurations and constants used in the application.

ChatGPT then presented the new code divided into the four separate .py files and
ended the answer with the following information (Algorithm 6):

Make sure that the files main.py, gui.py, image_processing.py, and config.py are in the
same directory, and that the path to the logo file in config.py is correct.

Algorithm 6: The architecture generated by ChatGPT, which organizes the code into multiple .py files.

Heritage 2024, 7, FOR PEER REVIEW 8

four provided by ChatGPT, Smart Anomaly Detection Assistant (S.A.D.A.) was cho-

sen); addition of an image as the initial logo of the application, positioned in the cen-

ter of the canvas at opening and then resized and moved to the top right-hand corner

after loading the image to be analyzed; choice of color with which to highlight the

traces with a combobox.

Analyze the following multispectral image created using the NDVI vegetative index.

Identify possible anthropic anomalies. Finally, process a new image using the uploaded

one as a base and highlight the identified anomalies.

Having reached this point, ChatGPT was asked to produce a report of what had been

conducted so far, highlighting the functionality of the application, the time taken to pro-

duce it, the changes made for errors in the code, and requested improvements.

The report indicated a total conversation time of approximately 4 h, with twelve code

changes due to ChatGPT errors and four changes due to requested improvements. It

should be emphasized that the code changes were certainly more numerous, considering

that often several improvements were requested or several errors were corrected in a sin-

gle prompt. However, the time taken, approximately 4 h, is noteworthy. This does not

include the time required to copy the code produced by ChatGPT and paste it into the

Python file, copy and paste the errors that emerged in the opposite direction, and test the

application following each change. The exact time for all these operations was not rec-

orded, but if we estimate the total time taken and round up, it can be said that it took no

more than 8 h to develop code that expanded from 84 lines in version 0.1 to 437 lines in

version 0.5, resulting in an application with more than 10 fully functional features.

Later, given the size the code had reached, ChatGPT was given the following prompt:

The code is starting to seem a bit long. Can we break it down into several .py files?

The answer: Sure, we can split the code into multiple files to make it more organized

and manageable. We can separate the code into separate modules as follows:

1. main.py—Contains the entry point of the application.

2. gui.py—Contains the GUI logic.

3. image_processing.py—Contains the functions for image processing.

4. config.py—Contains the configurations and constants used in the application.

ChatGPT then presented the new code divided into the four separate .py files and

ended the answer with the following information (Algorithm 6):

Make sure that the files main.py, gui.py, image_processing.py, and config.py are in

the same directory, and that the path to the logo file in config.py is correct.

Algorithm 6: The architecture generated by ChatGPT, which organizes the code into

multiple .py files.

SADA_v0.5/
│
├── main.py

├── gui.py

├── image_processing.py

├── config.py

└── images/

 └── logo_SADA_.png

The next step was to check whether it was possible to include different methods for

detecting traces in the image. For this reason, ChatGPT was first asked the following:

Which library/algorithm is used to detect anomalies?

The answer is as follows:

In the current code, the algorithm to detect anomalies is very simple and based on a

fixed threshold applied to the red (R) channel of the image pixels. This rudimentary tech-

nique identifies the darkest pixels as anomalies.

The next step was to check whether it was possible to include different methods for
detecting traces in the image. For this reason, ChatGPT was first asked the following:

Which library/algorithm is used to detect anomalies?
The answer is as follows:
In the current code, the algorithm to detect anomalies is very simple and based on

a fixed threshold applied to the red (R) channel of the image pixels. This rudimentary
technique identifies the darkest pixels as anomalies.

Here is how it works:

1. **Convert the image into a numpy array**:

Heritage 2024, 7, FOR PEER REVIEW 9

Here is how it works:

1. **Convert the image into a numpy array**:

```python 

image_array = np.array(image) 

``` 

This converts the image into a numpy array, where each pixel is represented by its

RGB values.

2. **Identifying anomalies**:

```python 

anomalies = image_array[:, :, 0] < threshold 

``` 

Here, ‘image_array[:, :, 0]’ selects the red channel of the image. The algorithm then

compares each red channel value with a predefined threshold (‘threshold’). Pixels with

red channel values below the threshold are considered anomalies.

This method is extremely simple and does not make use of complex algorithms or

machine learning. It is only suitable for images in which anomalies can be identified as

areas that are significantly darker than the rest of the image.

Libraries Used

- **NumPy**: Used for array manipulation and image processing.

- **PIL (Pillow)**: Used for image handling and manipulation.

Possible Improvements

For more advanced and robust anomaly detection, you might consider using more

sophisticated techniques such as the following:

1. **Machine Learning Methods**:

- **Autoencoders**: Neural networks designed to learn a compressed representa-

tion of data. Autoencoders can be trained on normal data and used to detect

anomalies by comparing the input with the reconstruction.

- **Isolation Forest**: Machine learning algorithm that isolates anomalous obser-

vations.

2. **Statistical Analysis**:

- **Principal Component Analysis (PCA)**: Dimension reduction that can be used

to identify anomalies in high-dimensional datasets.

- **Clustering Methods**: Algorithms such as K-means or DBSCAN can be used

to identify data points that do not fit well into any cluster.

3. **Advanced Image Processing**:

- **Filtering and Smoothing**: Use of filters to reduce noise and improve image

quality.

- **Edge Detection**: Algorithms such as Canny edge detectors can be used to

identify contours and edges in the image.

These methods require a deeper understanding of machine learning and image pro-

cessing techniques but can provide significantly better results than a simple threshold

comparison.

As pointed out by the response, ChatGPT not only explains the current functioning

of the code but also proposes several alternative methods which may be useful to improve

the functions of the application. Testing continued by incorporating some of these meth-

ods and other new functions in later versions:

- v0.6: Increase in analysis methods with the introduction of PCA, Isolation Forest, and

K-means, selectable via a combobox. Addition of the option to choose whether to

analyze the darkest or the lightest pixels using the standard method. Improvement

python
image_array = np.array(image)

Heritage 2024, 7, FOR PEER REVIEW 9

Here is how it works:

1. **Convert the image into a numpy array**:

```python 

image_array = np.array(image) 

``` 

This converts the image into a numpy array, where each pixel is represented by its

RGB values.

2. **Identifying anomalies**:

```python 

anomalies = image_array[:, :, 0] < threshold 

``` 

Here, ‘image_array[:, :, 0]’ selects the red channel of the image. The algorithm then

compares each red channel value with a predefined threshold (‘threshold’). Pixels with

red channel values below the threshold are considered anomalies.

This method is extremely simple and does not make use of complex algorithms or

machine learning. It is only suitable for images in which anomalies can be identified as

areas that are significantly darker than the rest of the image.

Libraries Used

- **NumPy**: Used for array manipulation and image processing.

- **PIL (Pillow)**: Used for image handling and manipulation.

Possible Improvements

For more advanced and robust anomaly detection, you might consider using more

sophisticated techniques such as the following:

1. **Machine Learning Methods**:

- **Autoencoders**: Neural networks designed to learn a compressed representa-

tion of data. Autoencoders can be trained on normal data and used to detect

anomalies by comparing the input with the reconstruction.

- **Isolation Forest**: Machine learning algorithm that isolates anomalous obser-

vations.

2. **Statistical Analysis**:

- **Principal Component Analysis (PCA)**: Dimension reduction that can be used

to identify anomalies in high-dimensional datasets.

- **Clustering Methods**: Algorithms such as K-means or DBSCAN can be used

to identify data points that do not fit well into any cluster.

3. **Advanced Image Processing**:

- **Filtering and Smoothing**: Use of filters to reduce noise and improve image

quality.

- **Edge Detection**: Algorithms such as Canny edge detectors can be used to

identify contours and edges in the image.

These methods require a deeper understanding of machine learning and image pro-

cessing techniques but can provide significantly better results than a simple threshold

comparison.

As pointed out by the response, ChatGPT not only explains the current functioning

of the code but also proposes several alternative methods which may be useful to improve

the functions of the application. Testing continued by incorporating some of these meth-

ods and other new functions in later versions:

- v0.6: Increase in analysis methods with the introduction of PCA, Isolation Forest, and

K-means, selectable via a combobox. Addition of the option to choose whether to

analyze the darkest or the lightest pixels using the standard method. Improvement

This converts the image into a numpy array, where each pixel is represented by its
RGB values.

2. **Identifying anomalies**:

Heritage 2024, 7, FOR PEER REVIEW 9

Here is how it works:

1. **Convert the image into a numpy array**:

```python 

image_array = np.array(image) 

``` 

This converts the image into a numpy array, where each pixel is represented by its

RGB values.

2. **Identifying anomalies**:

```python 

anomalies = image_array[:, :, 0] < threshold 

``` 

Here, ‘image_array[:, :, 0]’ selects the red channel of the image. The algorithm then

compares each red channel value with a predefined threshold (‘threshold’). Pixels with

red channel values below the threshold are considered anomalies.

This method is extremely simple and does not make use of complex algorithms or

machine learning. It is only suitable for images in which anomalies can be identified as

areas that are significantly darker than the rest of the image.

Libraries Used

- **NumPy**: Used for array manipulation and image processing.

- **PIL (Pillow)**: Used for image handling and manipulation.

Possible Improvements

For more advanced and robust anomaly detection, you might consider using more

sophisticated techniques such as the following:

1. **Machine Learning Methods**:

- **Autoencoders**: Neural networks designed to learn a compressed representa-

tion of data. Autoencoders can be trained on normal data and used to detect

anomalies by comparing the input with the reconstruction.

- **Isolation Forest**: Machine learning algorithm that isolates anomalous obser-

vations.

2. **Statistical Analysis**:

- **Principal Component Analysis (PCA)**: Dimension reduction that can be used

to identify anomalies in high-dimensional datasets.

- **Clustering Methods**: Algorithms such as K-means or DBSCAN can be used

to identify data points that do not fit well into any cluster.

3. **Advanced Image Processing**:

- **Filtering and Smoothing**: Use of filters to reduce noise and improve image

quality.

- **Edge Detection**: Algorithms such as Canny edge detectors can be used to

identify contours and edges in the image.

These methods require a deeper understanding of machine learning and image pro-

cessing techniques but can provide significantly better results than a simple threshold

comparison.

As pointed out by the response, ChatGPT not only explains the current functioning

of the code but also proposes several alternative methods which may be useful to improve

the functions of the application. Testing continued by incorporating some of these meth-

ods and other new functions in later versions:

- v0.6: Increase in analysis methods with the introduction of PCA, Isolation Forest, and

K-means, selectable via a combobox. Addition of the option to choose whether to

analyze the darkest or the lightest pixels using the standard method. Improvement

python
anomalies = image_array[:, :, 0] < threshold

Heritage 2024, 7, FOR PEER REVIEW 9

Here is how it works:

1. **Convert the image into a numpy array**:

```python 

image_array = np.array(image) 

``` 

This converts the image into a numpy array, where each pixel is represented by its

RGB values.

2. **Identifying anomalies**:

```python 

anomalies = image_array[:, :, 0] < threshold 

``` 

Here, ‘image_array[:, :, 0]’ selects the red channel of the image. The algorithm then

compares each red channel value with a predefined threshold (‘threshold’). Pixels with

red channel values below the threshold are considered anomalies.

This method is extremely simple and does not make use of complex algorithms or

machine learning. It is only suitable for images in which anomalies can be identified as

areas that are significantly darker than the rest of the image.

Libraries Used

- **NumPy**: Used for array manipulation and image processing.

- **PIL (Pillow)**: Used for image handling and manipulation.

Possible Improvements

For more advanced and robust anomaly detection, you might consider using more

sophisticated techniques such as the following:

1. **Machine Learning Methods**:

- **Autoencoders**: Neural networks designed to learn a compressed representa-

tion of data. Autoencoders can be trained on normal data and used to detect

anomalies by comparing the input with the reconstruction.

- **Isolation Forest**: Machine learning algorithm that isolates anomalous obser-

vations.

2. **Statistical Analysis**:

- **Principal Component Analysis (PCA)**: Dimension reduction that can be used

to identify anomalies in high-dimensional datasets.

- **Clustering Methods**: Algorithms such as K-means or DBSCAN can be used

to identify data points that do not fit well into any cluster.

3. **Advanced Image Processing**:

- **Filtering and Smoothing**: Use of filters to reduce noise and improve image

quality.

- **Edge Detection**: Algorithms such as Canny edge detectors can be used to

identify contours and edges in the image.

These methods require a deeper understanding of machine learning and image pro-

cessing techniques but can provide significantly better results than a simple threshold

comparison.

As pointed out by the response, ChatGPT not only explains the current functioning

of the code but also proposes several alternative methods which may be useful to improve

the functions of the application. Testing continued by incorporating some of these meth-

ods and other new functions in later versions:

- v0.6: Increase in analysis methods with the introduction of PCA, Isolation Forest, and

K-means, selectable via a combobox. Addition of the option to choose whether to

analyze the darkest or the lightest pixels using the standard method. Improvement

Heritage 2024, 7 5436

Here, ‘image_array[:, :, 0]’ selects the red channel of the image. The algorithm then
compares each red channel value with a predefined threshold (‘threshold’). Pixels with red
channel values below the threshold are considered anomalies.

This method is extremely simple and does not make use of complex algorithms or
machine learning. It is only suitable for images in which anomalies can be identified as
areas that are significantly darker than the rest of the image.

Libraries Used
- **NumPy**: Used for array manipulation and image processing.
- **PIL (Pillow)**: Used for image handling and manipulation.

Possible Improvements
For more advanced and robust anomaly detection, you might consider using more

sophisticated techniques such as the following:

1. **Machine Learning Methods**:

- **Autoencoders**: Neural networks designed to learn a compressed represen-
tation of data. Autoencoders can be trained on normal data and used to detect
anomalies by comparing the input with the reconstruction.

- **Isolation Forest**: Machine learning algorithm that isolates anomalous observa-
tions.

2. **Statistical Analysis**:

- **Principal Component Analysis (PCA)**: Dimension reduction that can be used
to identify anomalies in high-dimensional datasets.

- **Clustering Methods**: Algorithms such as K-means or DBSCAN can be used to
identify data points that do not fit well into any cluster.

3. **Advanced Image Processing**:

- **Filtering and Smoothing**: Use of filters to reduce noise and improve image
quality.

- **Edge Detection**: Algorithms such as Canny edge detectors can be used to
identify contours and edges in the image.

These methods require a deeper understanding of machine learning and image processing
techniques but can provide significantly better results than a simple threshold comparison.

As pointed out by the response, ChatGPT not only explains the current functioning of
the code but also proposes several alternative methods which may be useful to improve
the functions of the application. Testing continued by incorporating some of these methods
and other new functions in later versions:

- v0.6: Increase in analysis methods with the introduction of PCA, Isolation Forest, and
K-means, selectable via a combobox. Addition of the option to choose whether to
analyze the darkest or the lightest pixels using the standard method. Improvement
of threshold value modification via a slide bar, which also works in real time after
image analysis.

- v0.7: Improvement of the GUI with the introduction of the commands ‘zoom to select’,
which can be activated after selecting an area, and ‘move’ to navigate within the image,
which can be activated after zooming in.

- v0.8: Addition of a second selection method and distinction of selection commands
(‘Standard Selection’ for classic rectangular click-move-drag selection, ‘Select Area’
for polygonal selection by points). Insertion of two slide bars for adjusting image
brightness and contrast values. Further code subdivision with the addition of the files
image_selection.py and image_processing_gui.py.

- v0.9: General clean-up of the code; parameterization of the threshold values according
to the method used; resolution of a series of minor issues to standardize the results of
the application’s various functions (some of these elements will be dealt with in more
detail in the next section).

Heritage 2024, 7 5437

Having reached version 0.9 (Figures 3 and 4), the application functions correctly,
allowing us to load an aerial or satellite image, process it with four different statistical
and pixel interpolation methods, select only a part of the image to be analyzed with two
distinct selection modes, apply various zoom functions, modify brightness, contrast, and
threshold values in real time, perform undo and redo during the process, reset processing
and selection to return to the original image, and finally save the processed image (Figure 5).

Heritage 2024, 7, FOR PEER REVIEW 10

of threshold value modification via a slide bar, which also works in real time after

image analysis.

- v0.7: Improvement of the GUI with the introduction of the commands ‘zoom to se-

lect’, which can be activated after selecting an area, and ‘move’ to navigate within the

image, which can be activated after zooming in.

- v0.8: Addition of a second selection method and distinction of selection commands

(‘Standard Selection’ for classic rectangular click-move-drag selection, ‘Select Area’

for polygonal selection by points). Insertion of two slide bars for adjusting image

brightness and contrast values. Further code subdivision with the addition of the files

image_selection.py and image_processing_gui.py.

- v0.9: General clean-up of the code; parameterization of the threshold values accord-

ing to the method used; resolution of a series of minor issues to standardize the re-

sults of the application’s various functions (some of these elements will be dealt with

in more detail in the next section).

Having reached version 0.9 (Figures 3 and 4), the application functions correctly, al-

lowing us to load an aerial or satellite image, process it with four different statistical and

pixel interpolation methods, select only a part of the image to be analyzed with two dis-

tinct selection modes, apply various zoom functions, modify brightness, contrast, and

threshold values in real time, perform undo and redo during the process, reset processing

and selection to return to the original image, and finally save the processed image (Figure

5).

Figure 3. Screenshot of the Smart Anomaly Detection Assistant (S.A.D.A.) v09 application interface.

The image shows various anomaly detection methods available, such as Standard, PCA, K-means,

and Isolation Forest.

Figure 3. Screenshot of the Smart Anomaly Detection Assistant (S.A.D.A.) v09 application interface.
The image shows various anomaly detection methods available, such as Standard, PCA, K-means,
and Isolation Forest.Heritage 2024, 7, FOR PEER REVIEW 11

Figure 4. Flowchart illustrating the processes of the S.A.D.A. v0.9 application. The chart outlines the

steps for loading and analyzing images, selecting areas, applying various analysis methods (Stand-

ard, PCA, K-means, Isolation Forest), and adjusting parameters such as brightness, contrast, and

thresholds.

Figure 4. Flowchart illustrating the processes of the S.A.D.A. v0.9 application. The chart outlines
the steps for loading and analyzing images, selecting areas, applying various analysis methods
(Standard, PCA, K-means, Isolation Forest), and adjusting parameters such as brightness, contrast,
and thresholds.

Heritage 2024, 7 5438Heritage 2024, 7, FOR PEER REVIEW 12

Figure 5. Composite image showcasing the Smart Anomaly Detection Assistant (S.A.D.A.) v09 in

use: (A) The image is analyzed using the standard method with a rectangular standard selection.

Anomalies are highlighted in red on the aerial image; (B) The same image and method as in A, but

with an adjusted threshold value, resulting in different anomaly detection patterns; (C) Demon-

strates the use of a polygonal selection tool to define a more specific area for analysis; (D) Applies

the PCA (Principal Component Analysis) method to the polygonal selection made in (C).

3. Results and Discussion

The main result of the research is highlighted in the first paragraph of the report pro-

duced by ChatGPT at the conclusion of version 0.9:

Time Taken

The total time taken for the development of version 0.9 was approximately 30 h

spread over several days. The main activities included the following:

- Requirements analysis and planning: 4 h

- Implementation of new functionalities: 12 h

- Debugging and troubleshooting: 10 h

- Testing and optimization: 4 h

The distribution of time may vary slightly depending on the complexity of the prob-

lems addressed and the changes required during the testing and review phases.

Since the time taken was not exactly timed, an approximate calculation was made

based on dedicated working days to be compared with that provided by ChatGPT, result-

ing in a maximum time of no more than 40 h. This estimate, considering that the develop-

ment of the application often occurred concurrently with the execution of other projects,

does not deviate much from that described by ChatGPT.

In any case, it can be said that five working days to create an application like S.A.D.A

0.9 from scratch, without assuming any programming knowledge on the part of the user,

is an exceptional achievement, hardly imaginable just two years ago. Another particularly

interesting element is that in continuing the dialogue with ChatGPT, the user learned to

improve interaction with the LLM, thus speeding up troubleshooting. The writer has no

Figure 5. Composite image showcasing the Smart Anomaly Detection Assistant (S.A.D.A.) v09 in
use: (A) The image is analyzed using the standard method with a rectangular standard selection.
Anomalies are highlighted in red on the aerial image; (B) The same image and method as in A, but
with an adjusted threshold value, resulting in different anomaly detection patterns; (C) Demonstrates
the use of a polygonal selection tool to define a more specific area for analysis; (D) Applies the PCA
(Principal Component Analysis) method to the polygonal selection made in (C).

3. Results and Discussion

The main result of the research is highlighted in the first paragraph of the report
produced by ChatGPT at the conclusion of version 0.9:

Time Taken
The total time taken for the development of version 0.9 was approximately 30 h spread

over several days. The main activities included the following:

- Requirements analysis and planning: 4 h
- Implementation of new functionalities: 12 h
- Debugging and troubleshooting: 10 h
- Testing and optimization: 4 h

The distribution of time may vary slightly depending on the complexity of the prob-
lems addressed and the changes required during the testing and review phases.

Since the time taken was not exactly timed, an approximate calculation was made
based on dedicated working days to be compared with that provided by ChatGPT, resulting
in a maximum time of no more than 40 h. This estimate, considering that the development
of the application often occurred concurrently with the execution of other projects, does
not deviate much from that described by ChatGPT.

In any case, it can be said that five working days to create an application like S.A.D.A
0.9 from scratch, without assuming any programming knowledge on the part of the user, is
an exceptional achievement, hardly imaginable just two years ago. Another particularly
interesting element is that in continuing the dialogue with ChatGPT, the user learned to
improve interaction with the LLM, thus speeding up troubleshooting. The writer has no
doubt that the development of the next application, whose code will again be entirely

Heritage 2024, 7 5439

written by ChatGPT (which is actually happening at the time of writing this article), will
be even faster, thanks to the use of certain interaction methods that emerged during the
development of S.A.D.A. These methods are of a general nature, as they do not concern
specific functions of the application but rather better methods of interacting with ChatGPT.
The main interaction methods acquired are explained below.

3.1. Code Decomposition

An initial observation during the early testing stages was that ChatGPT, once a cor-
rection to the code was requested, after explaining the necessary change, broke down the
entire code. If in the initial phase (v.0.1), where we have, for example, a single .py file with
84 lines of code, this does not create any problems, later on, once longer and more complex
codes have been reached, the entire re-proposal of the code following each modification
has in several cases proved confusing. Particularly since ChatGPT has a maximum limit
of lines of code it can write in a single response before stopping and asking the user to
continue processing the result.

According to ChatGPT, which was asked to write random code until it needed to stop
and ask the user to confirm to continue, then calculate the number of lines, the limit of lines
in a single response is 309. In reality, it is 302; the difference in rows lies in the addition
of code and formatting lines to make the count. In any case, after the number of rows is
around 305, ChatGPT stops and then continues, after the necessary command, in a new
response. When this happens, the first few lines of code in the new response are never
formatted correctly (Figure 6).

To solve this problem, which on several occasions created errors due to the failure
to copy-paste poorly formatted strings, two methods were devised: break the code into
multiple .py files, as seen in the transitions from version 0.5 to 0.6 and again between
0.7 and 0.8; request specific code bocks for editing, adding a simple command to each
code-editing prompt, such as “Don’t write all the code but only the blocks to be edited”,
ensures that ChatGPT focuses only on the necessary changes. This command is copied and
pasted at the end of each editing prompt. It is worth noting that after the first prompt with
this command, ChatGPT tends to remember it for subsequent edits. However, there have
been instances where the LLM displayed the entire code again when the edits concerned
more than a single block of code. To prevent this, it was preferred to include the command
each time rather than waiting for the issue to recur and then having to stop processing, add
the command to the prompt, and start the new analysis.

3.2. Non-Resolving Alternating Error Solutions

Another problem that emerged, particularly in the later versions of the application
when the code became more complex, was that ChatGPT, in an attempt to resolve an error
detected by the user, would alternate between two, three, and in some cases four different
solutions without success. Sometimes, it resolved the error but created another one that
was not initially present. For example, this happened when analyzing a selected part of
the image. The analysis would occur in a frame of the same size as the selection but on a
different part of the original image. When this problem was explained to ChatGPT, the first
solution resulted in the analysis occurring correctly but displayed an unsolicited ‘zoom
to selection.’ The next change, required to solve this new display problem, resulted in a
further issue: the frame would shrink, showing the entire image with the analyzed part
superimposed in a corner of the canvas on the original image. In other words, a new error,
different from the previous ones, would appear.

Heritage 2024, 7 5440
Heritage 2024, 7, FOR PEER REVIEW 14

Figure 6. Three examples of incorrectly formatted code (the one in white), at the beginning of the

second response processed after a single prompt.

3.2. Non-Resolving Alternating Error Solutions

Another problem that emerged, particularly in the later versions of the application

when the code became more complex, was that ChatGPT, in an attempt to resolve an error

detected by the user, would alternate between two, three, and in some cases four different

solutions without success. Sometimes, it resolved the error but created another one that

was not initially present. For example, this happened when analyzing a selected part of

the image. The analysis would occur in a frame of the same size as the selection but on a

Figure 6. Three examples of incorrectly formatted code (the one in white), at the beginning of the
second response processed after a single prompt.

Heritage 2024, 7 5441

After several more attempts, it was realized that ChatGPT alternated between these
three problem resolutions without ever arriving at the required result. The solution was
found by copying and pasting the entire code of the .py file on which it was making changes
(and any files that were called from it) prior to the last changes, thus only retaining the first
error from which it had started. The error was then explained again, adding a command to
prompt ChatGPT to correct only the lines of code causing the problem without inserting
new elements or removing others, such as the following:

Considering that all the rest of the code works correctly, only modify the strings
causing the problem and avoid creating new bugs.

In some cases, this alternation of unsatisfactory answers led to either a recurring error
that had been previously resolved or the creation of an error in only one of two similar
functions (e.g., an error occurring in ‘zoom to selection’ after the standard rectangular
selection but not appearing after the polygonal selection). In the first case, the prompt
used to resolve the problem included pasting an earlier version of the code in which the
error had been resolved, specifying to ChatGPT that it should only compare it to resolve
that problem without deleting or modifying the functions added since that version which
worked correctly. In the second case, the prompt specified to compare the problem that
occurred for one function with the code that was correct for the similar function.

These three alternative methods to simply re-proposing the new error to ChatGPT each
time, once the dynamics of interaction with the LLM were understood, made it possible
to speed up processing. Initially, one of these methods was used after numerous attempts
at alternating repetitions of incorrect answers by ChatGPT. However, as soon as the same
incorrect solution was reproposed a second time, we directly pasted all the code generated
up to that point or directed ChatGPT to find the solution in the code of a previous corrected
version or a similar function that had no errors. These three methods solved 90 percent of
the most complex errors that came up during the development of the application. For the
remaining 10 percent, the solution method was to “let ChatGPT get help”.

3.3. Allowing ChatGPT to Get Help

One of the most problematic elements concerned the ability to change the brightness
and contrast levels of only a selected part of the image after ‘zoom to selection.’ In this case,
the methods described above did not solve the problem to our complete satisfaction. At
this point, the idea was to ask ChatGPT itself to provide a way to help it understand the
problem and solve it. In the initial prompt directing the process towards resolution, the
following simple command was added after explaining the problem:

Do you understand the problem? If not, ask me for more details. Can I help you in
any way?

The answer:
To better understand what happens when changing brightness or contrast after zoom-

ing in on a selection, we can add debug logs that allow us to monitor the values of key
variables and see how the image evolves.

And after presenting the new blocks of modified code, it concluded its answer thus:
With these debug logs, we will be able to see the values of factor, zoomed_selection_coords,

polygon_points, rect_coords, and better understand how the code behaves when changing
brightness and contrast.

The proposal of debugging logs did not even occur to the writer before ChatGPT itself
suggested it, and it probably would never have occurred to someone with no programming
knowledge either. But the direct request to ChatGPT about how it could be helped is
obviously a rather simple proposition to imagine in a dialogue in common language. Once
this opportunity and its effectiveness had been pointed out, it was a simple matter to add
a request for a debug log for a particular function that was not performing the task as
intended in subsequent change prompts:

Create a code string for a debug log to understand what happens after we modify the
threshold of the standard method after a polygon selection.

Heritage 2024, 7 5442

In some cases, after the debug log method emerged in the conversation, it was always
ChatGPT that suggested more detailed debug logs to solve the most difficult problems:

Let us try adding more detailed debug logs to better understand what is going on.
By leveraging this approach, debugging and troubleshooting became more efficient,

allowing for a deeper understanding of how the code was functioning and identifying the
exact points where issues were arising.

4. Conclusions

What emerged during this research is the ability of LLMs to effectively create a bridge
between humanistic and computer science research, overcoming the challenge of differing
approaches to knowledge bases. The possibility of transforming simple common language
into programming code, in an extremely fast and efficient manner, opens up enormous
possibilities for archaeologists and humanistic researchers. It is now possible to create one’s
own research tools without the need to become an expert in programming languages or
analysis algorithms, or to hire a programmer, which is not always economically feasible for
humanities departments and laboratories.

Let me be clear, this research is not intended to minimize the importance of program-
mers and computer science researchers. The writer remains convinced that a programmer,
using the assistance of an LLM, would have spent even less time developing an application
such as the one presented here. The difference is that before, without LLMs, a humanistic
researcher with no programming knowledge would never have been able to develop it.
Now they can, with the only limitation being the ability to imagine the necessary tool and
describe it to the generative AI [30].

Moreover, this research does not imply that having even a basic knowledge of the pro-
gramming language or the libraries used is unnecessary. On the contrary, such knowledge
would certainly speed up the development of the application. However, this can occur at
any stage of the development itself, thanks to the interaction with the LLM. For example,
once the final version 0.9 of the application was reached, ChatGPT was asked to describe
the functioning of the libraries and code strings used, allowing the user to learn how the
individual components of the programming code work. This will enable a more informed
approach to new modifications of the application or the development of a new application.

Similarly, this research is not an attempt to support the theory that generative AI (or
AI in general) will soon determine the disappearance of various jobs, including that of
the programmer. It is already clear that AI will bring about significant transformations in
the labor market [24], (pp. 96–111), as has always been the case with any technological
revolution. However, it is evident that today, “AI will not replace workers but it is the
people who work with AI who will replace the people who do not use it” [31].

The rapid rise in the use of LLMs in recent times has also brought to light a number
of important challenges associated with generative AI. These challenges include ethical
concerns regarding the use of generative AI, biases in training data, and the issue of
“hallucinations” in LLMs [32–36]. In the specific context of this research, where ChatGPT
was employed to generate a Python-based application from natural language instructions,
such issues did not emerge.

First, let us address the simplest concern: the “hallucinations” inherent in LLMs.
As J. Kaplan states, “Hallucinations take many forms, but early on, a common one was
simply to make up facts or references. It’s startling to see an LLM specifically refer to a
newspaper article that doesn’t actually exist, but there are plenty of examples of exactly this
happening” [24] (p. 61). While this is indeed a significant problem when using an LLM to
generate content for, say, an archaeological research paper, this issue was not encountered
in this research. At no point did ChatGPT suggest a line of code that relied on non-existent
libraries or incorrect Python syntax.

The second concern, which is more complex, pertains to the ethical implications of
using generative AI. This is especially important when an LLM is used to generate text or
images, as the AI does not create these from scratch but based on the data on which it was

Heritage 2024, 7 5443

trained. However, I do not believe this is as relevant when using an LLM as a programming
assistant, particularly in this case, where an open-source programming language like
Python was used, which is freely distributed on the web. Every line of Python code that
ChatGPT generated is already available online, in official documentation or user forums,
and can be freely copied, pasted, and modified. The significant difference is that an LLM
retrieves and adapts this code to fit your specific needs, expressed in natural language. For
this reason, I believe the most ethical way to use an LLM for coding is to redistribute the
resulting code in an equally open manner, and to clearly specify that the code was the result
of an interaction between a non-programmer user and the LLM (as is explicitly stated in
the GitHub repository of S.A.D.A., see Data Availability Statement below).

Finally, the third and equally complex issue relates to potential biases in the training
data. This is a particularly sensitive topic at the moment, as it has been observed that the use
of certain LLMs has resulted in racial bias, such as the rejection of mortgage applications,
or gender discrimination in job assignments [37–39]. However, once again, no such issues
were encountered when using an LLM for programming open-source code.

In conclusion, I believe the best approach to overcome the main challenges associated
with generative AI in the context of coding is to maintain complete transparency. It is
essential to acknowledge and not conceal the fact that the code used was produced through
interaction with an LLM.

Finally, future research will focus on enhancing the application by integrating addi-
tional analysis methods, once again suggested by ChatGPT, and incorporating customizable
parameters for each method. This will allow for a more precise and adaptable approach to
image analysis, giving users increased flexibility and control over the analytical process.
Moreover, the user interface will be refined with the addition of dynamic labels that clearly
explain the functionality of commands and analysis methods. These enhancements are de-
signed to make the application more intuitive and accessible, accommodating researchers
with diverse levels of technical expertise. Finally, the same development process will
be applied to other LLMs to assess their performance and explore any differences com-
pared to ChatGPT. This comparative analysis will provide a deeper understanding of the
strengths and limitations of various generative AI models in the context of programming
for archaeological and humanistic research.

Funding: This research received no external funding.

Data Availability Statement: All the code produced by ChatGPT for build the application, divided
into the different versions, is available under the GNU GPL-3 license on GitHub: https://github.
com/gabcicc/S.A.D.A (accessed on 23 September 2024).

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Hörr, C.; Lindinger, E.; Brunnett, G. Machine Learning Based Typology Development in Archaeology. J. Comput. Cult. Herit. 2014,

7, 1–23. [CrossRef]
2. Bickler, S.H. Machine Learning Arrives in Archaeology. Adv. Archaeol. Pract. 2021, 9, 186–191. [CrossRef]
3. Cacciari, I.; Pocobelli, G.F. Machine Learning: A Novel Tool for Archaeology. In Handbook of Cultural Heritage Analysis; Springer:

Cham, Switzerland, 2022; pp. 961–1002. [CrossRef]
4. Silva, L.; Bellon, O.R.P.; Boyer, K.L. Computer Vision and Graphics for Heritage Preservation and Digital Archaeology. Rev. De

Informática Teórica E Apl. 2004, 11, 9–31. [CrossRef]
5. Brutto, M.L.; Meli, P. Computer Vision Tools for 3D Modelling in Archaeology. Int. J. Herit. Digit. Era 2012, 1 (Suppl. S1), 1–6.

[CrossRef]
6. Gattiglia, G. Classificare le ceramiche: Dai metodi tradizionali all’intelligenza artificiale. L’esperienza del progetto europeo

ArchAIDE. In Archeologia Quo Vadis?: Riflessioni Metodologiche sul Futuro di una Disciplina; IBAM, Consiglio Nazionale delle
Ricerche Istituto per i Beni Archeologici e Monumentali: Catania, Italy, 2018; Volume 1, pp. 271–298.

7. Haliassos, A.; Barmpoutis, P.; Stathaki, T.; Quirke, S.; Constantinides, A. Classification and Detection of Symbols in AncientPapyri.
In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 121–140.

https://github.com/gabcicc/S.A.D.A
https://github.com/gabcicc/S.A.D.A
https://doi.org/10.1145/2533988
https://doi.org/10.1017/aap.2021.6
https://doi.org/10.1007/978-3-030-60016-7_33
https://doi.org/10.22456/2175-2745.5746
https://doi.org/10.1260/2047-4970.1.0.1

Heritage 2024, 7 5444

8. Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and
casestudies. J. Cult. Herit. 2021, 47, 227–245. [CrossRef]

9. Caspari, G.; Crespo, P. Convolutional neural networks for archaeological site detection—Finding ‘princely’ tombs. J. Archaeol. Sci.
2019, 110, 104998. [CrossRef]

10. Uhl, J.H.; Leyk, S.; Chiang, Y.-Y.; Knoblock, C.A. Towards the automated large-scale reconstruction of past road networks
fromhistorical maps. Comput. Environ. Urban Syst. 2022, 94, 101794. [CrossRef] [PubMed]

11. Mantovan, L.; Nanni, L. The Computerization of Archaeology: Survey on Artificial Intelligence Techniques. SN Comput. Sci. 2020,
1, 267. [CrossRef]

12. Mitchell, R. Beyond Shovels and Brushes: The AI-Driven Evolution of Archaeological Exploration. 2023. Available online:
https://www.ancient-origins.net/human-origins-science/ai-and-archaeology-0019080 (accessed on 23 September 2024).

13. Pavlidis, G. From Digital Recording to Advanced AI Applications in Archaeology and Cultural Heritage. In “And in Length
of Days Understanding” (Job 12:12); Ben-Yosef, E., Jones, I.W.N., Eds.; Interdisciplinary Contributions to Archaeology; Springer:
Cham, Switzerland, 2023. [CrossRef]

14. Trichopoulos, G.; Konstantakis, M.; Alexandridis, G.; Caridakis, G. Large Language Models as Recommendation Systems in
Museums. Electronics 2023, 12, 3829. [CrossRef]

15. Trichopoulos, G.; Konstantakis, M.; Caridakis, G.; Katifori, A.; Koukouli, M. Crafting a Museum Guide Using GPT4. Big Data
Cogn. Comput. 2023, 7, 148. [CrossRef]

16. Trichopoulos, G. Large Language Models for Cultural Heritage. In Proceedings of the 2nd International Conference of the ACM
Greek SIGCHI Chapter, CHIGREECE 2023, Athens, Greece, 27–28 September 2023; p. 33.

17. Spennemann, D.H.R. ChatGPT and the generation of digitally born “knowledge”: How does a generative AI language model
interpret cultural heritage values? Knowledge 2023, 3, 480–512. [CrossRef]

18. Cobb, P.J. Large Language Models and Generative AI, Oh My!: Archaeology in the Time of ChatGPT, Midjourney, and Beyond.
Adv. Archaeol. Pract. 2023, 11, 363–369. [CrossRef]

19. Argyrou, A.; Agapiou, A. A Review of Artificial Intelligence and Remote Sensing for Archaeological Research. Remote Sens. 2022,
14, 6000. [CrossRef]

20. Agapiou, A.; Lysandrou, V. Interacting with the Artificial Intelligence (AI) Language Model ChatGPT: A Synopsis of Earth
Observation and Remote Sensing in Archaeology. Heritage 2023, 6, 4072–4085. [CrossRef]

21. Abate, N.; Visone, F.; Sileo, M.; Danese, M.; Minervino Amodio, A.; Lasaponara, R.; Masini, N. Potential Impact of Using
ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary
Considerations. Heritage 2023, 6, 7640–7659. [CrossRef]

22. Tenzer, M.; Pistilli, G.; Brandsen, A.; Shenfield, A. Debating AI in Archaeology: Applications, implications, and ethical considera-
tions. Internet Archaeol. 2024, 67, 1–8. [CrossRef]

23. Kansteiner, W. Digital doping for historians: Can history, memory, and historical theory be rendered artificially intelligent? Hist.
Theory 2022, 61, 119–133. [CrossRef]

24. Kaplan, J. Gerative Artificial Intelligence. What Everyone Needs to Know; Oxford University Press: Oxford, UK, 2024.
25. Surameery, N.M.S.; Mohammed, Y.S. Use chat gpt to solve programming bugs. Int. J. Inf. Technol. Comput. Eng. 2023, 3, 17–22.

[CrossRef]
26. Ciccone, G. Using QGIS as an Ideal Workspace for Archaeogeography: A Case Study on Castronovo di Sicilia. Proceedings 2024,

96, 11. [CrossRef]
27. Mandolesi, L. Pyarchinit—Python, QGIS e PostgreSQL, per la gestione dei dati di scavo. Arc. Calc. 2009, 2 (Suppl. S2), 209–222.

Available online: https://www.archcalc.cnr.it/indice/Suppl_2/20_Mandolesi.pdf (accessed on 23 September 2024).
28. Čučković, Z. Advanced viewshed analysis: A Quantum GIS plug-in for the analysis of visual landscapes. J. Open Source Softw.

2016, 1, 32. [CrossRef]
29. Simon, F.X. Agt Archaeological Geophysics Toolbox for Qgis. ISAP Newsl. 2017, 51, 7–8.
30. Available online: https://hbr.org/sponsored/2023/06/well-need-to-put-humanism-at-the-center-of-generative-ai-to-reap-

its-rewards (accessed on 23 September 2024).
31. Available online: https://hbr.org/2023/08/ai-wont-replace-humans-but-humans-with-ai-will-replace-humans-without-ai

(accessed on 23 September 2024).
32. Spennemann, D.H.R. Exploring ethical boundaries: Can ChatGPT be prompted to give advice on how to cheat in universityas-

signments? Preprint 2023. [CrossRef]
33. Hiter, S. Generative AI Ethics: Concerns and Solutions. Available online: https://www.eweek.com/artificial-intelligence/

generative-ai-ethics/ (accessed on 23 September 2024).
34. Shi, M. The Ethics of Generative AI: How We Can Harness This Powerful Technology. Available online: https://www.zdnet.

com/article/how-we-can-harness-the-power-of-generative-ai-ethically/ (accessed on 23 September 2024).
35. Pistilli, G.; What Lies behind AGI: Ethical Concerns Related to LLMs. Revue Ethique et Numérique, hal-03607808. 2022. Available

online: https://hal.science/hal-03607808 (accessed on 23 September 2024).
36. Messner, W.; Greene, T.; Matalone, J. From Bytes to Biases: Investigating the Cultural Self-Perception of Large Language Models.

arXiv 2023, arXiv:2312.17256.

https://doi.org/10.1016/j.culher.2020.09.005
https://doi.org/10.1016/j.jas.2019.104998
https://doi.org/10.1016/j.compenvurbsys.2022.101794
https://www.ncbi.nlm.nih.gov/pubmed/35464256
https://doi.org/10.1007/s42979-020-00286-w
https://www.ancient-origins.net/human-origins-science/ai-and-archaeology-0019080
https://doi.org/10.1007/978-3-031-27330-8_69
https://doi.org/10.3390/electronics12183829
https://doi.org/10.3390/bdcc7030148
https://doi.org/10.3390/knowledge3030032
https://doi.org/10.1017/aap.2023.20
https://doi.org/10.3390/rs14236000
https://doi.org/10.3390/heritage6050214
https://doi.org/10.3390/heritage6120402
https://doi.org/10.11141/ia.67.8
https://doi.org/10.1111/hith.12282
https://doi.org/10.55529/ijitc.31.17.22
https://doi.org/10.3390/proceedings2024096011
https://www.archcalc.cnr.it/indice/Suppl_2/20_Mandolesi.pdf
https://doi.org/10.21105/joss.00032
https://hbr.org/sponsored/2023/06/well-need-to-put-humanism-at-the-center-of-generative-ai-to-reap-its-rewards
https://hbr.org/sponsored/2023/06/well-need-to-put-humanism-at-the-center-of-generative-ai-to-reap-its-rewards
https://hbr.org/2023/08/ai-wont-replace-humans-but-humans-with-ai-will-replace-humans-without-ai
https://doi.org/10.20944/preprints202308.1271.v1
https://www.eweek.com/artificial-intelligence/generative-ai-ethics/
https://www.eweek.com/artificial-intelligence/generative-ai-ethics/
https://www.zdnet.com/article/how-we-can-harness-the-power-of-generative-ai-ethically/
https://www.zdnet.com/article/how-we-can-harness-the-power-of-generative-ai-ethically/
https://hal.science/hal-03607808

Heritage 2024, 7 5445

37. Kori, H.A.I. Bias Caused 80% Black Mortgage Applicants to Be Denied. Forbes. 2021. Available online: https://www.forbes.com/
sites/korihale/2021/09/02/ai-bias-caused-80-of-black-mortgage-applicants-to-be-denied/ (accessed on 23 September 2024).

38. Sheng, E.; Chang, K.; Natarajan, P.; Peng, N. The Woman Worked as a Babysitter: On Biases in Language Generation. arXiv 2019,
arXiv:1909.01326.

39. Raji, I.D.; Gebru, T.; Mitchell, M.; Buolamwini, J.; Lee, J.; Denton, E. Saving Face: Investigating the ethical concerns of facial
recognition auditing. In Proceedings of the Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, AIES’20; New York,
NY, USA, 7 February 2020, Association for Computing Machinery: New York, NY, USA, 2020; pp. 145–151.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.forbes.com/sites/korihale/2021/09/02/ai-bias-caused-80-of-black-mortgage-applicants-to-be-denied/
https://www.forbes.com/sites/korihale/2021/09/02/ai-bias-caused-80-of-black-mortgage-applicants-to-be-denied/

	Introduction
	Materials and Methods
	Results and Discussion
	Code Decomposition
	Non-Resolving Alternating Error Solutions
	Allowing ChatGPT to Get Help

	Conclusions
	References

