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Abstract: This paper examines the transformative potential of generative artificial intelli-
gence (Al) and neuroaesthetic methodologies in archaeology, museum collections and art
history. It introduces the concept of the Al multiverse, which allows archaeologists and
social scientists to construct multiple plausible reconstructions of ancient environments and
cultural practices, addressing the inherent uncertainties in archaeological data. Generative
Al tools create simulations and visualizations that redefine traditional archaeological frame-
works by incorporating multivocal and dynamic interpretations. The study also integrates
visual thinking strategies (VTSs), eye tracking and saliency map analyses to investigate
how structured observation enhances cognitive and emotional engagement with visual
artifacts. A case study involving the painting My Mother, She Fell From the Sky highlights the
impact of VTS on guiding viewers’ gaze and improving interpretive depth, as evidenced
by heatmaps and saliency distribution.

Keywords: multiverse; generative Al; neuroaesthetics; saliency maps; eye-tracking; vision;
human perception

1. Introduction

The application of generative artificial intelligence (Al) in archaeology, art and the
humanities is revolutionizing how researchers interpret, visualize and reconstruct material
culture, from the past to the present [1]. Generative Al [2] refers to systems that create
new content or data by learning patterns from existing information, making it particu-
larly well-suited to tackling the challenges of incomplete or fragmented archaeological
records. The world of digital archaeology is marked by various definitions, milestones and
methodological revolutions: virtual archaeology in 1996, cyberarchaeology in 2008, and
(generative) Al archaeology in 2022.

If virtual archaeology was mainly focused on computer graphic reconstructions [3],
and cyberarchaeology [4] on virtual reality and simulationsAl archaeology is centered on
the idea of the past as a multiverse.

Virtual archaeology mostly relied on a unidirectional approach to address a degree of
uncertainty: a photorealistic reconstruction founded on precise and validated facts. The
downside of this approach was to imagine the reconstruction of the past as a single digital
world. Computer graphics and photorealism were often very convincing in the validation of
these kinds of digital data. Cyber-archaeology was predominantly accessible to various re-
constructions and simulations, with the interaction of models being crucial. Al-archaeology
is inherently amenable to infinite iterations of visualizations, reconstructions, and sim-
ulations. This situation addresses the methodological issue of uncertainty [5] through
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exponentially expanding potential knowledge. The concept of the multiverse refers to a
hyperinformative realm without limitations for the development and comparison of ideas,
theories, and visions. This multiplication of content [6] coming from machine learning [7]
can reframe previous views and open new perspectives (Figure 1). The Venn diagram in
Figure 1 shows the evolution of virtual and cyberarchaeology in Al-archaeology [8] and the
potential of neural networks in the simulation-reconstruction process. The shared use of
digital tools connects virtual archaeology and cyberarchaeology, highlighting common tech-
nologies like 3D modeling and photogrammetry. The overlap between virtual archaeology
and Al archaeology introduces innovative historical concepts, where Al predicts missing
elements and generates alternative reconstructions. The intersection of cyberarchaeology
and Al archaeology focuses on advanced virtual simulations, integrating Al-driven dy-
namic interactions within immersive environments. At the center, the convergence of all
three fields forms future-oriented reconstruction models, where digital tools, immersive
simulations, and Al-driven insights merge to create dynamic, interactive, and predictive
archaeological reconstructions that allow for multiple interpretations of the past.

Venn Diagram: Approaches to Archaeological Reconstructions

Virtual Archaeology Cyberarchaeology

Shared use of

Computer Digital Tools Virtual Reality
Graphic Reconstructions & Simulations

Future-Oriented
Reconstruction Models

Innovative Advanced
Historical Concepts Virtual Simulations

Past as Multiverse

Al-Archaeology

Figure 1. Venn diagram: intersections and goals of virtual archaeology, cyberarchaeology and
Al archaeology.

We can imagine the Al multiverse as a space of increased knowledge, rather than the
simple result of a validation process [9]. Multiverse Al paves the way for multifactorial
analyses by combining different ontologies of data and models. The more we generate Al
models, the more we learn and interpret [10]. It is a different approach in comparison with
the usual bottom-up process in archaeology; data recording-single hypothesis-validation.
The link between data intake and output in generative Al is subject to multiple validations:
in theory endless processes, in practice the final ones are selected by specific scholarships
and consistency between research questions and final results. This methodology contradicts
the concept of reconstructing the past as a singular “snapshot” due to the dynamic and
developing characteristics of time and space; it is unfeasible to “freeze” the past, a city, a
site, or a landscape, as they perpetually coevolve into something new.

Generative ideas stimulate new and more advanced research questions, and this aspect
is extremely powerful when we deal with simulations of ancient societies, particularly in
relation to human activities. I believe that the “human factor”—the interaction between
human activities, minds, artifacts, and built and natural environments—can be properly
investigated by AI[11].

Generative Al operates through machine learning models, such as neural networks,
that analyze vast datasets—including excavation records, artifact photographs, and envi-
ronmental data—to identify patterns and relationships. Once trained, these models can
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produce simulations, visualizations, and predictions that help fill gaps in the archaeological
record. One notable application of generative Al in archaeology is its ability to create
detailed 3D models of ancient structures and artifacts. By training on datasets of simi-
lar objects or architectural styles, Al can generate reconstructions that align with known
archaeological and cultural contexts.

In this paper, the research focus will be mainly on the use of Al in the interpretation
and perception of artifacts, images and visual information. Human vision is, in fact, multi-
modal [12] and it is based on ranking, segmentation and discretization of the content [13].
Multimodality in vision refers to the integration of various sensory inputs and cognitive
processes that help humans perceive and interpret visual information. Vision does not
operate in isolation; it interacts with other modalities such as touch, sound, and even mem-
ory. Human vision prioritizes certain elements of a scene based on saliency and relevance.
This involves ranking objects or features in terms of importance for survival, decision-
making, or attention. The visual system breaks down a complex scene into distinct regions
or objects to make sense of it. It prioritizes certain elements of a scene through ranking,
focusing attention on features like brightness, contrast, and emotional significance, which
are most relevant to survival or decision-making. Simultaneously, it employs segmenta-
tion to break down complex visual scenes into distinct objects or regions by identifying
edges, contrasts, and spatial boundaries [14]. Depth perception further aids this process by
distinguishing the foreground from the background, enabling spatial awareness. Through
discretization, the brain isolates and categorizes visual features, organizing continuous
input into manageable units for interpretation. These processes collectively allow humans
to navigate, understand, and interact with their surroundings effectively. Saliency maps
and neuroaesthetic experiments show that it is sufficient to analyze just a percentage of an
image in order to create and memorize a visual narrative. Additionally, research on the
primary visual cortex (V1) suggests [15] that V1 generates a saliency map to guide attention,
allowing observers to focus on the most informative parts of a scene. This mechanism
enables efficient processing and memory retention by prioritizing salient regions over less
conspicuous areas.

2. The Multiverse

The idea of the multiverse—a concept suggesting the existence of multiple, parallel
realities [16]—has traditionally been the domain of physics [17] and speculative fiction.
The concept of the multiverse, which posits the existence of multiple, parallel realities or
universes, has traditionally been the domain of theoretical physics and speculative fiction.
In physics, it emerges from theories such as quantum mechanics, string theory, and cosmic
inflation, suggesting that our universe might be just one of many coexisting in a vast and
complex multiverse [18]. Beyond physics, the multiverse has captured the imagination
of writers and creators, serving as a rich narrative framework for exploring themes of
identity, choice, and existence. Recently, the multiverse concept has transcended its original
boundaries, entering philosophical discourse, popular culture, and even discussions in
metaphysics and theology, as it invites profound questions about the nature of reality and
our place within it [19].

However, its principles can be fruitfully applied to the realm of artificial intelligence
(AI) in reconstructing and simulating ancient environments, societies and human lives.
By leveraging the multiverse framework, archaeologists can develop a richer, multidi-
mensional understanding of the past, where each reconstructed scenario or simulation
represents a distinct “universe” or a parallel-plausible interpretation. Instead of targeting
the view of a “single” past, the multiverse vision embraces the idea of “multiple” past
where the interpretation comes at the intersection of different views and hypotheses. This
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approach offers an innovative way to embrace the uncertainties inherent in archaeolog-
ical data while providing new opportunities for visualization, hypothesis testing, and
public engagement.

In the study of ancient civilizations, the available evidence—whether material, strati-
graphic, or paleoenvironmental—is often fragmentary and subject to interpretation. This
incomplete nature of data makes it challenging to construct a singular, definitive model of
ancient lifeways. The multiverse concept offers a solution by allowing for the coexistence
of multiple plausible reconstructions, each grounded in a different interpretation of the
data. Instead of forcing a single narrative, archaeologists can explore various “what-if”
scenarios, effectively creating a multiverse of past environments and practices. The more
we explore, the more we learn. Artificial intelligence is particularly adept at implementing
this multiverse structure. Machine learning algorithms can evaluate extensive archeological
data, discern trends, and produce simulations based on varying input parameters [20].
For instance, in reconstructing an ancient settlement, Al could produce multiple models
by varying assumptions about spatial organization, resource distribution, or climatic con-
ditions. Each model becomes a parallel universe within the multiverse, representing a
possible iteration of past human behavior and environmental interaction.

In the case of the reconstruction of Etruscan sacred spaces, for example, limited archi-
tectural remains and conflicting interpretations make it difficult to determine their original
layouts and symbolic functions. By applying Al, archaeologists can create multiple recon-
structions based on varying interpretations of fragmentary remains, landscape features,
and historical contexts. These reconstructions might include divergent alignments, material
compositions, or decorative elements. Each simulation represents a distinct “universe”
within the multiverse, offering insights into the range of possibilities for how these spaces
might have been used and experienced.

Similarly, Al can simulate the dynamics of ancient communities by modeling inter-
actions between variables such as agricultural practices, resource availability, and social
hierarchies. In studying the development of settlement patterns, for instance, researchers
could generate parallel scenarios where different factors—such as population pressure,
trade networks, or environmental change—play varying roles in shaping spatial organiza-
tion. These simulations enable to test hypotheses and evaluate the relative plausibility of
competing interpretations.

The concept of the multiverse aligns well with the probabilistic nature of archaeological
research. Data from excavations and surveys are inherently uncertain, often comprising
incomplete structures, ambiguous stratigraphy, or degraded organic remains. Traditional
approaches to reconstruction risk oversimplifying this complexity by presenting a single,
deterministic model.

Al, combined with the multiverse framework, allows archaeologists to embrace and
even celebrate this uncertainty. By generating multiple plausible reconstructions, Al
provides a platform for exploring the range of possibilities inherent in the data. This
approach shifts the focus from seeking definitive answers to understanding the spectrum
of potential realities that could have existed.

Beyond academic research, the multiverse approach to Al-driven simulations has
significant potential for education and public engagement. By presenting multiple recon-
structions of ancient environments, these simulations can foster a deeper appreciation
for the complexity and richness of past human experiences. It is important to empha-
size that the multiverse vision tends to eradicate the idea that the best interpretation
should come mainly from recognized scholarships. A multiverse opens the gate to other
multivocal interpretations.
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Public engagement with the multiverse framework can also inspire a more inclu-
sive understanding of the past. Traditional reconstructions often prioritize dominant
narratives, marginalizing alternative perspectives and interpretations. By generating multi-
ple reconstructions, Al allows for the inclusion of diverse viewpoints, ensuring that the
archaeological record is represented as a complex, multifaceted tapestry rather than a
monolithic story.

The integration of Al and the multiverse framework in archaeology is still in its early
stages, but the potential for growth is immense. Advances in machine learning, data
processing, and simulation technologies will enable increasingly detailed and accurate
reconstructions of ancient environments and cultural practices.

One promising area of development is the use of generative Al models, such as neural
networks, to create highly realistic visualizations of ancient landscapes. These models can
combine data from multiple sources—including excavation records, paleoenvironmental
reconstructions, and artifact analyses—to produce immersive, multidimensional simula-
tions [21]. By iterating across different parameters, these models can generate a vast array
of scenarios, enriching our understanding of the archaeological record.

Another exciting prospect is the application of Al to “counterfactual archaeology”,
where researchers explore how different environmental or cultural variables might have
altered the development of ancient societies. For example, what if certain Etruscan set-
tlements had adapted differently to changing climatic conditions? Al-driven multiverse
simulations could model alternate scenarios, offering insights into the resilience and adapt-
ability of past human communities.

By leveraging the power of Al, we can move beyond static, singular reconstructions to
a richer, more dynamic understanding of ancient environments and practice a multiverse
of the past waiting to be explored.

Al Validation and Multiverses

The Al multiverse approach is going to challenge the traditional way archaeologists
deal with data input, data analysis and representation. In other words, it will determine a
multiplication of content and hypotheses thanks to multifactorial simulations. This entails
great research opportunities and some risks as well.

In practice, an Al multiverse approach involves the integration of diverse datasets—ranging,
for instance, from paleoenvironmental data to remote sensing and 3D models, into a unified
environment that various models can analyze simultaneously. Because these datasets often
vary in quality and completeness, specialized Al models may focus on particular evidence
types, such as high-fidelity 3D artifact scans or textual inscriptions, while a meta-model
synthesizes their outputs to highlight which lines of evidence are most relevant to each
hypothesis. One of the transformative potentials lies in the capacity of machine learning
algorithms to detect patterns across multiple analyses. These systems can draw unexpected
connections—such as uncovering how the distribution of certain artifacts might correlate
with distinctive ceramic traditions, thereby revealing possible trade links or cultural interac-
tions. Beyond supporting human-led interpretations, Al can also propose novel hypotheses,
inspiring archaeologists to explore questions they might not have identified through con-
ventional research methods. When dozens or hundreds of potential scenarios are running in
parallel, researchers, students, and even the public may need new platforms and techniques
for making sense of these expanded possibilities. This also broadens public engagement
by demonstrating the contingent nature of archaeological knowledge, although it raises
ethical questions about which stories or reconstructions are given prominence and how
best to communicate uncertainty.



Heritage 2025, 8, 102

6 of 25

The combination of big-data analytics and open access to evidence means hypothe-
ses can evolve more rapidly, transforming them into living entities that shift and refine
themselves as new information comes to light. Rather than working toward static, single-
threaded narratives, the Al multiverse approach underscores the probabilistic nature of
interpreting the past, challenging researchers to remain open to multiple, evolving models
while striving for clarity and responsibility in how these are presented.

However, the implementation of Al in a multiverse framework for archaeology also
raises significant ethical and epistemological concerns [22]. How is it possible to validate
Al scenarios and hypotheses?

One primary challenge is the risk of bias, mistakes and misrepresentation—AI models
are only as good as the data they are trained on [23], and historical and archaeologi-
cal records (and their interpretations) might reflect the use of incorrect data, potentially
marginalizing alternative narratives. Additionally, the proliferation of multiple plausible
reconstructions necessitates a rigorous validation process to ensure that the scenarios gener-
ated are not speculative to the point of distortion. Ethical considerations must also address
the ownership and authority over interpretations of the past—who decides which scenarios
are presented, and how do we prevent Al-driven archaeology from being misused for
political or ideological ends [24]? Finally, an epistemological framework must be developed
to differentiate between plausible reconstructions and purely imaginative speculations,
ensuring that Al-enhanced archaeology remains a tool for knowledge production rather
than fiction. These risks highlight the need for transparency in AI methodologies, interdis-
ciplinary collaboration, and continuous critical evaluation of Al-generated narratives.

Al-generated reconstructions rely on training data that may contain biases, gaps, or
errors. If not carefully chosen, these models can produce unsubstantiated or misleading
information that reinforces historical misconceptions and presents a skewed image of the
past. When such reconstructions are offered as authoritative without thorough scholarly
corroboration, the risks become even more pronounced. Another challenge arises from the
tendency of generative Al models to produce “hallucinations” by generating convincing, yet
entirely fabricated reconstructions based on flawed correlations in their datasets. Without a
robust critical framework to verify outputs against actual archaeological data, there is a
danger of wrongly legitimizing speculative or erroneous accounts of history.

Further concerns emerge when Al-produced reconstructions overshadow vital mate-
rial evidence, such as stratigraphic studies, inscriptions, or artifacts, leading to conclusions
that lack a firm empirical foundation.

In museum and digital heritage contexts, there is a risk that the public might regard
Al-generated depictions as indisputable historical truths if not provided with clear dis-
claimers and sufficient context. This can undermine the inherently interpretive nature of
archaeological work by suggesting a certainty that does not exist.

I believe that the key to tracking a process of validation in and by Al is the correct
use of metadata. Metadata play a critical role in ensuring the reliability and accuracy of
Al-driven archaeological reconstructions by embedding valuable contextual information
that can be used to verify the final outputs. In digital reconstructions of ancient sites, the
underlying Al processes often operate on large datasets pulled from varied sources, such
as high-resolution imaging, geospatial scans, and historical documentation. Without robust
metadata that detail precisely how these sources were generated, where they originated, and
under what conditions they were captured, it becomes challenging to assess whether the
Al models are accurately interpreting the input data or inadvertently distorting significant
historical-archaeological elements.

When researchers collect data from archaeological digs, museums, or archival doc-
uments, they record details such as the exact location of an artifact, the orientation of
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architectural remains, the materials used, and even environmental factors that might affect
how structures have changed over time. These metadata are then fed into Al algorithms
alongside the primary visuals or textual datasets. This allows scholars to trace the lineage of
each data point, identify potential discrepancies, and cross-verify results with the historical
or archaeological record. As a result, metadata effectively serve as a sort of “audit trail” for
the Al reconstruction process, making it possible to pinpoint the origins of decisions the
model makes when generating 3D visualizations or predictive simulations.

Equally important is how metadata can be employed to refine Al models over time.
Each time an Al-assisted reconstruction is proposed, researchers can compare it against the
metadata-enriched archive of previous findings and scholarly interpretations, noting any
divergences or anomalies. Patterns that emerge, such as consistent misinterpretations in
the rendered geometry of a building facade or systematic discrepancies in certain color or
material classifications, can then be addressed by adjusting the training datasets or refining
algorithms. This iterative loop of verifying Al outputs with metadata-driven contextual
checks not only bolsters the credibility of the end result but also helps the algorithm learn
from its mistakes and improve with each new project.

By mandating the inclusion and preservation of rich metadata from the onset, pro-
fessionals in archaeology and heritage preservation can create a robust framework for
scrutinizing and validating Al-generated reconstructions. In doing so, they ensure that
models remain anchored in archaeological accuracy rather than drifting toward plausible
but historically unfounded speculations. This systematic validation process, powered by
metadata, upholds rigorous academic standards while opening the door to more advanced
and nuanced reconstructions in the future.

A successful example of the archaeological validation process is the exhibition “Al
Rethinks the Past” organized at Duke University in 2024 [25]. In this case, paleobotany
data coming from specific archaeological excavations constitute a solid and empirically
validated data-entry/taxonomy for the Al prompts. A paleobotany team later verified all
the produced photos and videos in connection with several criteria including scientific
consistency, geolocation, seasons and correctness. In this situation the study protocol is
rigorous and the Al simulations of paleoenvironments provide a rather good depiction of
flora, geomorphology and cultivations.

3. AI and Neuroaesthetics

Neuroaesthetics and Al represent a significant intersection between the study of hu-
man perception, cognitive processes, and the role of advanced technology in understanding
and enhancing artistic experiences. This exploration bridges the disciplines of neuro-
science, psychology, and artificial intelligence, aiming to uncover how art can influence
human emotions and cognition and how Al can assist in decoding and even augmenting
these effects.

The integration of neurometrics and advanced tools such as EEG and eye-tracking
technologies has revolutionized the field of neuroaesthetics [26]. These tools allow re-
searchers to measure brain activity, eye movement, and emotional responses in real time.
For instance, using devices like head-mounted displays and eye-tracking recorders, scien-
tists can analyze mental states during the observation of art. Neurometric indices, such
as attention, emotional intensity, and cognitive workload, reveal profound insights into
how individuals interact with visual stimuli. A case study on “The Sarcophagus of the
Spouses” demonstrated significant differences in cognitive and emotional engagement
between viewing the artifact in a museum versus a virtual reality (VR) environment. While
attention remained stable in the VR setting, the physical museum experience elicited higher
emotional engagement, particularly in the initial moments of observation [27]. This under-
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scores the unique power of physical artifacts in evoking emotional responses, even as VR
provides a controlled and immersive alternative.

Empathy [14] plays a central role in art perception, particularly in the context of
faces and expressions depicted in sculptures and paintings. The fusiform face area’s
specialization in face recognition [28] underscores the importance of human representation
in art. Sculptures like “The Sarcophagus of the Spouses” not only depict human features
but also evoke deep emotional connections by mirroring real-life expressions of happiness,
sadness, or tranquility. This empathetic engagement is further supported by neuroimaging
studies that reveal activation in the limbic system when individuals view such artworks.
The emotional resonance elicited by these pieces highlights art’s ability to transcend time
and culture, fostering universal connections through shared human experiences.

Advancements in Al have enabled researchers to delve even deeper into these neu-
roaesthetic phenomena. By combining machine learning algorithms with eye-tracking and
EEG data, Al can analyze complex patterns and predict emotional and cognitive responses
to art. This technology also offers the potential to create personalized artistic experiences,
tailoring content to individual preferences and emotional states. In museum settings, Al-
driven systems can guide visitors through curated pathways that align with their interests
and cognitive profiles, enhancing both engagement and understanding. Moreover, Al-
generated art itself raises intriguing questions about creativity and the nature of aesthetic
appreciation. As machines produce works that evoke genuine emotional responses, the
boundaries between human and artificial creativity become increasingly blurred.

The comparative analysis of VR and physical art experiences provides valuable in-
sights into the strengths and limitations of each medium. While VR offers a controlled
environment for studying cognitive and emotional processes, physical settings retain a
unique ability to elicit strong emotional connections. The initial moments of museum visits
often evoke heightened attention and emotional intensity, reflecting the sensory richness
and authenticity of the experience. In contrast, VR excels in accessibility and replicability,
making it an invaluable tool for education and outreach. By understanding these differ-
ences, researchers and practitioners can leverage the strengths of both mediums to create
complementary experiences that cater to diverse audiences.

Cognitive processes associated with art perception involve specific brain regions,
including the parietal, frontal, and temporal lobes. The parietal lobe plays a critical role
in spatial awareness and the analysis of somatosensory stimuli, which is essential for
understanding the physical context of an artwork [29]. The frontal lobe contributes to
decision-making and planning, particularly when interpreting complex artistic composi-
tions. The temporal lobe, especially the fusiform face area, is crucial for recognizing and
responding to human faces depicted in art [30]. This cortical region is uniquely sensitive to
faces, triggering emotional responses mediated by the limbic system and amygdala. These
responses can mirror the emotions elicited by real human expressions, highlighting the
profound empathetic connections between viewers and artistic representations of humanity.

The application of neurometrics extends beyond the laboratory to practical settings
like museums and cultural heritage sites. By integrating eye-tracking data with cog-
nitive and emotional indices [31], researchers can observe mental states in real time,
correlating these states with specific visual stimuli. This capability allows for a deeper
understanding of how individuals engage with art and provides a basis for designing
experiences to enhance emotional and cognitive impact. For example, heat maps gener-
ated from eye-tracking studies reveal gender-based differences in viewing patterns and
dwelling times. Similarly, background skills and expertise influence how individuals inter-
act with art, offering insights into the role of cultural and educational contexts in shaping
aesthetic experiences.
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The future of neuroaesthetics and Al lies in fostering interdisciplinary collaboration
and expanding the scope of research. By bringing together neuroscientists, artists, technol-
ogists, and psychologists, the field can develop holistic approaches to understanding and
enhancing aesthetic experiences. This collaboration extends to practical applications in edu-
cation, cultural preservation, and public engagement. For example, interactive exhibits that
combine Al, neuroimaging, and traditional art forms can provide visitors with immersive
and educational experiences, deepening their appreciation for both art and science.

In conclusion, the intersection of neuroaesthetics and Al offers a rich and dynamic field
of exploration, bridging the gaps between art, science, and technology. By studying how
humans perceive and respond to art, and by leveraging Al to analyze and augment these
experiences, researchers can unlock new dimensions of understanding and creativity. This
interdisciplinary approach not only advances scientific knowledge but also enriches our
cultural and emotional lives, affirming the enduring power of art in the human experience.

4. Al, Eye-Tracking and Visual Thinking Strategies

During the Fall semester of 2023, in my undergraduate class “Why Art” at Duke
University, I had the chance to set up an experiment involving eye-tracking, visual thinking
strategies and Al with the scope to understand the mechanics of visual observation of
museum’s paintings [32]. The subject of this research test was My Mother, She Fell From the
Sky, by Lién Truong, 2021, an oil, silk, acrylic, copper pigment, and enamel on canvas. It
was from the collection of the Nasher Museum of Art at Duke University; 72 x 96 inches
(182.88 x 243.84 cm, Figure 2). The first part of the experiment consisted of measuring
eye-tracking from a distance of 3 m from the artifact and from the same position. The
eye-tracking device was Pupil Invisible [33], a lightweight, wearable eye-tracking device
developed by Pupil Labs. It has inward-facing infrared cameras for eye tracking and an
outward-facing scene camera (1080p, 30 fps) for recording the user’s field of view.

Figure 2. Lién Truong, My Mother, She Fell From the Sky, 2021. Oil, silk, acrylic, copper pigment, and
enamel on canvas. Collection of the Nasher Museum of Art at Duke University.

The class of 18 students (18 and 19 years old, 10 females and 8 males) was split into
two groups: the first group was asked to spend 2 min to describe the visual narrative of
the artifact by specific questions (by Visual Thinking Strategies Protocol, VTS) [34] and
then to start the eye-tracking experiment, while the second group started the eye-tracking
experiment immediately (without taking any additional time in the observation). They
viewed the artwork for 30 s without any prompts (therefore, no VTS) while their eye
movements were recorded. Data collection involved fixation duration, scan path, heatmaps
of gaze concentration and areas of interest (AOIs) naturally attracting attention.
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The questions for the visual narrative were based on the visual thinking strategy
(VTS) protocol:

- What's going on in this image/artwork/object?
- What do you see that makes you say that?
- What more can we find?

The goal of the experiment was to evaluate initial and post-VTS eye-tracking data,
shifts in interpretative statements indicating deeper engagement or changed focus and
eye-tracking metrics. Heat maps compare baseline and post-VTS viewing, analyzing
AQIs to track changes in gaze distribution and fixation duration. Qualitative analy-
sis involves thematic coding of verbal responses, assessing shifts from descriptive to
analytical engagement.

Visual thinking strategies (VTSs) [35] provide a foundational approach to understand-
ing how individuals perceive and interpret art. VIS emphasizes observation without
requiring prior knowledge of the artifact, making it an accessible and inclusive method.
By comparing groups exposed to this technique with those who are not, researchers can
isolate its impact on perception and interpretation.

The heat maps generated by each group of observers show different results of the
cumulative eye-tracking. In fact, the two heat maps illustrate how eye-tracking patterns
change when students engage with an artwork with and without the guidance of visual
thinking strategies (VTSs).

Heat Map 1 (Figure 3): Without Visual Thinking. The first heat map shows that the
participants’ gaze is more diffuse, with attention spread across the entire canvas. There
are no strong, concentrated areas of fixation. This suggests that students are observing the
painting in a more casual or unstructured manner, without honing in on specific features.
The scattered heat zones imply that viewers are exploring the painting without a clear
framework or prompts to guide their interpretation.

Figure 3. Heat maps of the eye-tracking experiment concerning the first group of students observing
the picture without VTS. The color palette (red, highest, light blue lowest) show the intensity of visual
focal areas.

Heat Map 2 (Figure 4): After Visual Thinking Concentrated Gaze. The second heat
map has two distinct focal points where the gaze is heavily concentrated (red areas). This
suggests that participants are now focusing on specific features of the painting. These
focused areas likely correspond to features or elements of the painting that were high-
lighted or emphasized during the VTS process. The more structured pattern implies that
participants are engaging with the painting more deeply, possibly influenced by questions
or discussions that directed their attention to specific areas.
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Figure 4. Heat maps of the eye-tracking experiment concerning the group of students observing the
picture after VTS. The color palette (red, highest, light blue lowest) show the intensity of visual focal areas.

It is interesting to observe that in the first NVTS image, the percentage of red heat
maps is 44.13%, while in the second one is 77.86%. This means also a more extensive visual
focus after VTS.

Figure 5 shows the visual comparison between the cumulative heat maps of the non-
VTS group (left) and the VTS group. The lack of the original background of the image helps
to better understand that the gaze after VTS becomes much more focused and extended in
the main regions of interest.

Figure 5. Heat maps comparison: on the (left) eye-tracking without VTS, on the (right) with VTS
(no background). The color palette (red, highest, light blue lowest) show the intensity of visual
focal areas.

The guided VTS process significantly changed how participants engaged with the
artwork. Without VTS, observation is random and exploratory; after VIS, observation
is targeted and deliberate. The concentrated gaze points in the second heat map may
indicate participants are not only looking but interpreting and analyzing specific elements
of the painting. The shift from diffuse to focused gaze patterns demonstrates how VTS can
foster a more thoughtful and analytical engagement with visual material. This comparison
highlights how structured approaches like VTS can transform casual observation into a
more intentional and meaningful interaction with art.

Figure 6 bar chart compares the percentage of relevant areas in the two heat maps. It
visually highlights the difference in the proportion of the most focused regions based on
eye-tracking data. The second heat map shows a significantly larger coverage of relevant
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features compared to the first one, demonstrating the increased attention and focus on
specific areas.

100 Comparison of Relevant Area Coverage in Heat Maps

801

60

45.0%

a0}

25.0%

Percentage of Relevant Features (%)

20

Heat Map 1 Heat Map 2

Heat Maps

Figure 6. Comparison of the relevant features in the first and second heat maps.

All the students involved in the VTS experiment wrote a specific narrative concerning
their own interpretation of the original image (Figures 7 and 8). The narrative of each
student was used as a prompt for generating Al images with the same style as the original
one. For this experiment, we use FolloFox Al Distillery [36], an open-source text-to-image
generator. Figures 7 and 8 show a collection of Al images generated by the VIS prompts of
16 students: each gallery shows slightly different subjects. Each student’s textual prompt
was then processed through text-to-image generation, where Al converted descriptions
into visual outputs while maintaining stylistic coherence. To achieve that, we used two
techniques: one (ControlNet) that makes the Al consider the original art piece as a canvas
for the imagination of the students, and another (IPAdapter) that essentially allows the Al
to consider the art piece as part of the imagination itself, as if the memory of the art piece
was influencing the generative process. In this way, and leveraging on its intrinsic artistic
capabilities, the Al model was able to apply learned artistic elements from the original painting
onto the newly generated images, ensuring consistency in brushwork and lighting effects.

The last research question of the experiment was to evaluate and compare the con-
sistency of the textual prompt of the VTS with the original image and the Al-generated
image. In this case, it was chosen the case of a student whose VTS narrative described
the original painting in this way: “A ritual is occurring where a person is being sacrificed
in the center of a fire. There seems to be an orange and yellow patch at the center with
human hand figures on it. There are ghostly figures that may represent souls, floating
above the center pit. These seem to be spirits who are making contact with the people on
the ground below. There arealso red shadows around the people on the ground which
could represent violence”. Therefore, this statement became the main prompt of the Al
text-to-image processing. In this case, Distillery was trained with the colors and style of the
original image in order to avoid discrepancies in the general design of the scene.

The last step of the process was to compare the Al-generated image, based on one of
the students’ prompts with the original painting in order to evaluate the consistency of the
prompt and the fidelity of the Al interpretation. This analysis helps also to understand
the relationship between art and Al art/machine learning and, particularly, to visualize
how different observers can interpret a cultural subject in several ways. The interaction
between the artist and its creation and the feedback of the public generate always new
content and different symbolic meanings. This part of Al analysis involved ChatGBT 4/0
in combination with Python 3.13 (https://www.python.org/, accessed on 15 January 2025).
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Figure 7. Al-generated images (Distillery) concerning the VTS prompt of a group of eight students of
the class Why Art, Duke University.

Figure 8. Al-generated images (Distillery) concerning the VTS prompt of a second group of eight
students of the class Why Art, Duke University.

The first processing was the edge detection/structural comparison (Figure 9) of the
original picture with the Al-generated one. The edges in the Al-generated image are clearer
and more defined, with a focus on distinct objects such as the firepit, human figures, and
the surrounding environment. The composition is more structured and less layered, with
identifiable shapes and minimal abstraction. The Al image prioritizes clarity and narrative
focus, reflecting the key elements described in the prompt (e.g., the central firepit and
human participants). The reduced edge complexity highlights the Al's tendency to simplify
and emphasize specific aspects, at the expense of broader symbolic representation.

The second analysis of the heatmaps (Figure 10) provides a visualization of three
metrics (SSIM, MSE, and similarity) comparing the original image and the Al-generated
image. The structural similarity index (SSIM) value indicates a low-to-moderate level of
structural similarity between the two images. The edges and overall structural components
in the Al-generated image align only partially with those in the original, reflecting a focus
on certain features (e.g., the firepit) rather than the broader abstract composition. The
mean squared error (MSE) score, relatively low, suggests that the pixel-level differences
between the original and Al-generated images are not extreme. However, the Al-generated
image simplifies and emphasizes certain areas (e.g., human figures, firepit), leading to
fewer nuanced variations found in the original painting.
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Edge Detection: Structural Comparison

Edges: Original Image Edges: Al-Generated Image

Figure 9. Edge detection of the main scene of the painting in the original picture (left) and in the
Al-generated image (right). ChatGBT 4/0 in combination with Python 3.8.x.
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Figure 10. Comparison metrics concerning the original image and the Al-generated one based on

SSIM (Edges) MSE (Edges) Similarity
Metric Type

SSIM, MSE (Pixel-level intensity) and similarity (conceptual alignment using semantic analysis).
ChatGBT 4/0 in combination with Python.

Finally, the semantic similarity reflects how well the Al-generated image captures
the conceptual meaning or narrative of the original. The score suggests that while the Al
image aligns with the general theme (e.g., ritual, firepit, human figures), it diverges in the
subtleties and complexity of the abstract symbolism. The Al-generated image captures the
narrative core (firepit and figures. figure) but simplifies the broader context, as reflected by
low-to-moderate SSIM and semantic similarity scores. The MSE indicates that pixel-level
differences are subtle, highlighting the Al’s ability to retain some visual harmony. The Al
seems to prioritize clarity and focus on specific narrative elements, sacrificing the nuanced
abstraction present in the original.

This bar chart illustrates the semantic similarity scores between the original image and
the Al-generated image when compared with the provided narrative prompt. The relatively
low score reflects the abstract and symbolic nature of the original image. While the original
image may align conceptually with the narrative prompt, its abstract elements and lack of
clearly defined structures reduce its semantic alignment with explicit descriptions. This
suggests that the original image’s meaning is open to interpretation and not tightly bound
to a single narrative.

The Al-generated image (Figure 11) has a slightly higher semantic similarity score
compared to the original image. This increase in similarity is due to the AI’s clear depiction
of key elements from the prompt, such as a central firepit. Human figures surrounding the
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ritual. A structured scene that matches the described ritualistic activity. The Al-generated
image prioritizes a direct narrative alignment with the prompt over artistic abstraction.

Figure 11. Al-generated image (Distillery) based on a student’s prompt during the VTS experiment.
ChatGBT 4/0 in combination with Python.

The Al-generated image focuses on literal and recognizable elements, leading to
a higher semantic similarity with the narrative prompt. The original image, by contrast,
emphasizes abstraction and symbolic representation, resulting in a lower semantic score. The
original image’s abstraction allows for multiple interpretations but reduces alignment with a
specific narrative. The Al image sacrifices abstraction for clarity, ensuring stronger alignment
with the explicit elements of the prompt. The score difference (0.0632) is small, indicating that
both images reflect the prompt to some extent but in vastly different ways—one abstract, the
other literal.

This analysis highlights how Al-generated art tends to prioritize narrative clarity
and prompt-specific alignment over abstraction and symbolism. The original image’s
abstraction may make it more engaging for interpretation, but it aligns less closely with the
specific semantic content of the prompt.

Figure 12 compares the semantic alignment of the original and Al-generated images
with the narrative prompt: Original Image: Semantic similarity score is 0.2698, reflecting
its abstract and ambiguous representation. Al-Generated Image: The semantic similarity
score is 0.3330, showing a stronger alignment with the prompt’s described scene.

10 Semantic Similarity with Prompt

0.8

Similarity Score
4
o

o
~

0.3330

0.2698

0.2

0.0

Original Image Al-Generated Image

Figure 12. Semantic similarity between the original image and the Al-generated image. ChatGBT
4/0 in combination with Python.
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Global Variance, Figure 13. The Al-generated image has a higher global variance
(3622.66) compared to the original image (2904.91), indicating greater overall contrast in
pixel intensities. The variance for the center region of the original painting (3102.74) is
similar to its global variance, showing consistent intensity distribution. Al Firepit: The
variance for the Al firepit region is significantly lower (870.60), suggesting that the firepit
has a more uniform and focused intensity distribution compared to the abstract center in
the original painting.

Variance Analysis: Global and Key Regions
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Figure 13. Variance analysis, global and key regions. ChatGBT 4/0 in combination with Python.

In the semantic and symbolic comparison (Figure 14), the Al interpretation highlights
a more structured and socially grounded scene, emphasizing communal participation
around a central fire. The arrangement of figures suggests hierarchy and intentional roles
within the ritual, contrasting the ambiguous roles in the original image. The central fire is
the focal point, symbolizing transformation, energy, or purification. This element reinforces
the theme of ritualistic change, perhaps linked to rebirth or spiritual transcendence.

Semantic and Symbolic Comparison

Original Image: Symbolic Themes Al-Generated Image: Thematic Elements

Fluid Ambiguity

Ritual Gathering

Central Fire.as Transformationl/ .

s \
Y
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Figure 14. Semantic and symbolic comparison between the original painting and the Al-prompt-based
generated image. ChatGBT 4/0 in combination with Python.

Human figures are distinct and actively engaged, portraying clear roles within the
ritual (e.g., offering, watching, or conducting the ceremony). This structured representation
contrasts with the shadows in the original image, where individual roles are obscured.

The original image uses abstraction to evoke mystery and fluidity, suitable for an
interpretive, symbolic exploration of ritual. In contrast, the Al-generated image pro-
vides a concrete, structured depiction, making the ritual more accessible and straightfor-
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ward. It emphasizes a symbiotic relationship with nature, integrating its motifs as part
of the ritual. The Al-generated image shifts the focus to human agency and the fire as a
transformative medium.

The shadows in the original image convey universality and inclusiveness, aligning
with rituals that transcend individual identity. The Al-generated image emphasizes distinct
roles and interactions, reflecting a more hierarchical or role-based ritual structure.

5. Saliency Maps

One of the key factors in the human interpretation of images [37] is information
encoding, which means how much we need to capture for interpreting and transmitting
visual content. What kinds of cultural and contextual elements can influence this process
and what methods we can adopt for this kind of research?

Saliency maps are an essential tool in both neuroscience and artificial intelligence (Al),
offering a means to visualize and quantify the most important features of an image or scene
that capture human attention or drive AI model decisions. In the context of art, saliency
maps provide fascinating insights into how people perceive and interact with visual works,
revealing the underlying patterns and elements that guide focus and evoke emotional or
cognitive responses.

Saliency maps are computational or visual representations [38] that highlight the
regions of an image that are most likely to draw attention. They are rooted in the concept
of saliency—the quality that makes certain aspects of a visual scene stand out. Saliency is
influenced by low-level features, such as color, contrast, and brightness, and high-level
cognitive factors, including context, meaning, and prior knowledge. In computational
terms, saliency maps are often generated using algorithms that model human visual
attention. These algorithms analyze an image to identify regions of interest based on
feature contrasts. For example, bright, saturated colors in an otherwise muted scene, or
sharp edges in a soft, blurry context, are likely to appear as salient.

In neuroscience, saliency maps are connected to studies of the visual cortex and
attention mechanisms in the brain [39]. Eye-tracking studies frequently use saliency maps
to correlate gaze patterns with specific visual stimuli, providing data on how people process
visual information in real time.

Art has always been a powerful medium for engaging visual attention, often deliber-
ately playing with elements like color, composition, and texture to guide the viewer’s gaze.
Saliency maps offer a quantitative approach to studying these effects, revealing how artists
manipulate visual elements to create focal points or evoke specific emotional responses.
One of the most direct applications of saliency maps in art is through eye-tracking studies.
These studies track the movement of viewers’ eyes as they explore a painting or sculpture,
generating data that can be transformed into saliency maps. The resulting heatmaps highlight
areas where viewers spend the most time looking, as well as the sequence of their gaze.

Eye-tracking studies have also shown that saliency in art is not solely driven by low-
level visual features. High-level factors, such as cultural context, personal experience, and
the narrative embedded in the work, significantly influence gaze patterns.

In applying a saliency map analysis to the above-mentioned case study, we can better
evaluate the difference between an empirical experiment, the eye-tracking, and the Al
simulation of a saliency map over the same subject (Figure 15).

The saliency map (on the right) indicates regions of the image that are most visually
or semantically prominent. The central area of the original image, which likely contains
significant features (such as the bright yellow-orange area), is highlighted strongly in red.
This suggests that this region is the most attention-grabbing. The outer regions of the image,
such as the edges and corners, show low saliency (yellow or white areas). This indicates



Heritage 2025, 8, 102

18 of 25

that these areas contain less visually significant information and are less likely to attract
attention. Bright colors, such as yellows and oranges, and high contrast in the original
image have a strong influence on the saliency. The heatmap reflects this by assigning these
areas higher attention weights. The saliency map also captures contextual elements, such
as the figures on the sides of the original image, albeit with lower intensity. This implies
that while these figures are part of the composition, they do not dominate attention in the
way the central elements do.

Saliency Map (Deep Learning)

Original Image

Figure 15. Saliency map (right) of the original painting (on the left). ChatGBT 4/0 in combination
with Python 3.8.x. The red colors show the main regions of visual interest of the painting according
to an Al simulation.

Saliency maps generated by Al models offer a unique perspective on how machines
“see” art [40]. These models, often trained on large datasets, use neural networks to predict
the most salient regions of an image. Comparing Al-generated saliency maps with human
gaze patterns provides insights into both human and machine perception [41].

While human saliency is influenced by emotional, cultural, and contextual factors, Al
saliency is typically based on algorithmic rules and data patterns. This distinction can lead
to interesting divergences in interpretation. For example, an AI model might focus on fine
details or high-contrast areas that humans might overlook in favor of more emotionally or
contextually relevant regions. These differences highlight the challenges and opportunities
in teaching Al systems to better understand human aesthetics.

In Figure 16, similar to the previous saliency map, the strongest highlights (in red) are
concentrated in the central area, specifically around the fire and the human figures in the
center of the composition. The flame and the figures directly below it dominate the visual
field, indicating their critical role in capturing attention. The saliency map also picks up on
some peripheral figures, such as those on the left and right of the central scene. However,
their importance is relatively diminished compared to the central flame and figures.

The saliency map reflects vertical attention, with the fire extending upwards and main-
taining a visually significant streak in the middle. The bright vertical saliency suggests that
viewers’ attention might naturally follow the fire’s upward trajectory. The contrast between
the fire’s bright orange glow and the dark background plays a key role in determining
saliency. The map effectively captures this contrast, emphasizing regions where there is
a stark difference in brightness. This saliency map aligns well with the likely narrative
intention of the artwork; focusing on the central ritualistic scene while maintaining periph-
eral awareness of the surrounding figures. The central focus supports the visual hierarchy,
leading viewers to the most crucial elements of the composition first.
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Saliency Map (Deep Learning)

Original Image

Sirone Mashaal

Figure 16. Comparison between the Al image generated (on the left, created by a student’s prompt)
and its saliency map. ChatGBT 4/0 in combination with Python 3.8.x. The red colors show the main
regions of visual interest of the painting according to an Al simulation.

The balance of saliency here is better distributed compared to the previous example,
as secondary attention is given to surrounding elements, making the overall scene more
dynamic. The visual weight reinforces a theatrical composition, emphasizing the ritual and
its participants. Overlaying this saliency map onto the original image could provide further
clarity on how well the artwork communicates its intended narrative. Additional analyses
could examine whether the surrounding figures could draw slightly more attention to
enhance balance.

The first saliency map reflects a complex and distributed visual structure, where
attention is spread across multiple elements. This indicates that the original image invites
exploration and encourages the viewer to construct meaning through interaction with
different parts of the composition. The second saliency map reveals a hierarchical and
centralized focus, emphasizing the ritual as the core of the narrative. This suggests a
simpler visual interaction that guides the viewer to a specific interpretation.

In the chart of Figure 17, both maps display nearly identical distributions of saliency
between the central and peripheral regions. This might suggest a similar spatial distribu-
tion of salient features in the two saliency maps. The high peripheral saliency could mean
that the visual elements or features in the images being analyzed are distributed toward
the edges rather than concentrated in the center. If Map 1 (Figure 17, 20.802298% central,
79.197702 peripheral) represents the original artwork and Map 2 (Figure 17, 19.358028%,
central 80.641972%, peripheral) represents an Al-generated interpretation, this result im-
plies that the Al-generated image mimics the spatial saliency distribution of the original.
This is an additional confirmation that the student’s prompt was deeply influenced by the
observation during the VTS experiment. On top of this, the two images recall the main
spatial structure of the scene.

In visual design or art, saliency in the peripheral regions can engage viewers by
encouraging exploration beyond the center. If the purpose of the Al-generated image was
to replicate the visual structure of the original, this similarity in saliency distribution might
indicate that it successfully captured the spatial dynamics of the original.
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Central vs. Peripheral Saliency Comparison
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Figure 17. Comparison between central and peripheral saliency of the original and Al-generated
images. ChatGBT 4/o0 in combination with Python.

Saliency Maps and Al

As discussed before, saliency denotes the capacity of some visual features to inherently
capture attention owing to their contrast, prominence, or significance within a particular
context. In art [42] and artifacts, saliency functions on two levels. It illustrates the phys-
ical attributes of an artwork, including edges, color contrasts, and symbolic areas that
automatically capture the viewer’s attention [43]. Conversely, computationally created
saliency maps are visual depictions produced by algorithms that replicate human attention,
providing a method to examine viewer interaction with visual compositions. Saliency
maps offer a means to evaluate human perception and interaction with art. These maps
delineate areas of significant visual prominence within an image, with luminous zones
signifying components that capture attention owing to pronounced edges, contrasts, or
geometric configurations. In an architectural picture, elements such as obelisks and domes
are prominent due to their structural uniqueness and symmetry. In contrast, darker areas
on a saliency map indicate regions of diminished visual importance, such as untextured
backgrounds or uniform hues. This approach corresponds with human inclinations to
concentrate on structured patterns, symmetry, and details that have aesthetic or cultural
importance. In artworks like frescoes, saliency maps often highlight the outlines of human
figures, complex patterns, or components that direct attention and enhance the narrative or
emotional resonance of the piece.

By incorporating saliency analysis into these systems [38], artists can guide Al models
to produce works that align with human aesthetic preferences [44]. For example, an Al
model might be programmed to generate abstract art that maximizes saliency in certain
regions, creating compositions that naturally draw the viewer’s eye [45]. Alternatively,
artists can use saliency maps to evaluate and curate Al-generated pieces [46], selecting
those that achieve the desired balance of attention and impact.

The interplay between saliency maps and art raises important questions about aes-
thetics, creativity, and the nature of human attention [47]. As Al systems become more
sophisticated, they not only analyze but also influence the way we perceive and create
art. This dynamic has both exciting possibilities and potential challenges. Saliency maps
can be used to enhance viewer engagement with art in museums and galleries [48]. For
example, interactive exhibits could display real-time saliency maps based on visitors” gaze
patterns, offering insights into how different people perceive the same work. This could
spark discussions about the subjective nature of art and the diverse factors that influence
visual attention.
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Moreover, saliency maps could guide the curation of exhibitions, helping curators
design layouts that optimize viewer engagement. By analyzing gaze patterns and attention
flows, curators can position artworks in ways that encourage exploration and discovery.

The use of saliency maps in art also challenges traditional notions of aesthetics and
artistic intention. If saliency maps reveal that viewers consistently focus on unintended
elements of a work, does this undermine the artist’s original vision? Or does it highlight
the dynamic and participatory nature of art, where meaning is co-created by the artist and
the viewer? In the context of Al-generated art, saliency maps further blur the boundaries
between creator and audience. When an Al system generates a piece based on saliency
principles, is the resulting work a product of the machine’s “vision”, the programmer’s
intent, or the viewer’s response? These questions challenge us to rethink the relationship
between technology, creativity, and human experience.

In the art world, the use of saliency maps to optimize viewer engagement could
lead to a homogenization of aesthetic experiences, where works are designed to appeal
to predictable patterns of attention rather than fostering genuine creativity and diversity.
Balancing the benefits of saliency analysis with the need to preserve artistic integrity and
authenticity is an ongoing challenge.

Human figures, for instance, often dominate saliency maps due to their distinct edges,
contrasts in clothing, and expressive gestures. Simultaneously, backgrounds with minimal
texture or contrast are de-emphasized, showcasing the ability of saliency analysis to sup-
press visually inactive areas. In works where details like drapery, musical instruments, or
symbolic gestures are prevalent, saliency is often distributed evenly across these intricate
regions, reflecting their shared importance in guiding the viewer’s gaze. This analysis
aligns with cognitive research showing that human attention gravitates toward areas with
significant transitions, contrasts, or culturally resonant symbols. In terms of practical
applications, saliency maps serve as tools for evaluating and interpreting visual focus in
both art and artifacts. They provide valuable insights into artistic techniques, revealing
how creators manipulate visual elements to guide attention or evoke specific responses. In
neuromarketing, saliency maps are used to assess how people engage with visual stimuli,
offering metrics that can inform design strategies for advertisements, branding, and user
interfaces. They are also increasingly applied in the creation and evaluation of algorithmic
or generative art. By identifying regions that align with human aesthetic preferences,
saliency maps help refine and curate Al-generated works to enhance their visual impact.
Furthermore, when paired with eye-tracking data, these maps validate and complement
computational predictions, allowing researchers to compare algorithmic models with real-
world gaze patterns. The examples presented illustrate how saliency maps are applied to
analyze both architectural and artistic compositions.

Saliency maps also provoke deeper questions about perception, interpretation, and
artistic intention. They highlight a dynamic interaction between the viewer and the artwork,
revealing how certain elements capture attention while others recede into the background.
This raises intriguing questions about whether saliency maps reflect the artist’s intended
focal points or simply the natural tendencies of human perception. The comparison
between human and algorithmic attention further enriches this dialogue, revealing areas of
overlap and divergence that highlight the challenges of teaching Al to fully understand
human aesthetics.

In conclusion, saliency maps offer a powerful lens through which to explore the
interplay between art and attention. Whether used to analyze existing works, guide
new creations, or enhance viewer engagement, they provide valuable insights into the
mechanisms of visual perception and the dynamics of aesthetic experience.
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6. Conclusions

This paper demonstrated the transformative potential of integrating generative Al,
neuroaesthetic tools, and methodologies like Visual Thinking Strategies (VISs) in ar-
chaeological and art historical research. By leveraging cutting-edge technologies such
as Al-generated simulations, eye-tracking experiments, and saliency map analyses, it was
possible to explore how these approaches contribute to understanding human interaction
with cultural heritage [49] and reconstructing multiple narratives of the past.

Generative Al proved to be an invaluable tool for simulating alternative interpretations
of archaeological contexts and art, enabling the conceptualization of the past as a multiverse
rather than a fixed timeline. The Al-generated visualizations highlighted multiple plausible
scenarios based on human input and descriptive prompts. These simulations captured the
complexity of cultural models by offering nuanced visual interpretations that are rooted
in data-driven creativity. This “multiverse approach” opens pathways for engaging with
uncertainties and contradictions inherent in material cultures, fostering a more inclusive
and diverse understanding of ancient societies.

Eye-tracking experiments provided critical insights into human cognitive engagement
with visual stimuli, including original artworks and Al-generated interpretations. The
results revealed that VTS significantly influences how individuals visually explore art,
guiding attention toward specific features and fostering a deeper understanding of sym-
bolic and structural elements. Before applying VTS, viewers exhibited diffuse patterns of
attention, while post-VTS results demonstrated more focused and rich visual engagement.
This underscores the pedagogical value of VIS in enhancing observational and interpretive
skills, as well as the importance of guided frameworks in art and archaeological education.

The experiment involving Al, VTS, and eye-tracking provided key insights into how
structured observation affects human perception and interpretation of artworks. The
study demonstrated that pre-VTS eye-tracking data exhibited scattered gaze patterns with
limited focal engagement. However, after employing VTS, participants’ gaze became
more concentrated on specific features, emphasizing deeper interpretive engagement and
cognitive mapping of the artwork. This result supports the effectiveness of structured
visual strategies in enhancing interpretative depth and viewer engagement.

Furthermore, the Al-generated visualizations based on VTS-driven textual prompts
revealed the potential of Al in transforming verbal descriptions into dynamic visual outputs.
The comparison between human perception, as mapped through eye-tracking and saliency
maps, and Al-generated outputs, based on textual prompts, demonstrated an intriguing
alignment in focal points. Al models consistently highlighted key compositional elements
that corresponded to the most salient areas of human gaze fixation. This suggests that Al
can effectively translate textual narratives into meaningful visual representations, providing
an innovative approach to exploring visual storytelling in art. However, discrepancies
between Al-generated and original artworks also highlight the limitations of current Al
models in capturing abstract and emotionally resonant artistic elements.

Saliency map analysis complemented the eye-tracking results by quantifying the visual
impact of central and peripheral regions in both original and Al-generated imagery. The
comparison between central and peripheral saliency distribution highlighted differences
in how human-created and Al-generated images emphasize key visual elements. Al
interpretations often concentrated saliency in symbolically charged areas, such as the
central fire or ritual objects, while the original images showed more diffuse saliency,
reflecting the complexity of human artistic intention. This analysis illustrates how saliency
maps can bridge the gap between computational and humanistic approaches to visual
studies, providing actionable insights into visual storytelling and composition.
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In summary, the integration of these tools raises important implications for archaeol-
ogy, art history, and neuroaesthetics:

s Enhanced Multimodality: Combining Al simulations with human-centric tools like
eye-tracking and VTS creates a multimodal framework for exploring cultural artifacts,
blending quantitative precision with qualitative interpretation.

s Cognitive Engagement: Eye-tracking and saliency maps underscore the importance
of understanding human perception and attention when observing and interpreting
artifacts, both to academic audiences and the public.

s Al as a Visual Translator: The ability of Al to generate imagery based on text descrip-
tions opens new pathways for digital reconstruction, enabling the visualization of lost
or imagined historical narratives.

»  Ethical Responsibility: While generative Al offers creative and interpretive potential,
its use necessitates transparency in methodologies and careful consideration of biases
introduced by prompts, datasets, and algorithms.

Additionally, the role of Al in shaping museum experiences and cultural heritage
education cannot be overstated. The intersection of Al and neuroaesthetics offers new
perspectives on how people engage with and interpret visual information. As demonstrated
in this study, Al-driven generative models can produce insightful reconstructions, yet these
need to be critically analyzed through interdisciplinary methods. The ability of Al to
generate alternative reconstructions of the past necessitates careful validation processes to
ensure that these outputs are not speculative distortions but meaningful contributions to
our understanding of historical contexts.

The concept of an Al-driven multiverse, which allows for multiple interpretations and
reconstructions, represents a fundamental shift in archaeology and cultural heritage studies.
Rather than seeking singular, definitive narratives, this approach embraces complexity,
uncertainty, and subjectivity. By integrating Al-driven simulations with human cognitive
studies, this research suggests a future where technology and human creativity work in
tandem to reimagine history as a dynamic and evolving discourse.

However, with this transformation comes the responsibility to critically assess the role
of Al in shaping historical and artistic narratives. Questions of authorship, authenticity,
and interpretive bias remain central. Future research must continue to refine methodologies
for integrating Al with cognitive science, ensuring that the resulting interpretations remain
scientifically sound and ethically responsible. The findings from this study lay the ground-
work for a broader, more nuanced approach to Al-assisted heritage studies, emphasizing
the importance of collaborative, interdisciplinary frameworks.

This paradigm shift ultimately enriches not only our understanding of the past but
also our collective cultural imagination.
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