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Abstract: Ripeness estimation of fruits and vegetables is a key factor for the optimization of field
management and the harvesting of the desired product quality. Typical ripeness estimation involves
multiple manual samplings before harvest followed by chemical analyses. Machine vision has paved
the way for agricultural automation by introducing quicker, cost-effective, and non-destructive
methods. This work comprehensively surveys the most recent applications of machine vision
techniques for ripeness estimation. Due to the broad area of machine vision applications in agriculture,
this review is limited only to the most recent techniques related to grapes. The aim of this work is to
provide an overview of the state-of-the-art algorithms by covering a wide range of applications. The
potential of current machine vision techniques for specific viticulture applications is also analyzed.
Problems, limitations of each technique, and future trends are discussed. Moreover, the integration
of machine vision algorithms in grape harvesting robots for real-time in-field maturity assessment is
additionally examined.

Keywords: machine vision; grape ripeness estimation; image analysis; precision agriculture; agrobots;
harvesting robot

1. Introduction

Precision viticulture aims at maximizing grape yield and quality by minimizing input
costs. Grape harvesting is the most important viticulture operation since the choice of the
harvest time determines the desired quality of the yield. Identifying the maturity levels
in vineyards could enhance the efficiency of harvesting operations [1]; especially in wine
production, where the optimal harvest time, associated with specific concentrations of
certain compounds, e.g., anthocyanins, is strongly related to the desired wine quality [2].
The precise time for grape harvest depends on the location, the duration of the growing
season, the grape variety, the vine tree load, and the intended use of grapes, i.e., eating, or
wine production. Environmental conditions also affect the ripening process [3,4]. There-
fore, estimation of the exact harvest time is rather challenging; however, grape ripeness
estimation is a less complex process and is performed regularly during veraison.

Traditional ripeness estimation for commercial grape growers is performed by experts
who assess the maturity grade based on sensory attributes, i.e., color and taste, in com-
bination with exhaustive sampling followed by chemical analyses [5]. The latter is not
economically feasible, especially for commercial vineyards. Moreover, the procedure is
subjective, depending on the person who performs the sensory evaluation and sampling.
Additionally, chemical analyses are destructive, time-consuming, and usually involve
sophisticated equipment that is costly and difficult to be operated by non-experts. Fur-
thermore, destructive analyses presuppose extensive and frequent sampling that are made
only on a finite number of fruit samples; statistical relevance implies precision loss [6].
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In this context, automated solutions for grape ripeness estimation are to be sought.
Lately, research is focused on developing non-destructive, cost-effective, and environmen-
tally friendly techniques. Machine vision is currently used excessively for agricultural-
related tasks [7]. The technological improvement in hardware provides sensors that com-
bine high performance and reasonable pricing, while innovative software design provides
algorithms that can support effective real-time artificial vision systems. Towards this end,
machine vision has been introduced to in-field applications for grape ripeness estima-
tion [7,8]. Reported results reveal that image analysis can be used as a quick, efficient, and
attractive alternative to chemical analysis, due to its simplicity, flexibility and low cost.

This work aims to comprehensively survey current applications of machine vision
techniques for grape ripening estimation. The techniques reported here are recent and
cover a wide range of image analysis applications. Each technique’s potential is analyzed;
performance results, prediction models, input data, and pre-processing needs are reported.
Suggestions of the most effective methods for specific applications and their limitations are
also highlighted. The current and potential integration of reported methods in agricultural
robots, namely agrobots, is examined, and future trends are discussed. This work critically
reviews the most leading-edge methods in machine vision-based grape ripening estimation
and, therefore, experts can use it as a complete guide to help them select the appropriate
methodology to best fit their application.

The rest of the paper is structured as follows. Section 2 summarizes the peculiarities of
grapes compared to other fruits regarding ripeness estimation. The most commonly used
indices related to grape maturity are presented in Section 3. Section 4 reviews machine
vision methods for grape ripeness estimation. Limitations and perspectives are discussed
in Section 5. The integration of the reviewed algorithms in grape harvesting robots is
examined in Section 6. Finally, Section 7 concludes the paper.

2. Grape Ripeness Peculiarities

The physiological maturity of fruit occurs before the harvest maturity. When the fruit
quality is acceptable to the customer, it reaches commercial maturity [1]. Physiological
and commercial maturity need to be distinguished; commercial maturity is achieved
when the development of the fruit is over even if the ripening process is not fulfilled,
while physiological maturity is achieved when both maximum growth and maturity
have occurred. In general, fruit maturity is estimated by using several maturity indices,
summarized in the following section.

At this point, it should be noted that fruits are divided into two broader categories:
climacteric and non-climacteric. Climacteric is a stage of fruit ripening related to increased
production of ethylene, the required hormone for ripening, and a rise in cellular respi-
ration. Climacteric fruits can produce ethylene even when they are detached from the
crop and, thus, continue to ripen autonomously and change in taste, color, and texture.
Apples, melons, bananas, and tomatoes are climacteric fruits. Non-climacteric fruits do
not change in color and taste after being harvested. Citrus, grapes, and strawberries are
non-climacteric fruits.

All varieties of grapes are non-climacteric. This means that grapes picked early in one
day may taste different than those picked in the next day, and will not ripen any further
so that they would all come to the same degree of maturity. Therefore, for grapes, it is
important to keep sampling/tasting until the grapes are uniformly ripened and harvest
all grapes of the same maturity level at the same time. After being harvested, grapes are
sensitive. A general rule is that the more mature the grape is, the shorter is its post-harvest
life. For grapes that need to be transported to distant markets/wineries, harvest must occur
as soon as possible after reaching the desired maturity level and refrigerator tractors are
required. If grapes are not harvested on time, the grape berries may shatter, become rotten,
or be damaged by animals, i.e., birds, insects, etc., which severely affects yield quantity
and quality.
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Towards this end, the time of grape harvest is one of the most important and challeng-
ing viticultural decisions for grape producers due to: (1) the difficulty of assessing grape
maturity in the vineyard after exhausting sampling, (2) harvesting all grapes at the same
maturity level by organizing on standby human resources to harvest, and (3) maintaining
and transporting the harvested product in time. Therefore, grape harvesting based on
ripeness estimation could increase the sustainable production of grapes by improving the
quality of harvested grapes due to homogenous ripened and equally fresh fruit. In this way,
the post-harvest waste along the supply chain reduces due to less rotter/damaged grapes,
with an additional reduction of the production costs and human labor due to sustainable
resources management.

3. Grape Ripeness Estimation Indices

Each grape cultivar displays a different refractometric index that is related to maturity;
table grapes are considered ripened at 16o Brix, Sauvignon Blanc at 20–22 ◦Brix, Merlot
and Cabernet at 21–23 ◦Brix, etc. Thus, it is obvious that the proper harvesting time is not
related to a standard value, but to a desired value depending on the harvested variety.
Moreover, the post-harvest application of viticulture practices is strongly related to harvest
at optimal maturity; in the wine industry, the maturity level of harvested grapes determines
the exact procedure, diffusional, enzymatic, or biochemical, to be subsequently applied [9],
while for table grapes, the refractometric index is combined with the sugar/acid ratio in
order to determine harvest time that reflects the consumer acceptability.

Since there are no standard methods for determining the proper grapes’ harvesting
time, researchers focus on the extraction of metrics that could be potential reliable predic-
tors. Objective criteria to determine the ripeness of grapes are those related to chemical
attributes, such as titratable acidity (TA), volatile compounds, etc. The accuracy of a chemi-
cal analysis depends on strictly following a systematic sampling strategy and maintaining
well-calibrated equipment. A list of chemical attributes that are used as maturity indices
alone or in combination is summarized in Table 1.

Table 1. List of chemical attributes used as maturity indices.

Chemical Attributes Unit

Soluble solid content (SSC) or total soluble
solids (TSS)

◦Brix

Titratable acidity (TA) g L−1

SSC/TA ◦Brix/g L−1

pH <Logarithmic scale>
Volatile compounds µg L−1

Phenolic compounds (Polyphenols) mg g−1

Anthocyanins, tannins, terpenes mg g−1

Chlorophyll µg L−1

Antioxidants mmol g−1

Flavanols/Total Flavonoid Content (TF) mg g−1

The most valuable quality indicators for grape maturity among those in Table 1, are
the SSC, pH, and TA [1], especially when combined. However, these common maturity
parameters that constitute the definition of ripeness, may vary between different cultivars.
For the latter indicators in the wine industry, regardless of the grape variety, the limits that
collectively indicate a ripened grape are those summarized in Table 2. It should be noted
that the limits presented here are general and indicative and are intended to specify a wide
range of values for each index as resulted from the bibliography [10]. It is well-known
that it is not feasible for a single set of numbers to define ripeness for one or more grape
varieties; ripeness can only be defined by the individual [11].
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Table 2. SSC, pH, and TA indicative limits in ripened grapes.

Basic Chemical Attributes’ Limits in Ripened Wine Grapes

3.2 < pH < 3.5
20 < SSC < 23

4 < TA < 7

Commercial grape growers rely on chemical attributes precise values to determine
when to harvest. However, home growers that do not share the same means such as fully
equipped chemical laboratories, use subjective criteria to ascertain maturity.

Subjective maturation criteria are just as important and are used in addition to and in
conjunction with the objective criteria. The latter include sensory characteristics that can be
discriminative among samples and related to both chemical measurements and consumer
liking. A list of sensory attributes that are used as maturity indices is included in Table 3.
Color, size, and taste are the three main subjective attributes to determine grape maturity.

Table 3. List of sensory attributes used as maturity indices.

Sensory Attributes

Visual attributes

Browning of stalks and pedicels
Turgidity of stalks and pedicels

Berry color uniformity
Presence of spots and rots on berries

Grape seed morphological parameters (roundness, length,
width, area, aspect, heterogeneity, perimeter, aspect ratio)

Color scale
Grape seed browning index

Olfactory attributes

Grape fruity flavor
Fruity flavor different from grape

Fermented flavor
Recognizable varietal aroma

Taste/tactile attributes

Hardness, crispness, juiciness, sweetness
Acidity

Astringency
Grape fruity taste intensity

Intensity of fruity taste different from grape
Intensity of fermented taste

Abscission of berries
Overall Liking Score (OLS)

Grapes change color from green to red, dark blue, yellow, or white, depending on
the variety. Color is the most important indicator of maturity. Upon the change of color
are based all machine vision algorithms toward harvest automation. However, external
grape color is not always a reliable indicator since many cultivars change color prior to
ripening. The color of grape seeds is more discriminative; seeds in all cultivars turn from
green to brown [12]. However, the latter investigation suggests the destruction/crush of
grape berries, which is an invasive approach. Grape size is another pointer of the ripening
of grapes. When grapes are ripened, they appear full in size and less firm when being
touched. Taste is the most important sensory attribute to ascertain the ripeness level. This
is the reason why chemical samplings usually are accompanied by taste samplings. Grapes
are tasted regularly while ripening until they are as sweet as needed for their intended use.

The ability to estimate grapes’ maturity state accurately is crucial for deciding on
harvest time towards the optimal quality of wine production. The intended use of the
harvested fruit established by the winegrowers is the key factor that defines the grape
ripeness level. According to the above, in order to assess maturity by using the traditional
methods, all of the following prerequisites should exist at the same time: close grapes
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monitoring while ripening, appropriate sampling, laboratory equipment, and procedures
for objective chemical analysis and careful sensory evaluation.

4. Machine Vision Methods for Grape Ripeness Estimation

During ripening many physical and biochemical changes occur that affect grape
characteristics such as color and morphology. Machine vision approaches can cope with
color, shape, and texture from the analysis of grape images, offering automated, non-
destructive, rapid, and cost-effective techniques. The objective for researchers is to move
grape composition measurements from the laboratory to the vineyard, absolving a large
number of workers from laborious extensive sampling and chemical analysis, towards
in-field automated solutions. Figure 1 illustrates the evolution of grape ripeness estimation
through the decades, from the laboratory to the vineyard.
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Figure 1. Evolution of grape ripeness estimation techniques.

Figure 1 illustrates a tendency; over time, grape ripeness estimation techniques once
could perform exclusively in the laboratory, then transferred in the vineyard initially due
to the advent of portable sensors, and finally due to the rapid development of machine
vision algorithms which is the current trend. However, machine vision techniques have
also been applied in the laboratory and have been combined with portable sensors [13–15].

Machine vision algorithms provide image-based automatic analysis and extraction of
the required information. Different types of images can be analyzed depending on their
spectral resolution. In this work, the applications using the most common type of images,
i.e., digital and multivariable, are reviewed. This is a way to categorize the large volume of
related works available in the literature. More specifically, from the broader category of
digital images, the three-channel Red-Green-Blue (RGB) color imaging is selected, while
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from the multivariable category are selected the complete spectrum hyperspectral and
Near InfraRed (NIR) imaging.

RGB color imaging is the most cost-effective way to determine color channel values
and characteristics such as texture and shape. However, in RGB color imaging, only three
visible bands are available resulting in finite identification capability; RGB color channels
exhibit high levels of correlation and display a smaller range of colors than human eyes
can perceive. No color space can perfectly represent a color; different color spaces are
investigated to address issues that others cannot deal with. Therefore, the CIELAB color
space is used as an international standard for color measurements. The transformation from
RGB to CIELAB requires calibration and it is illumination-dependent. Additionally, the
Hue-Saturation-Intensity (HSI) color space is used, especially for segmentation procedures,
due to its great relation to the visual perception of colors. The Hue-Saturation-Value (HSV)
is an alternative that is invariant to uniform changes of illumination. Alternative color
spaces have also been investigated.

Hyperspectral imaging is considered an evolving process analytical tool. It can be
used instead of RGB for more demanding applications since it can record numerous
bands across a wide spectral bandpass. The latter bands are contiguous and are extended
beyond the visible part of spectrum. Hyperspectral imaging associates spectroscopy with
conventional imaging and, therefore, both spectral and spatial information of an object
can be obtained [16]. A hyperspectral image involves a set of sub-images that represent
intensity distribution at specific spectral bands. When fruits are exposed to light, the
radiation that is reflected is measured by the reflectance spectrum, which is associated
with their chemical compositions [17]. Hyperspectral imaging is considered advantageous
over existing spectroscopic and conventional RGB techniques; spectroscopic techniques
obtain spectral data from only a single point or a small part on the tested fruit, while RGB
imaging cannot properly identify chemical composition and surface features of fruits that
are sensitive to frequency bands different than RGB [18].

NIR spectroscopy has also been proven as a powerful analytical tool to define bioactive
compounds in grapes, such as soluble solids and pH [19]. In NIR spectroscopy, first, NIR
radiation is applied to the object and then the transmitted/reflected radiation is measured.
The spectral characteristics of radiation are altered as it enters the object due to scattering
and absorption that depend on the wavelength. Modifications depend on the chemical
composition of the object and the light scattering properties. The main advantage of NIR
spectroscopy over the rest of the reported methods, RGB and hyperspectral imaging, is
the chemical-free sample preparation and the ability to determine efficiently the optical
properties of the fruit that are strongly related to chemical and physical properties, and thus,
to maturity. The latter can be seen in Figure 2, where the main ultraviolet/visible/near-
infrared (UV/VIS/NIR) wavelengths are associated with chemical compounds in grapes.
It should be noted that the regions reported in Figure 2 are indicative and extracted from
the literature [2,20,21].
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As it can be seen in Figure 2, in the NIR region (780–2500 nm), an absorption band at
around 1200 nm is related to sugars. Water-related absorption bands were found at 950 nm
and 1460 nm. At 990 nm were detected sugars and organic acids. The absorption bands at
1450 and 1950 nm were related to a combination of water, glucose, and ethanol. Absorptions
at 1690 and 1750 nm were related to glucose and ethanol. Absorption at 2260 nm was
related to glucose. Absorption at 2302 nm was related to ethanol, carbohydrates, and
organic acids. In the UV region (190–400 nm), 202 and 230 nm were the peaks with the
highest absorption responses. These were related to carboxyl groups of organic acids. At
280 nm were detected total phenolics for red wines. In the VIS region (400–780 nm), the
absorption in the three main colors is observed at 420 nm for green, at 520 nm for red,
and 620 nm for blue. Spectral peaks with higher absorption indicate specific compounds.
However, compounds can be detected to a broader waveband covering both sides of each
maximum (peak) absorption value.

4.1. Color Imaging

A set of 100 RGB images per sample for 150 samples was used to define the phenolic
maturity of grape seeds in [15]. In total, 21 polyphenols were determined and corre-
lated to CIELAB color channel values and morphological variables obtained from the
images. Results revealed a high correlation coefficient for predicting the maturity stage of
grapes. In [14], RGB images of grape berries and seeds were related to chemical phenolic
compositions and classified as ripened or immature based on the browning index and
morphological features by applying discriminant analysis models. A classification method
that classifies grape bunches on-site in mature or undeveloped was suggested in [22]. First,
the grape bunches were segmented and then classified based on texture and color features
from HSV and RGB representation of the images.

Color scales to estimate grape phenolic maturity were investigated in [23]. A support
Vector Regressor (SVR) was employed to generate color scales that followed the evolution
of grape maturity. Color scales derived from image histograms associated with three
maturity grades, i.e., mature, immature, and overmature. The performance of the model
was obtained from the Mean Squared Error (MSE) by utilizing the K-fold cross-validation.
In [24], a vision-based system was proposed to collect grape bunches images and predict
the progress of the color change of bunches in the vineyard. The images were acquired at
different times and the change of color over time was computed to make future predictions.
Thus, the system could classify bunches into four maturity grades and spatial maps of the
vineyard could be generated to target the productive zones during harvest. Quantitative
models between chemical attributes and RGB images were proposed in [25]. Data mining
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algorithms were employed to extract color features from the standard and mean deviation
of the region of interest of the images. Two regression models were tested to estimate
chemical attributes from the extracted features.

In [26], visual inspection of grape seeds took place for grape ripening estimation
by the Dirichlet Mixture Model (DMM), without the performance of chemical analyses.
DMM allowed modeling the color histogram of grape seeds to estimate ripening class
memberships. A method for quality evaluation of table grapes was presented in [27].
Image analysis and machine learning techniques were employed to analyze color images
and classify them in the predefined five quality classes. In [28], Convolutional Neural
Networks (CNN) and Support Vector Machine (SVM) were used for the classification of
grapes into unripen or ripen. Morphological features along with RGB and HSV values
were used as inputs of the classification models. In [29], color histograms derived from
RGB images were represented by Intervals’ Numbers (INs). Previous INs were fed to the
NN in order to predict future INs, and thus, the grape harvest time. A CNN model for
ripeness classification in eight classes was employed in [30]. RGB images were acquired
under varying illumination and only texture features were extracted and considered as
parameters for the model.

Table 4 includes details regarding referenced applications of RGB imaging for grape
ripeness estimation. Performance evaluation in Table 4, and in all subsequent tables, is
reported in terms of the R-squared (R2) metric; however, when other evaluation metrics
are used instead, are mentioned explicitly.

4.2. Hyperspectral Imaging

A hyperspectral imaging technique was proposed in [31] for the prediction of physico-
chemical and sensory indices of table grapes. The reflectance spectra of berries were
acquired and afterwards the berries were analyzed to compute pH, TA, and SSA. A Partial
Least Square Regressor (PLSR) was employed to search for connections between physico-
chemical indices and spectra information. Images of the grape berries were taken by an
in-lab hyperspectral imaging system inside a dark room under a halogen light source.
In [32], hyperspectral images were used to construct the spectrum of grape berries. The
spectrum was then converted to an enological parameter. Simultaneous determination of
pH, sugars, and anthocyanins took place by a Neural Network (NN).

The same authors used the aforementioned NN with hyperspectral images of different
grape varieties to prove that the NN could derive for new varieties, compatible results
with those of the varieties that were used in the NN training process [33]. An Unmanned
Aerial Vehicle (UAV) was employed in [34] to capture hyperspectral images at the farm
scale. From the same farm, grape berries were collected, and measured reflectance spectra
were employed for the estimation of pH and TSS in order to classify the berries as ripen
or unripen. Hyperspectral imaging was used in [35] to determine the phenolic content in
grape skins and seeds of five grape cultivars. Spectral data were captured and pretreated
by six different methods. Three models were trained with the pretreated spectral data to
predict phenolic values.
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Table 4. Applications of color imaging for grape ripeness estimation.

Cultivar Maturity Index Color Space Features Number of
Images Pre-Processing Prediction Model Evaluation

R-Squared (R2) Year Ref.

Red grapes:
Vitis vinifera L. cv.

Graciano

21 phenolic
compounds CIELAB

Colorimetric,
chromatic

heterogeneity,
morphological

15,000

Thresholding, CIELAB color
channel value and

morphological variables
extraction

Forward stepwise
multiple regressor Up to 0.97 2012 [15]

Red grapes:
Syrah, Tempranillo

White grapes:
Zalema cultivated in
Sand and Clay soil

Visual
assessment

CIELAB
HSI

Colorimetric,
morphological 100

Histogram thresholding
segmentation,

morphological restrictions,
CIELAB and HSI color

channel values, browning
index, color ellipses

Discriminant analysis

Classification rates
100% (Red-Syrah)

87.50% (Red-Tempranillo)
71.43%

(White-Zalema-Sand)
57.14%

(White-Zalema-Clay)

2012 [14]

White grapes in
Cambridge, Tasmania

Visual
assessment

RGB
HSV

Colorimetric,
texture 31

Circle detection and
classification by k-means,
color and texture feature

extraction, filtering

Support Vector
Machine (SVM)

Classification rates of up to
96.88% 2014 [22]

<Not defined>
Visual

assessment
(color scale)

CIELAB
Invariant

illumination
color model

c1c2c3

Colorimetric 450 Segmentation, representative
color estimation

Support Vector
Regressor (SVR)

Mean Squared Error
22.64 2015 [23]

Red grapes:
Flame Seedless

Visual
assessment
(color scale)

HSV Colorimetric <Not defined>
Berries detection algorithm,

berries counting, color
measurement extraction

Grading scheme for
categorizing clusters

based on color
development

0.56 2016 [24]

Red grapes:
Kyoto grapes

SSC
pH

RGB
HIS

NTSC
YCbCr

HSV
CMY

Colorimetric 180

Color feature extraction in
different color spaces from
arithmetically calculated

images, calibration
algorithm

Multiple Linear
Regressor (MLR),

Partial Least-Squares
Regressor (PLSR)

Mean Squared Error
pH: 0.0987 (MLR), 0.1257

(PLSR)
SSC: 0.7982 (MLR), 0.9252

(PLSR)

2016 [25]

<Not defined> Visual
assessment

RGB
HSV Colorimetric 289

Image color distribution,
segmentation algorithm,

color discretization

Dirichlet Mixture
Model (DMM)

125.04 Perplexity
0.29 Average perplexity

per color
2017 [26]

White grapes:
Italia, Victoria

Visual
assessment

HSV
CIELAB Colorimetric 800

Estimation of color
variations, white-balance,
denoising, segmentation,

thresholding

Random Forest (RF)

Cross-Validation
classification accuracy

Up to 100% (Italia)
Up to 0.92 (Victoria)

2019 [27]

White grapes:
Sonaka

Visual
assessment

RGB
HSV

Colorimetric,
morphological 4000 Denoising, color features

extraction

Convolutional Neural
Network (CNN),
Support Vector
Machine (SVM)

Classification rates
79% (CNN)
69% (SVM)

2019 [28]

Red grapes:
Cabernet Sauvignon

Visual
assessment RGB Colorimetric 13 Segmentation algorithm,

color histogram extraction Neural Network (NN) Average Error
5.36% 2020 [29]

Red grapes:
Syrah, Cabernet

Sauvignon

TSS
Anthocyanins

Flavonoids
RGB Texture 2880 Image adjustment, pixel

normalization
Convolutional Neural

Networks (CNN)

Classification rates
93.41% (Syrah)

72.66% (Cabernet)
2021 [30]
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In [36], NIR hyperspectral data of grape seeds were used to estimate the phenolic and
flavanolic contents of two grape varieties. Quantitative models were developed and an ap-
propriate discrimination function allowed for high classification rates of the phenolic state
of grapes in two classes. A VIS-NIR hyperspectral camera in [37] provided images mounted
on an all-terrain vehicle while moving. Spectral models were extracted and used to train a
Support Vector Machine (SVM) model to predict TSS and anthocyanin concentration. Two
different models were trained in [38] to predict TSS, TA, and TF from hyperspectral images.
Optimal wavelengths were investigated and the best predictions were derived from the
selected optimal wavelengths, resulting in considerable data reduction.

Table 5 includes details regarding referenced applications of hyperspectral imaging
for grape ripeness estimation.

4.3. NIR Spectroscopy

In [13], NIR spectroscopy was used to determine anthocyanins in grape berries. Ref-
erence anthocyanins values were calculated by chemical analysis. The spectral matrix
was extracted by image analysis and subjected to principal component analysis (PCA)
to provide information regarding its latent structure. Different spectral parameters and
mask development strategies were examined to derive quantitative models. Obtained
results revealed the potential of NIR spectroscopy to monitor anthocyanins in red grapes.
Usually, NIR spectroscopy only uses the extracted spectra from in-lab or portable spectrom-
eters [1,2,39,40] and does not include image acquisition and machine vision algorithms.
This is the reason why there is a lack of relevant research that combines spectroscopy and
image analysis.

Table 6 includes details regarding referenced applications of NIR spectroscopy involv-
ing image analysis for grape ripeness estimation.
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Table 5. Applications of hyperspectral imaging for grape ripeness estimation.

Cultivar Maturity Index Spectral Range
(nm)

Number of
Images Pre-Processing Prediction Model Evaluation R-Squared (R2) Year Ref.

Red grapes:
Michele Palieri,

Red Globe,
Crimson Seedless

White grapes:
Pizzutello,

Thompson, Italia,
Baresana Seedless

Sensory
evaluation

SSC
TA
pH

400–1000 140

Binary segmentation mask,
morphological structured

element erosion,
mean-centering correction,

Predicted REsidual Sums of
Squares (P.RE.S.S.) statistic

Partial Least Square
Regressor (PLSR)

TA: 0.95 (white), 0.82 (red)
SSC: 0.94 (white), 0.93 (red)
pH: 0.80 (white), 0.90 (red)

2012 [31]

Red grapes:
Touriga Franca

(TF)

pH
SSC

Anthocyanin
380–1028 240

Reflectance determination,
Principal component analysis

(PCA) to reduce input data
dimensionality

Neural Network (NN)
pH: 0.73
SSC: 0.92

Anthocyanin: 0.95
2015 [32]

Red grapes:
Touriga Franca
(TF), Touriga

Nacional (TN),
Tinta

Barroca (TB)

pH
Anthocyanin 380–1028 225 Reflectance determination,

spectrum normalization Neural Network (NN)

pH: 0.723 (TF), 0.661 (TN),
0.710 (TB)

Anthocyanin: 0.906 (TF),
0.751 (TN), 0.697 (TB)

2017 [33]

White grapes:
cv. Malagousia

TSS
pH 510–790 12

Calculation of Carotenoid
Reflectance Index 1 and 2,

Structure Intensive Pigment
Index, Pigment Specific Simple
Ratio Carotenoids, Normalized

Difference Vegetation Index

Multiple Linear
Regressor (MLR),
Support Vector
Machine (SVM)

Classification rates
TSS: 83.33% (MLR), 83.33%

(SVM)
pH: 75% (MLR), 75% (SVM)

2017 [34]

Red grapes:
Cabernet

Sauvignon, Shiraz,
Pinot Noir,

Marselan, Meili

Phenolic contents 865–1711 120

Outliers’ detection, image
correction, pretreatment

methods for spectral data,
threshold segmentation method

Principal component
regression (PCR),

PLSR and Support
Vector

Regression (SVR)

Between 0.8789–0.9243 2017 [35]
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Table 5. Cont.

Cultivar Maturity Index Spectral Range
(nm)

Number of
Images Pre-Processing Prediction Model Evaluation R-Squared (R2) Year Ref.

Red grapes:
Syrah,

Tempranillo

Flavanols
Total phenols 900–1700 200

Correction, segmentation,
average reflectance spectra and
relative absorbances calculation

Principal Component
Analysis (PCA),

Modified Partial Least
Squares (MPLS),
K-means cluster
analysis, Linear

Discriminant Analysis
(LDA)

Classification rates
Up to 83.30% (leave-one-out

cross-validation)
Up to 76.90% (external

validation)

2018 [36]

Red grapes:
Vitis vinifera, (L.)

cultivar
Tempranillo

TSS
Anthocyanins 400–1000 144 Standard normal variate and

Saitzky–Golay filter

Epsilon-Support
Vector Machines

(ε-SVMs)

TSS: 0.92
Anthocyanins: 0.83 2018 [37]

White grapes:
Sugarone Superior

Seedless,
Thompson
Seedless,
Victoria

Red grapes:
Sable Seedless,

Alphonse Lavallée,
Lival, Black Magic

TSS
TA
TF

411–1000 150

Image correction with dark
reference, spectral response

extraction, selection of effective
wavelengths and

physicochemical parameters
prediction

Multiple
Linear Regression

(MLR) models, PLS
regression model

TF: 0.93 (MLR), 0.95 (PLS)
TA: 0.98 (MLR), 0.99 (PLS)
TSS: 0.86 (MLR), 0.94 (PLS)

2021 [38]

Table 6. Applications of NIR spectroscopy for grape ripeness estimation.

Cultivar Maturity
Index Spectrometer Spectral

Range Mode Number of
Images Pre-Processing Prediction

Model

Evaluation
R-Squared

(R2)
Year Ref.

Red grapes:
Vitis vinifera L.

cv.
Tempranillo,

Syrah

Anthocyanins NIR 900–1700 Reflectance 99
Calibration,

discriminant method,
outlier detection

Principal
Component

Analysis
0.86 2013 [13]
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5. Limitations and Perspectives

As it can be observed in Tables 4–6, on the one hand, color imaging relies on features
that are mainly colorimetric (color features), extracted from the corresponding color space,
e.g., L* and C*ab in CIELAB, etc., morphological, e.g., shape, size, roundness, length, width,
perimeter, elongation degree, aspect ratio, heterogeneity, etc., or texture features such
as local entropy, standard deviation, range value, etc. On the other hand, hyperspectral
imaging and NIR-spectroscopy extract spectroscopic features, i.e., reflectance spectra.
Therefore, in what follows, it is worth investigating which features are more correlated
to maturity.

In [15], a correlation study was performed to reveal the connection between chemical
compositions (hydroxibenzolic acids, monomers, dimers, trimers, and galloylated com-
pounds) and parameters obtained by image analysis in CIELAB color space combined with
morphological features. A high correlation was found between color and phenolic compo-
sitions; more specifically between monomers and lightness (L*) or galloylated compounds
and chroma (C*ab). Medium to high correlation was observed for morphological data such
as heterogeneity with trimers. In [25], high correlation coefficients were reported between
SSC and the grey mean values of R, G, and B, while the correlation coefficients between the
same gray mean values and pH were low. In [22], the best performance was obtained with
RGB color features compared to HSV, even when combined with texture features (RGB
and texture, HSV and texture). In [27], a good correlation was observed between CIELAB
channel features (mean of L*, a*, and b*) and grape quality. However, there is no study
to overall compare the features extracted from different color spaces and so no concrete
conclusion can be drawn up-to-date as to which feature or combination of color features
with morphological/texture characteristics is actually optimal. Spectroscopic features may
better correlate with maturity since they are extracted from the absorption bands that are
related to objective maturity indices (chemical compounds), as explained below.

Regarding the selected maturity index, in most cases of color imaging in Table 4,
subjective attributes are used, such as visual assessment. However, hyperspectral imaging
and NIR-spectroscopy rely on chemical attributes. The TSS, pH, and TA provide good
guidance in determining maturity grades, while pH is not a reliable indicator in most
cases [25]. Until now, it is not completely understood how each maturity index is related to
one another, or the importance of their individual or collective values as reliable predictors
of maturity [41]. It should be noted that the record spectra of compounds are extracted by
scanning wavelength regions to determine the absorbance properties of each compound at
each wavelength. Researchers work on finding the most significant wavelengths which
contribute to the evaluation of quality parameters and eliminate those which display no
discrimination power [38]. As it can be seen in Figure 2, the visible spectrum can be a poor
identifier of chemical composition, which appears more sensitive to infrared and ultraviolet
wavebands. Therefore, hyperspectral imaging may be considered as a quality tool for the
investigation of the chemical composition of fruits and vegetables in general [31]. However,
hyperspectral imaging is characterized by high cost and complexity. Faster processing
units, more sensitive detectors, and large data storage capacities are needed for analyzing
hyperspectral data. This is the reason why the number of images in hyperspectral imaging
techniques is limited (Table 5), while in color imaging techniques the number of images to
be processed could be significantly larger.

The large volume of data and the excessive processing load and time is partially
faced with the development of Graphical Peripheral Units (GPUs) that aim to increase
computational power. Moreover, current technology in computational devices allows
for powerful real-time pattern recognition techniques, such as deep neural networks, to
be used on-site and process a large number of images in real-time applications. The
limited number of images, however, results in the inability to use powerful deep learning
methods. Deep learning requires a large amount of data in order to perform better than
other algorithms. This explains the limited application of CNN models. Only two research
works reported here use CNN models; those with the larger number of acquired images.
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Moreover, one would expect from a state-of-the-art method such as CNNs, comparatively
the optimal performance. However, classification results reported in [28,30] reached up to
79% for white grapes and up to 93.41% for red grapes, while other methods report higher
performances, e.g., in [14,22,27] (Table 4). This could be attributed to the nature of the used
datasets and the lack of comparisons between methods on the same data.

According to the above, an additional limitation is the lack of large-scale public
datasets of grape bunch images for testing innovative methodologies and performing
comparative evaluation reports. Researchers depend on data that they collect on their
own, which are neither universal nor comparable, and usually limited in number. More
specifically, there is a lack of enough datasets related to grape maturity. The video frames
dataset used in [29] is publicly available in [42]. A well-known public maturity dataset
is the GrapeCS-ML database [43], referenced in [30]. Most researchers, however, claim
available to distribute their datasets upon request, e.g., in [30]. It is obvious that global
agricultural datasets need to be established, not only for grapes’ maturity but also for most
crops in the agricultural sector, including pests, diseases, leaves, etc.

Regarding the comparative performance of the reported methodologies, in color
imaging, the evaluation metric in most cases is a classification accuracy percentage. This is
due to the visual assessment used as maturity index in color imaging, that forces to classify
the maturity to predetermined classes, e.g., ripen or unripen. In hyperspectral imaging, the
R-squared is the most common evaluation metric, since the maturity estimation depends on
specific numerical values of chemical indices, that allow additionally for regression models.
The fact that these two broad categories of methodologies use different performance criteria
makes them difficult to be compared directly. However, all methods appear to be effective
and lead to acceptable performance scores, which need to be further evaluated depending
on additional criteria, such as quality of the dataset, processing time, grape variety, etc.

Additionally, the factor of the grape variety is of great importance. Grapes are either
white or red. As it can be seen from Tables 4–6, most ripeness estimation methodologies
deal with red grape cultivars. Red grapes are easier to be assessed to maturity classes
based on color features since they gradually change color from green to red. Investigating
white cultivars is more challenging due to their slight variation in color while ripening.
Evaluation performance of the methodologies in red grapes is higher than in white grapes
in all reported cases, as can be seen from Tables 4–6. White grapes are additionally difficult
to be located from machine vision algorithms in the field, due to their similar color with
the environment, e.g., leaves.

In general, the complexity of agricultural environments in terms of diversity and dy-
namically changing conditions such as illumination and vegetation are the main difficulties
that machine vision is trying to overcome [44]. Current machine vision technology fails to
overcome all obstacles faced in agricultural settings [8]. This is the main reason why most
of the reported methods carry out the ripeness assessment in controlled environments,
under artificial lighting. Innovative algorithms need to be introduced, able to adapt in
heterogeneous environments. The application of machine vision algorithms in the fields
includes the integration of multiple parameters and principles that can only be faced
in natural setups, not in laboratory settings. Even when an algorithm performs well in
an experimental setting, the on-site application would result in different performances
due to natural factors; in-field fine-tuning is then considered necessary, and yet, robust
performance is not ensured.

As a relatively new technological tool in agricultural production, machine vision has
the potential to better integrate into multiple agricultural operations. In the future, machine
vision algorithms are expected to play a vital role in sustainable agricultural automation,
towards improving local economies and promoting ecology.

Crop Growth Models

Machine vision methods for ripeness estimation do not consider several factors that
drive grape maturity such as environmental conditions, climate, type of soil, pests, and
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management practices like watering, fertilizing, defoliation, etc. Crop growth models are
based on “first principles”, including the aforementioned data, to simulate crop develop-
ment. A number of crop growth models have been proposed in the literature to simulate
grapevine growth: IVINE to evaluate environmental forcing effects [45,46], VICMOTO
numerical model to study the influence of meteorology and climate [47,48], the generic
time-step crop model STICS [49], LEAF process-based model [50] to predict the vegetative
performance of the vineyards, etc. Input data to crop growth models are usually com-
piled over an extended time period of many years. Alternative input information may
lead to better interpretations of the highly complex reality. For example, previous work
has demonstrated that intelligent clustering techniques may result in better sugar yield
prediction than “first principles” models [51]. Toward this end, crop growth models could
benefit from machine ripeness vision estimation algorithms by considering additional
input variables, such as colorimetric and morphological features extracted from grape
images during each growing stage. The latter, to the best of our knowledge, has not yet
been investigated, allowing researchers to explore uncharted areas in future work.

6. Integration to Grape Harvesting Agrobots

The use of robotic technologies in agriculture has become a recent trend [52]. Agri-
cultural robots, namely agrobots, aim at automating practices such as harvest, spraying,
watering, etc., promising high-performance and reduced costs. Many studies propose
harvesting robots for a variety of crops; sweet peppers [53], tomatoes [54], strawberries [55],
etc. Integration of ripeness estimation algorithms in autonomous robots is useful for the
automated monitoring of the crop based on image measurements. The latter can non-
destructively and quickly enable growers to improve the quality of harvested crops by
reducing labor and sources from extensive sampling. A reliable prediction on maturity
would help growers to plan and schedule their harvesting operations. However, robotic
automation in viticulture is still at its early stages [56–58]; the most time-consuming and
labor-intensive task in viticulture production, the harvesting task, still depends on manual
labor. Asynchronous ripening among grapes due to variation in the vineyard (lighting,
watering, soil, etc.) has a negative impact on overall fruit composition, and thus, on fruit
and wine quality. Maturity estimation is closely related to harvest automation; optimal au-
tomated harvest implies machine vision techniques able to identify the maturity of grapes
and autonomous systems able to collect only the grapes of the same maturity degree.

Machine vision techniques claim to be contactless and non-invasive in the sense that
the camera provides images related to maturity attributes and estimation is performed
without crushing of grapes. However, many machine vision methods imply images
of grapes captured in special conditions such as dark rooms, thus, grape bunches or
berries need to be removed from the vine trees, or even processed, e.g., to isolate grape
seeds/skins. Integration of machine vision methods for ripeness estimation to agriculture
robots toward harvest automation requires real-time methodologies capable of performing
on-site. Therefore, portable optical sensors combined with algorithms that could analyze
grape attributes directly in the vineyard are of special interest. Based on the above, Table 7
summarizes details of the referenced literature regarding the ability to estimate ripeness
(1) by leaving grape bunches intact and (2) by performing ripeness estimation on-site.
Limitations of each method are also reported.



Horticulturae 2021, 7, 282 16 of 21

Table 7. Peculiarities and characteristics of the referenced methodologies.

Ref. Intact/On-Site Estimation Limitations/Review

[15] No/No Applied to grape seeds in an in-lab closed illumination box with a digital
camera, illumination-dependent

[14] No/No Applied to grape seeds and grape berries in an in-lab illumination box
with a digital camera, illumination-dependent

[22] Yes/Yes Applied to grape bunches on-site, fails occasionally due to segmentation
algorithm setup of berries circle radius and circle detection algorithm

[23] No/No Applied to grape seeds and berries in an in-lab set
[24] Yes/Yes Applied to grape bunches, camera system mounted on a vehicle
[25] No/No Applied to grape berries, cost-effective in-lab setup
[26] No/No Applied to grape seeds, in-lab, depends only on color histograms

[27] Yes/No Applied to grape bunches, in-lab set, on a black background, under eight
halogen lamps

[28] Yes/Yes Applied to grape bunches on site by using a smartphone camera

[29] Yes/Yes Applied to grape bunches on site, pilot study where only the green color
channel histograms were selected and post-processed

[30] No/No Applied to grape berries, in-lab inside a dark chamber, with 15 3W LED
red, green, blue, warm white, and cool white illuminants

[31] No/No Applied to removed grape berries in an in-lab dark room, use of costly
hyperspectral imaging system

[32] Yes/No Applied to grape bunch in-lab inside a dark room under blue reflector
lamps, only six berries as samples from each bunch

[33] Yes/No Applied to grape bunch in-lab dark room under blue reflector lamps, only
six berries as samples from each bunch, low generalization ability

[34] Yes/Yes Farm scale, based on a hypothesis on carotenoid content

[35] No/No Applied to grape skins and seeds, under an illumination unit of four
tungsten halogen lamps

[36] No/No Applied to grape seeds, in-lab under iodine halogen lamps

[37] Yes/Yes Applied to grape bunches on-site, using images acquired by a
motorized platform

[38] No/No Applied to grape berries in a box under a quartz tungsten halogen
lighting unit

[13] No/No Applied to grape berries in-lab under illumination source

The literature research (Table 7), revealed that only nine out of 20 referenced machine
vision methods would leave grape bunches intact to estimate the ripeness degree, while
only six of them could be implemented on-site, and therefore potentially be integrated into
an agrobot toward homogeneous harvest automation. Table 8 summarizes the integration
ability of the most efficient machine vision methods as resulted in Table 7. The advantages
and limitations of each method are also included.

The lack of application of machine vision technology for ripeness estimation toward
automatic grape harvesting is due to multiple challenges related to grape crops, as de-
scribed below. From Table 8, it is notable that only three reported methods can perform
on-the-go, and only one of them is already integrated into a harvesting agrobot, e.g., used
by an autonomous robot to decide on harvest actions; the other two methods are only
applied for monitoring the grape maturity status.

Machine-vision-based monitoring is challenging when it comes to agricultural prod-
ucts such as grapes, that are of variable sizes, shapes, color, and texture. The latter features
are not stable but vary over the growing season. Moreover, green grapes are even more
difficult to be located due to the same color as the foliage, as already mentioned. Grape
datasets need to include variable cases, such as grapes of all colors at all growing stages
while ripening, different cultivars, occlusion cases from leaves and branches, and images
under varying illuminations. This difficulty is the main reason why many of the algorithms
reported here (Table 7) were tested in dark rooms under artificial lighting. The evaluation
performance of the methods that are integrated into agrobots is relatively low. For instance,
in [24], the R2 is 0.56 for a red grape variety, while other methods tested in the laboratory
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report R2 greater than 0.9 even for white grape cultivars. On-the-go estimation of maturity
level from a moving robot could be rather challenging.

An agrobot is challenged to move in the irregular vineyard terrain. Harvesting robots
usually include a robotic arm and a camera mounted on a robotic vehicle. Irregularities
of the terrain would cause vehicle vibrations, resulting in unstable vision measurements;
blurry images (noise), differences in the distance between grapes and lens (scaling), changes
in brightness due to the movement of the vehicle between the variable shade of the foliage
(exposure) are some of the main limitations. This is the reason why methods tested in
the field display lower accuracies than those tested in the laboratory. Moreover, when it
comes to harvesting robots, the accuracy of grape bunch detection is of great importance
since vision provides feedback to the ripeness estimation algorithms and then to the
control of the robotic arm toward dexterous harvesting. Detailed information regarding
the position, orientation, and maturity status of the grapes within the field of view of the
robot is required. In order for the grape bunches to be visible from the camera and for
the robotic arm to approach them with safety, defoliation is partially needed. Defoliation
practices [59] could expose the grape bunches and facilitate grape bunch detection and
removal. The robotic vehicle needs to move with a selected speed, depending on the
terrain, that would allow detection. Moreover, the robot should ideally harvest under
stable lighting conditions, i.e., in the morning sun on the same side of the canopy. The
images to train the machine vision algorithms should be optimally taken at the same time
and under the same conditions of lighting, distance, height, etc.

Another challenge is the trade-off between speed, accuracy, and robustness. Prediction
and actions should be carried out quickly with adequate accuracy by the robot. As observed
in Table 8, the processing time of algorithms is not always available, since most of them were
tested at a simulation level and not employed in practical real-time applications. In general,
effective systems need higher accuracies in lower processing time. The processing time
is of great importance when it comes to real-time applications, to the point of sacrificing
a bit of accuracy in order to achieve better processing time toward automating time-
consuming processes.

The development of agrobots combines many disciplines and specialists: agronomists,
engineers, mechatronics, intelligent modeling, system design, deep learning, machine
vision, etc. The requirements of such a robot call for powerful equipment and talented
specialists. High precision robotic arms, dexterous end-effectors, powerful computational
devices, precise imaging systems, and corresponding robust algorithms. The latter poses
an additional challenge, the low development cost of an agrobot. Table 8 includes details
regarding the sensor being used in the reported methods. The existing technologies and
algorithms may overcome many difficulties in processing time and demonstrate high
accuracies with relatively low costs. However, there is still room for improvement. Future
agrobots must rely on affordable equipment and be capable of decision-making in more
complex situations, responding to sudden environmental changes. It should be noted
that an agrobot is fully exposed to hazardous environmental conditions that affect the
performance of sensors and algorithms; its parts and mounted equipment are exposed to
heat, humidity, dust, especially in the summer when harvest takes place. Provision should
be made to cover parts of the robot that are sensitive and should not be exposed to the
environment and to cool the equipment that is at risk of overheating.

According to the above, the integration of machine vision algorithms into harvesting
robots needs to overcome numerous challenges. It is a long and complex process that is
already underway by researchers. The latter is one of the aims of this work; to investigate
the state-of-the-art in this specific field of machine vision algorithms for ripeness estimation
in viticulture automation.
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Table 8. Integration ability of intact/on-site applied referenced methodologies to agrobots.

Ref. Integrated to
Agrobots/Harvest Actions Advantages Limitations/Review Equipment Time Performance

[22] No/No
Ripeness estimation in real-time and
construction of georegistered spatial

maps during growing season.

Segmentation algorithm fails due to
the range of cirle radius and the weak

gradient across grape boundaries.
A monitoring agrobot.

<Not defined> <Not defined> Up to 96.88% classification
rate

[24] Yes/No

Real-time ripeness estimation,
generation of spatial maps to show

distribution of color development, can
enable selective harvesting, better

imaging results compared to human
measurements.

Uses a flash illumination system, great
variations in color development across

vineyards due to not dense
measurements.

A monitoring robot.

RGB Point grey Grasshopper
cameras (8.8mm lens, baseline

90 mm) and a pair of Xenon
flashlamps (5−10 J)

0.2 s 0.56 R2

[28] No/No
Robust method that uses color images,

method able to detect complex and
high non-linear relashionships.

Huge image data is required.
It has the potential to be integrated in

a harvesting agrobot.
Smartphone one plus 3T <Not defined> Up to 79% classification rate

[29] Yes/Yes

Ripeness estimation in real-time and
decision making upon harvesting the

detected grapes according to the
estimated maturity degree. The

method takes into account all order
statistics extracted from image

histograms.

Only the green channel of RGB color
space is investigated, small image

dataset acquired from video frames.
Able for monitoring and harvesting,
already integrated in an agrobot [60].

<Sensor on simulation is not
defined, based on video frames

of public dataset>
ZED Mini 3D IMU Camera

(on-site)

0.125 s 5.36% average error

[34] No/No
Can provide rapidly spatial

information for crop’s status in farm
scale, determine maturity zones.

Does not perform in real-time.
Acquired images first need to be

processed to derive vineyard maps.
Depends on UAV images and
therefore cannot be integrated.

Multispectral camera
Multispec 4C, Airinov, France

(12 cm pixel size on the ground,
13 mm

lens-to-focus
distance

<Not defined> Up to 83.33%
classification rate

[37] Yes/No Ripeness estimation is performed in
real-time while the agrobot is moving.

Ripeness estimation is determined for
a block of five trees not for each cluster

in the image.
It is a monitoring agrobot and no

action is further taken, i.e., harvest.

Push broom Resonon Pika L
VNIR hyperspectral imaging
Camera, Resonon, Bozeman,

MA, USA (8 mm focal length)
0.84 s Up to 83.30%

classification rate
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7. Conclusions

Nowadays, fruits are still harvested manually by fruit pickers who must decide on
fruit maturity before picking or harvest everything under the guidance of experts based
on subjective criteria and extensive sampling followed by chemical analyses. Maturity
is critical for the storage life of harvested fruits and the quality of table grapes and pro-
duced wines. The maturity level designates the way grapes are further processed, taken
care of, marketed, and transported. Machine vision algorithms are employed for grape
ripeness estimation as a non-destructive, labor-saving, cost-effective, and eco-friendly
alternative. Machine vision-based ripeness estimation considers mainly color, textural and
morphological features with different machine learning algorithms. In some cases, the
correlation of the extracted features to chemical or other grape ripeness attributes leads to
enhanced estimations.

This work provides an overview of the work conducted in the field of agricultural
machine vision toward grape ripening estimation, highlights challenges and limitations
of different methods, and points out the most effective ones that could be integrated into
agricultural robots for automating the grape harvesting process. This work is meant to be a
complete guide for up-to-date machine vision algorithms for grape ripeness estimation so
that researchers can select and adapt the algorithms that best fit their application.
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