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Abstract: As smart farms are applied to agricultural fields, the use of big data is becoming important.
In order to efficiently manage smart farms, relationships between crop growth and environmental
conditions are required to be analyzed. From this perspective, various artificial intelligence algorithms
can be used as useful tools to quantify this relationship. The objective of this study was to develop
and validate an algorithm that can interpret the crop growth rate response to environmental factors
based on a recurrent neural network (RNN), and to evaluate the algorithm accuracy compared to
the process-based model (PBM). The algorithms were trained with data from three growth periods.
The developed methods were used to measure the crop growth rate. The algorithm consisted of
eight environmental variables days after transplanting and two crop growth characteristics as input
variables producing weekly crop growth rates as output. The RNN-based crop growth rate estimation
algorithm was validated using data collected from a commercial greenhouse. The CropGro-bell
pepper model was applied to compare and evaluate the accuracy of the developed algorithm. The
training accuracies varied from 0.75 to 0.81 in all growth periods. From the validation result, it
was confirmed that the accuracy was reliable in the commercial greenhouse. The accuracy of the
developed algorithm was higher than that of the PBM. The developed algorithm can contribute to
crop growth estimation with a limited number of data.

Keywords: CropGro; long short-term memory; paprika; process-based model; soilless culture

1. Introduction

Smart farming is about applying new digital technologies such as remote sensing [1],
cloud computing [2], and the Internet of Things (IoT) [3] to agricultural fields. These
digital technologies contribute to large amounts of data at unprecedented rates [4,5].
Based on the increasing number of data, many studies trying to utilize big data were
conducted [6]. For the efficient use of big data from the agricultural fields, it is necessary to
quantitatively analyze the complex, diverse, and unpredictable relationship between crop
growth and environmental factors [7]. Many studies have been conducted using process-
based models (PBMs) to analyze the relationship [8]. PBM consists of many modules that
express various crop physiological processes (e.g., photosynthesis, respiration, biomass
assimilation, biomass distribution, and stress response). As PBM aims to include all
biochemical functions, various modules are subjected to interlinked calculations for even
a single variable and calibration of many indexes is required [9,10]. In addition, it is
important to partition crop organ biomass to accurately simulate models because PBM
estimates biomass production through the distribution to each organ [11,12]. In these
respects, PBM has limitations directly utilizing big data that have been automatically
accumulated.

An artificial neural network (ANN) provides a way of analyzing complex, non-linear,
and multidimensional datasets from big data [13], and can abstract quantitative relation-
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ships from raw data [14]. ANN has been widely used in agricultural studies to analyze the
biochemical and physiological characteristics for various crops [15–17].

Among ANN algorithms, the recurrent neural network (RNN) is the most promising for
analyzing chronological data and displays better accuracy than previous algorithms [18,19].
RNNs have the advantage of inputting big data over long time periods and the length
of output values is also theoretically unlimited [20]. With these advantages, RNNs
have been adapted for agricultural purposes and showed higher accuracies than other
algorithms [21–23]. The previous studies showed the adaptability of RNNs for environmen-
tal data but the RNNs were not trained to directly relate the environment and crop growth.
As crop growth responses to the environment are determined by changes over the time of
environmental factors, RNN would be appropriate to estimate the crop growth response
for cumulative environmental changes. This study aims to develop an RNN algorithm to
assess crop growth in response to various environmental factors in hydroponically grown
bell peppers. In addition, the developed algorithm was validated by comparing it with an
existing PBM.

2. Materials and Methods
2.1. Crop Growth Conditions for Algorithm Training

The data collecting for algorithm training were conducted in a Venlo-type greenhouse
on the experimental farm of Seoul National University, Suwon, Korea (latitude, 37.3◦ N;
longitude, 127.0◦ E) during 1 February to 1 June 2018 (growth period 1) and 1 December
2018 to 1 April 2019 (growth period 2), and in a Venlo-type greenhouse on the experimental
farm of Nong Woo Bio Ansung, Korea (latitude, 37.0◦ N; longitude, 127.0◦ E) during 1
September to 1 December 2018 (growth period 3). The data collecting for validation is
described in Section 2.4. The vents on the roof and sidewall were automatically opened
when the temperature was higher than 26 ◦C during the day. Bell pepper seedlings
(Capsicum annuum L. ‘Sirocco’) 40 days after sowing on rockwool cubes (Grodan delta,
Grodan, Roermond, The Netherlands) in a seedling chamber were used. After two weeks
of acclimatization to the irrigation system at an electrical conductivity (EC) of 2.0 dS/m, the
seedlings with 5–6 nodes were transplanted into 0.9 ∗ 0.15 ∗ 0.07 m (L ∗ W ∗ H) rockwool
slabs (Grotop GT Master Dry, Grodan, Roermond, The Netherlands) and placed on gutters
with a plant density of 3.3 plants/m2. The nutrient solution EC and pH were maintained
at 2.6–3.0 dS/m and 5.5–6.5, respectively. The plants were pruned to maintain two main
stems, which were vertically trellised to a ‘V’ canopy system [24].

2.2. Data Collection and Preprocessing

The environmental data in the greenhouse, such as solar radiation, temperature, and
relative humidity, were measured using a pyranometer (SP-110, Apogee Instruments, Lo-
gan, USA), temperature sensor (CS220, Campbell Scientific, Logan, UT, USA), and relative
humidity sensor (PCMini70, Gilwoo Trading, Seoul, Korea), respectively. The substrate’s
moisture content was measured using a multiple frequency domain reflectometry (FDR)
sensor (WT1000B, Mi-Rae Sensor, Seoul, Korea) located in the middle of the substrate. Crop
growth data such as leaf area (LA) and fresh weight were also collected. The leaf area (LA)
of the crop was calculated by substituting the weekly measured leaf length (L), leaf width
(W), and node numbers (N) for Equation (1) [25].

LA = −0.266 + 0.563 ∗ L ∗ W + 0.232 ∗ N (1)

The fresh weight measurement system (Figure 1) [26] was designed to support the
whole crop cultivation system and the weight of the whole system was measured using a
tensile type of load cell. Furthermore, the water weight in the substrate was corrected with
the FDR sensor to derive only the crop fresh weight. The crop fresh weight was measured at
dawn (03:00–05:00) when the crop’s relative moisture content was stable. With this method,
the daily change in fresh weight was continuously collected. All of the environmental and
growth characteristic data were normalized in the range of 0–1. The total data size is 59,168.
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Figure 1. A schematic diagram of the fresh weight measuring system using the load cell and
frequency domain reflectometry (FDR) sensors (a), and the actual installation of the fresh weight
measuring system (b).

2.3. Recurrent Neural Network Application

The RNN has been used to analyze the crop growth rate response to various envi-
ronmental factors. Among the various RNN algorithms, long short-term memory (LSTM)
could solve the RNN vanishing gradient problem [20] and LSTM has a cell with several
gates. In this study, input and output activation functions were set to the hyperbolic tangent
functions and the gate activation functions were set to sigmoidal functions.

Environmental factors, crop growth factors, and days after transplant (DAT) were
used as input data, while crop growth rate was used as output data. The environmental
factors consisted of air temperature, relative humidity, light intensity of solar radiation,
CO2 concentration, and substrate moisture content. The crop growth factors consisted
of leaf area index (LAI) and fresh weight. The crop growth rate was calculated as a
weekly change in the fresh weight. The time step for the LSTM was set as seven days.
AdamOptimizer was used for the algorithm training [27] and the hyperparameters for
the LSTM and AdamOptimizer were empirically changed to solve regression problems
(Table 1). The core of LSTM is also a neural network, thus the algorithm has a hidden layer
in its structure. As LSTM does not require deep layers because of its time step, one hidden
layer was set for the model structure. The number of nodes in the hidden layer was 64.
Seventy percent of the total data were randomly selected and used for algorithm training,
and the remainder of the data were employed for accuracy tests of the training results. A
5-fold cross test was conducted to include all the cultivation data [28]. The mean square
error (MSE) was set as a cost for reducing the computation. In the model training, the cost
for test data was also checked. To avoid overfitting, the trained model with the lowest MSE
for the test data was selected as a best model. TensorFlow (v. 1.12.0, Google, Menlo Park,
CA, USA) was used for computation and model construction.

Table 1. Hyperparameters for the recurrent neural network (RNN) and AdamOptimizer.

Parameter Value Description

Learning rate 0.001 Learning rate used by the AdamOptimizer
β1 0.9 Exponential mass decay rate for the momentum estimates
β2 0.999 Exponential velocity decay rate for the momentum estimates
E 1 × 10−0.8 A constant for numerical stability

Forget bias 1.0 Probability of forgetting information in the previous dataset
Time step 2–24 Number of datasets that the LSTM sees at one time
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2.4. Crop Growth Conditions for Validation

Validation was conducted in Venlo-type glasshouses on a commercial farm located
in Jinju, Korea (latitude, 35.1◦ N; longitude, 128.0◦ E) during 1 August 2017 to 1 June
2018. Environmental control and crop cultivation management in the greenhouse were
performed similarly to the crop growth conditions for the algorithm development. The
fresh weight of the crop was manually measured weekly for each organ. Equation (2) was
used to compensate for the fresh fruit weight (FFT) that was dropped in a week.

FFW = 286.30 ∗ WF2 ∗ LF + 1.136 (2)

where WF and LF are the fruit length and fruit diameter, respectively.

2.5. Evaluation of the Growth Rate Algorithm

A PBM (CropGro-Bell Pepper) was used to evaluate the accuracy of the algorithm.
CropGro is a PBM platform that applies models to various crops, such as soybean, peanut, dry
bean, faba bean, macuna, chickpea, cowpea, velvet bean, cotton, pasture, and tomato [29,30].
CropGro-Bell Pepper is a variant of the soybean model that reflects the bell pepper’s
genotype and ecotype. The model parameters (Tables 2 and 3) were calculated from the
growth survey and calibrated with the GLUE coefficient estimator [31]. The weekly crop
growth rate was estimated by using the environmental and crop growth factors collected
during the growth period to validate the RNN algorithm. The fresh crop weight was
calculated by integrating the estimated crop growth rate. Decision Support Systems for
Agrotechnology Transfer v4.7 (DSSAT) [32,33] was used to simulate bell pepper growth
rate and validate the PBM. As the crop growth rate from the PBM was based on dry matter,
each organ (leaf, stem, root, and fruit) was calculated as fresh weight using the rate based
on fresh weight and growth stage. The accuracy was evaluated by comparing the fresh
crop weight estimated by the RNN algorithm and the PBM with the actual fresh weight.

Table 2. Genotype coefficients of bell pepper in CropGro-pepper.

Index Description (Unit)

PPSEN Slope of the relative response of development to photoperiod with time
(positive for short-day plants) (1/h)

EM-FL Time between plant emergence and flower appearance (R1)
(photothermal days)

FL-SH Time between first flower and first pod (R3) (photothermal days)
FL-SD Time between first flower and first seed (R5) (photothermal days)

SD-PM Time between first seed (R5) and physiological maturity (R7)
(photothermal days)

FL-LF Time between first flower (R1) and end of leaf expansion
(photothermal days)

LFMAX Maximum leaf photosynthesis rate at 30 ◦C, 350 vpm CO2, and high light
(mg CO2/m2/s)

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g)
SIZLF Maximum size of full leaf (three leaflets) (cm2)

CSDL Critical short day length below which reproductive development
progresses with no daylength effect (for short-day plants) (hour)

XFRT Maximum fraction of daily growth that is partitioned to seed + shell
WTPSD Maximum weight per seed (g)

SFDUR Seed filling duration for pod cohort at standard growth conditions
(photothermal days)

SDPDV Average seed per pod under standard growing conditions (#/pod)

PODUR Time required for cultivar to reach final pod load under optimal
conditions (photothermal days)

THRSH Threshing percentage: the maximum ratio of (seed/(seed + shell))
at maturity

SDPRO Fraction protein in seeds (g(protein)/g(seed))
SDLIP Fraction oil in seeds (g(oil)/g(seed))
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Table 3. Ecotype coefficients of bell pepper in CropGro-pepper.

Index Description (Unit)

MG Maturity group number for this ecotype, such as maturity group
TM Indicator of temperature adaptation

THVAR Minimum rate of reproductive development under short days
PL-EM Time between planting and emergence (V0), thermal days
EM-V1 Time required from emergence to first true leaf (V1), thermal days
V1-JU Time required from first true leaf to end of juvenile phase, thermal days

JU-R0 Time required for floral induction, equal to the minimum number of days for
floral induction under optimal temperature and daylengths, photothermal days

PM06 Proportion of time between first flower and first pod for first peg

PM09 Proportion of time between first seed and physiological maturity in which the
last seed may be formed

LNGSH Time required for growth of individual shells (photothermal days)
R7-R8 Time between physiological (R7) and harvest maturity (R8) (days)
FL-VS Time from first flower to last leaf on main stem (photothermal days)

TRIFOL Rate of appearance of leaves on the mainstem (leaves per thermal day)
RWIDTH Relative width of this ecotype in comparison to the standard width per node
RHGHT Relative height of this ecotype in comparison to the standard height per node
R1PPO Increase in daylength sensitivity after R1 (h)

OPTBI Minimum daily temperature above which there is no effect on slowing normal
development towards flowering (◦C)

SLOBI Slope of relationship reducing progress towards flowering if TMIN for the day is
less than OPTBI

2.6. Statistical Analysis

R2, RMSE, and the d-statistic were calculated using a statistical program (SPSS, IBM,
Armonk, NY, USA). The d-statistic used the Willmot index [34] as a measure of absolute
accuracy. The Pearson correlation was used to compare crop growth rate and environmental
factors. All figures were plotted using Sigmaplot (Systat Software, San Jose, CA, USA).

3. Results and Discussion
3.1. Variable Collection for Algorithm Training

Environmental data in the greenhouse were measured during three growth periods
(1 September 2018–1 December 2018 for growth period 1; 1 December 2018–1 April 2019
for growth period 2; and 1 February 2018–1 June 2018 for growth period 3) as shown in
Figure 2. The fruit yield and the abortion weight of the crop measured as fresh weight are
shown in Figure 3. In growth period 3, the fruits were kept without harvest until the end
of the data collection. The RNN algorithm estimated crop growth rate as negative because
the fruit harvest caused a drastic reduction in fresh weights. To compensate the negative
effects of the total fresh weight calibrated, weight was calculated by adding the weight of
harvested or aborted fruits to the current value weights [35] (Figure 4). The crop growth
rate was calculated using weekly changes in the calibrated weight and was applied as an
algorithm. The LAI and crop-calibrated fresh weight exhibited sigmoidal growth patterns
with DAT (Figure 4). A drastic decrease in fresh weight occurred during growth period 2
(Figure 4c).
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Figure 2. Environmental conditions (temperature, radiation, and CO2 concentration) in the greenhouse during growth
period 1 (1 February 2018–1 June 2018) (a,b); growth period 2 (1 December 2018–1 April 2019) (c,d); and growth period 3
(1 September 2018–1 December 2018) (e,f).
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Figure 3. The weight of fruit yield and abortion at one-week intervals during growth period 1 (1 February 2018–1 June 2018)
(a) and growth period 2 (1 December 2018–1 April 2019) (b).

Figure 4. Cont.
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Figure 4. Changes in fresh weight and LAI (a) as well as in the calibrated fresh weight (b) during growth period 1
(1 February 2018–1 June 2018); changes in fresh weight and LAI (c) as well as in the calibrated fresh weight (d) during
growth period 2 (1 December 2018–1 April 2019); and changes in fresh weight and LAI (e) as well as in the calibrated fresh
weight (f) during growth period 3 (1 September 2018–1 December 2018).

3.2. Crop Growth Rate Estimation of the Algorithm

The trained RNN algorithm estimated the actual crop growth rate similarly to the
actual calibrated fresh weight (Figure 5). The d-statistic, indicating estimation accuracy,
was 0.727, 0.806, and 0.748 for each growth period, respectively. From these results, the
RNN algorithm could reliably estimate the actual crop growth rate. These results are
similar to the previous studies that estimated the crop growth rate using ANNs [36–38].
While the accuracy in the previous study had been obtained by using a large amount of
data from a large scale farm to train the ANN, the accuracy in this study used the data
from a single greenhouse, but it was high due to the characteristics of RNN that interprets
data chronologically.

Figure 5. Cont.
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Figure 5. Comparison of the weekly crop growth rate measured by the fresh weight measuring system and estimated by
the recurrent neural network (RNN) algorithm during growth period 1 (1 February 2018–1 June 2018) (a,b); growth period 2
(1 December 2018–1 April 2019) (c,d); and growth period 3 (1 September 2018–1 December 2018) (e,f).

During growth period 2, crop growth rate was dramatically reduced for about two
weeks because the crop stem was broken (on 16 January 2019) (Figure 6). The physical
injury increased the maintenance respiration [39,40], resulting in the reduction of the crop
growth rate over several days. The RNN specializes in interpreting data with time intervals
between input and output variables [41]. The RNN algorithm estimated the current crop
growth rate based on input variables from the past week. The time interval between the
input and output variables affected the estimation accuracy during crop physical injury
and its recovery. The actual crop growth rate rapidly decreased after January 16 and then
recovered after several days. However, the RNN algorithm estimated the growth rate
higher than the actual growth rate (during 16–23 January) because the algorithm used input
variables from 9–16 January. RNN, which can estimate current situations (output variables)
with past data (input variables), has the advantage of analyzing the cumulative effect of
environmental factors but is disadvantaged when immediately reacting to unexpected
changes in conditions.
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Figure 6. Comparison of the weekly crop growth rates measured by the fresh weight measuring
system and estimated by the recurrent neural network (RNN) algorithm during the growth period
from 10 January 2019 to 3 February 2019.

3.3. Calibration and Simulation of the PBM

The CropGro-bell pepper model was calibrated from the growth cultivation for algo-
rithm training (Tables 4 and 5). The automatically calculated parameters were re-calibrated
to match the previous study results [42]. The crop growth is divided into seven stages in
the PBM and no further growth is estimated after the crop reaches the R7 stage. Addition-
ally, when the photothermal day is above a particular value (e.g., past 200 days after the
first flowers, leaves no longer expand [42]), it estimated that the growing point no longer
develops, resulting in no appearance of new nodes [43]. However, because bell pepper
continuously grows until the end of the growth period in greenhouse conditions, effects
of these parameters should be minimized. Boote et al. [44] revised the infinite values of
SD-PM, the time between the first seed (R3), physiological maturity (R7), and FL-VS (time
from the first flower to the last leaf on the main stem) for greenhouse-grown tomatoes to
represent the tomato growth curve as an infinite form. Therefore, SD-PM and FL-VS were
set to 330 because the growth and development of bell peppers continued until the end of
the measurement period.

Table 4. Calibrated genotype coefficients of bell pepper in CropGro-pepper.

Index Value Index Value

PPSEN 0 CSDL 12.33
EM-FL 40 XFRT 0.6
FL-SH 10 WTPSD 0.007
FL-SD 15 SFDUR 40
SD-PM 330 SDPDV 150
FL-LF 200 PODUR 42

LFMAX 0.98 THRSH 6.5
SLAVR 275 SDPRO 0.3
SIZLF 350 SDLIP 0.05
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Table 5. Calibrated ecotype coefficients of bell pepper in CropGro-pepper.

Index Value Index Value

MG 1 LNGSH 35
TM 1 R7-R8 0

THVAR 0 FL-VS 330
PL-EM 5 TRIFOL 0.35
EM-V1 10 RWIDTH 1
V1-JU 24 RHGHT 1
JU-R0 5 R1PPO 0
PM06 0 OPTBI 0
PM09 0 SLOBI 0

The calibrated PBM was able to simulate the organ-specific growth of crops (Figure 7).
In the early periods of the growth stage, the growth rate of roots was faster but then
decreased, while the growth rate of stems and leaves continued to increase. From the
first fruit development time, fruit growth was a major factor in the whole crop growth.
Consequently, fruit sink strength is very high compared to that of bell pepper organs [45].
The ratio of dry–fresh weight was highest in fruits and lowest in roots (data not shown).
In other crop organs, the dry–fresh weight ratio of organs did not change depending on
the growth stage, except for stems for which the ratio was highest in the initial growth
stage and constant from the middle growth stage. As the PBM calculated the crop growth
rate based on dry weight, the fresh weight was computed with the dry–fresh weight ratio
measured at every growth stage.

Figure 7. Dry weight of each organ estimated by the process-based model (PBM) with days after
transplanting (DAT).
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3.4. Validation and Evaluation of the Algorithm

The environmental variables collected in the validation were in the range of Figure 8.
In the validation, the RNN algorithm estimated the crop growth rate with reasonable
accuracy (Figure 9), although the accuracy was relatively low compared to the training
test. The RNN algorithm could estimate the fresh weight with higher accuracy than
the PBM (Figure 10). Furthermore, the RNN algorithm had a lower RMSE value and
a higher d-statistic than the PBM. Although the amount of data used to optimize the
RNN training was insufficient, the RNN algorithms developed were more accurate than
the PBM. The RNN algorithm when using daily crop growth data could precisely reflect
environmental conditions. In addition, the RNN algorithm estimated the crop growth for
typical bell pepper cultivation periods (autumn–spring for validation), even from learning
data collected during separate growth periods (winter–spring for periods 1 and 2 and
autumn–winter for period 3). These results present the possibility of utilizing the data
collected under various seasonal environmental conditions without necessarily continuing
the completed cultivation to learn the RNN algorithm.

Figure 8. Environmental conditions in the greenhouse during validation periods from 1 August 2017 to 1 June 2018.
Temperature, radiation, and CO2 concentration (a), and relative humidity and substrate moisture content (b).

Figure 9. Comparison of the weekly crop growth rates measured by the fresh weight measuring system and estimated by
the recurrent neural network (RNN) algorithm during the growth period from 1 August 2017 to 1 June 2018 for validation
cultivation (a). The test accuracies of the algorithms (b).
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Figure 10. Comparison of the calibrated fresh weights estimated by the recurrent neural network
(RNN) algorithm and the process-based model (PBM) with days after transplanting (DAT) in growth
validation periods.

3.5. Advantages and Limitations

Due to the demands of modeling and quantitative technical demands for big data
collected from smart farms [46], research on estimating crop growth using machine learning-
based algorithms is being attempted [16,47,48]. In this study, it was possible to estimate
the crop growth rate in a single greenhouse with a reliable accuracy level using RNN. The
developed algorithm improved the estimation accuracy compared to the current machine
learning algorithm [36–38] as well as the existing PBMs.

These studies using crop growth data also have limitations. In PBMs, the parameters
of the model are determined to reflect the physiological crop characteristics. In general, the
process of estimating parameters may cause specific coefficients to fall outside the normal
range. However, these parameters can be altered by manually calibrating them to more
realistic values. Although many studies have shown that ANNs exhibit superior predictive
powers compared to conventional approaches, they do provide little explanation for the
relative influence of the independent variables in the prediction process. In addition, the
RNN algorithm does not provide information on the growth of specific crop organs, such as
leaves, stems, and fruits. Existing PBMs estimate the total biomass by obtaining the biomass
distribution to each organ [11,12] and can estimate the target organ [10]. Therefore, for
the practical application of the RNN algorithm, additional research that can continuously
estimate the growth rate of each organ is needed.

4. Conclusions

RNN-based algorithms were developed to estimate the crop growth response to envi-
ronmental factors. An RNN algorithm was designed to estimate crop growth, consisting
of six environmental variables, two crop growth factors, and DAT as input variables, and
produced a weekly crop growth rate with reliable accuracy. The RNN algorithm estimated
crop growth with higher accuracy than the conventional PBM in the validation. The RNN
algorithm can be used to analyze the relationship between crop growth and environmental
factors, and estimate crop growth with a limited number of data. The RNN algorithm
developed in this study enables the quantitative analysis of crop growth for the environ-
ment in greenhouses and we expect that this method can be useful for designing optimal
technologies for environmental control in greenhouses.



Horticulturae 2021, 7, 284 14 of 15

Author Contributions: Conceptualization, J.-W.L. and J.-E.S.; methodology, J.-W.L. and J.-E.S.; vali-
dation, J.-W.L. and T.M.; formal analysis, J.-W.L., T.M. and J.-E.S.; investigation, J.-W.L. and J.-E.S.;
writing—original draft preparation, J.-W.L.; writing—review and editing, J.-E.S.; supervision, J.-
E.S.; funding acquisition, J.-E.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Research Grant of Jeonju University and IPET through
the Agriculture, Food, and Rural Affairs Convergence Technologies Program for Educating Creative
Global Leader (717001-7).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: We thank Doo-Sung Nam for his cooperation with the data analysis, collection,
and crop management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major

information needs. Remote Sens. 2013, 5, 949–981. [CrossRef]
2. Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and

cloud computing. Biosyst. Eng. 2019, 177, 4–17. [CrossRef]
3. Baoyun, W. Review on internet of things. J. Electron. Meas. Instrum. 2009, 12, 1–7.
4. Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc.

IEEE 2016, 104, 2207–2219. [CrossRef]
5. Sonka, S. Big data: Fueling the next evolution of agricultural innovation. J. Innov. Manag. 2016, 4, 114–136. [CrossRef]
6. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
7. Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron.

Agric. 2017, 143, 23–37. [CrossRef]
8. Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrerog, M.; Howitth, R.E.; Janssen, S.; et al.

Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [CrossRef]
9. Dayan, E.; Van Keulen, H.; Jones, J.W.; Zipori, I.; Shmuel, D.; Challa, H. Development, calibration and validation of a greenhouse

tomato growth model: I. Description of the model. Agric. Syst. 1993, 43, 145–163. [CrossRef]
10. Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A Review. Sci.

Hortic. 1998, 74, 83–111. [CrossRef]
11. Heuvelink, E. Evaluation of a dynamic simulation model for tomato crop growth and development. Ann. Bot. 1999, 83, 413–422.

[CrossRef]
12. Martínez-Ruiz, A.; López-Cruz, I.L.; Ruiz-García, A.; Pineda-Pineda, J.; Prado-Hernández, J.V. HortSyst: A dynamic model to

predict growth, nitrogen uptake, and transpiration of greenhouse tomatoes. Chil. J. Agric. Res. 2019, 79, 89–102. [CrossRef]
13. Wang, L. A hybrid genetic algorithm-neural network strategy for simulation optimization. Appl. Math. Comput. 2005, 170,

1329–1343. [CrossRef]
14. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
15. Arab, M.M.; Yadollahi, A.; Shojaeiyan, A.; Ahmadi, H. Artificial neural network genetic algorithm as powerful tool to predict and

optimize in vitro proliferation mineral medium for g × n15 rootstock. Front. Plant Sci. 2016, 7, 1526. [CrossRef]
16. Ehret, D.L.; Hill, B.D.; Helmer, T.; Edwards, D.R. Neural network modeling of greenhouse tomato yield, growth and water use

from automated crop monitoring data. Comput. Electron. Agric. 2011, 79, 82–89. [CrossRef]
17. Küçükönder, H.; Boyaci, S.; Akyüz, A. A modeling study with an artificial neural network: Developing estimation models for the

tomato plant leaf area. Turk. J. Agric For. 2016, 40, 203–212. [CrossRef]
18. Adavanne, S.; Parascandolo, G.; Pertilä, P.; Heittola, T.; Virtanen, T. Sound event detection in multichannel audio using spatial

and harmonic features. arXiv 2017, arXiv:1706.02293.
19. Ororbia, A.G., II; Mikolov, T.; Reitter, D. Learning simpler language models with the differential state framework. Neural Comput.

2017, 29, 3327–3352. [CrossRef]
20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
21. Jung, D.H.; Kim, H.S.; Jhin, C.; Kim, H.J.; Park, S.H. Time-serial analysis of deep neural network models for prediction of climatic

conditions inside a greenhouse. Comput. Electron. Agric. 2020, 173, 105402. [CrossRef]
22. Moon, T.; Ahn, T.I.; Son, J.E. Long short-term memory for a model-free estimation of macronutrient ion concentrations of

root-zone in closed-loop soilless cultures. Plant Methods 2019, 15, 1–12. [CrossRef]

http://doi.org/10.3390/rs5020949
http://doi.org/10.1016/j.biosystemseng.2018.10.014
http://doi.org/10.1109/JPROC.2016.2598228
http://doi.org/10.24840/2183-0606_004.001_0008
http://doi.org/10.1016/j.agsy.2017.01.023
http://doi.org/10.1016/j.compag.2017.09.037
http://doi.org/10.1016/j.agsy.2016.05.014
http://doi.org/10.1016/0308-521X(93)90024-V
http://doi.org/10.1016/S0304-4238(98)00083-1
http://doi.org/10.1006/anbo.1998.0832
http://doi.org/10.4067/S0718-58392019000100089
http://doi.org/10.1016/j.amc.2005.01.024
http://doi.org/10.1038/nature14539
http://doi.org/10.3389/fpls.2016.01526
http://doi.org/10.1016/j.compag.2011.07.013
http://doi.org/10.3906/tar-1408-28
http://doi.org/10.1162/neco_a_01017
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1016/j.compag.2020.105402
http://doi.org/10.1186/s13007-019-0443-7


Horticulturae 2021, 7, 284 15 of 15

23. Mouatadid, S.; Adamowski, J.F.; Tiwari, M.K.; Quilty, J.M. Coupling the maximum overlap discrete wavelet transform and long
short-term memory networks for irrigation flow forecasting. Agric. Water Manag. 2019, 219, 72–85. [CrossRef]

24. Jovicich, E.; Cantliffe, D.J.; Stoffella, P.J.; Haman, D.Z. Bell pepper fruit yield and quality as influenced by solar radiation-based
irrigation and container media in a passively ventilated greenhouse. HortScience 2007, 42, 642–652. [CrossRef]

25. Lee, J.; Moon, T.; Nam, D.S.; Park, K.S.; Son, J.E. Estimation of leaf area in paprika based on leaf length, leaf width, and node
number using regression models and an artificial neural network. Hortic. Sci. Technol. 2018, 36, 183–192.

26. Lee, J.W.; Son, J.E. Nondestructive and continuous fresh weight measurements of bell peppers grown in soilless culture systems.
Agronomy 2019, 9, 652. [CrossRef]

27. Bock, S.; Goppold, J.; Weiß, M. An improvement of the convergence proof of the ADAM-optimizer. arXiv 2018, arXiv:1804.10587.
28. Kohavi, R.; George, H.J. Automatic parameter selection by minimizing estimated error. In Machine Learning Proceedings 1995;

Morgan Kaufmann: Burlington, MA, USA, 1995; pp. 304–312.
29. Jones, J.W.; Dayan, E.; Allen, L.H.; Van Keulen, H.; Challa, H. A dynamic tomato growth and yield model (TOMGRO). Trans.

ASABE 1991, 34, 0663–0672. [CrossRef]
30. Shi, Y.; Li, Y.N.; Zhang, C.; Bai, M.J.; Wang, Y.K. Development and application of decision support system for agro-technology

transfer DSSAT under water resources management. Adv. Mater. Res. 2015, 1073, 1596–1603. [CrossRef]
31. Ratto, M.; Tarantola, S.; Saltelli, A. Sensitivity analysis in model calibration: GSA-GLUE approach. Comput. Phys. Commun. 2001,

136, 212–224. [CrossRef]
32. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie,

J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]
33. Hoogenboom, G.; Jones, J.W.; Traore, P.C.; Boote, K.J. Experiments and data for model evaluation and application. In Improving

Soil Fertility Recommendations in Africa Using the Decision Support System for Agrotechnology Transfer (DSSAT); Springer: Dordrecht,
The Netherlands, 2012; pp. 9–18.

34. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
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