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Abstract: Plant factories using artificial light to produce vegetables have high energy costs due to
the high demand for electricity for lighting. Compared to conventional light sources, light-emitting
diodes (LEDs) offer the possibility of tailoring the light spectrum and regulating light intensity
and are more energy-efficient in terms of energy conversion regardless of the levels of lighting
intensity. Optimal light intensity and daily light integral (DLI) requirements are key factors for plant
growth; however, their values vary among species and varieties. Our experiment aimed to identify
the best light intensity to produce lettuce plants in controlled environment. Lettuce plants of the
type Batavia cv ‘Blackhawk’ were grown in plastic pots filled with perlite and peat (20:80 v/v) for
33 days in a growth chamber under blue (B, 20%) and red (R, 80%) LED light at a photosynthetic
flux density of 130 µmol m−2 s−1 (BR 130, DLI 7.49 mol m−2 d−1), 259 µmol m−2 s−1 (BR 259, DLI
14.92 mol m−2 d−1), and 389 µmol m−2 s−1 (BR 389, DLI 22.41 mol m−2 d−1). Our results showed
that increasing light intensity and DLI promotes net photosynthesis, sustains the electron transport
rate (ETR), and stimulates the synthesis of anthocyanins and carotenoids, with positive results for
plant photoprotection. Furthermore, the decreases in vegetation indexes (photochemical reflectance
index (PRI), greenness, and modified chlorophyll absorption in reflectance index (MCARI1)) also
indicate changes in photosynthetic pigment content in response to plant acclimation to different DLIs.
Among the three light intensities, 389 µmol m−2 s−1 (DLI 22.41 mol m−2 d−1) gave the best results
for growing Batavia red lettuce cv ‘Blackhawk’, since it enhances both production and qualitative
traits. These results highlight the importance of a proper light intensity to promote plant growth
and qualitative traits and to reach high production targets. Hence, preliminary screening of plant
performance under different light treatments is recommended to optimise plant response to artificial
lighting.

Keywords: plant factories using artificial light (PFAL); daily light integral (DLI); photoprotection;
vegetation indexes; resources use efficiency

1. Introduction

Climate changes, as well as the increase in urban populations and the need to fulfil the
UN Sustainable Development Goals, pose the need to produce more with less, increasing
the resilience of food systems [1,2]. Controlled Environment Agriculture (CEA) systems like
vertical farming (VF) or plant factories with artificial light (PFAL) are proposed as suitable
means to produce food in cities [3,4], with several economic and social benefits [5,6].
Crop production in such systems can reach approximately 80–90% higher water and
resource use efficiency compared to open field cultivation, thanks to optimal environment
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control [7,8]. However, these systems require high energy inputs, especially for lighting,
which compromise their overall sustainability.

Light is crucial for many processes of plant life, from photosynthesis to circadian
rhythm regulation [9]. In northern countries, it is a common practice for growers to apply
light to reach a target Daily Light Integral (DLI) in greenhouses for several species. However,
the light spectrum and light intensity can affect leaf pigment composition and leaf spectral
absorbance differently in crops. Leaf spectral analysis is a widely used technique for non-
destructive monitoring of plant health status and pigment composition [10–12]. Excess of
light in terms of intensity can be harmful to photosystems and induce plants to synthesise
different antioxidant compounds and non-photosynthetic pigments to mitigate the excess
of light and reactive oxygen species (ROS) scavenging activity, affecting photochemical
functions. On the other side, these compounds are particularly desired by consumers for
their beneficial properties. Accordingly, finding the right light combination that is able to
boost both production time and quality is of crucial importance.

Lettuce is one of the most widely grown vegetables, particularly appreciated for
its qualitative properties, such as low calories, large amounts of fibres, minerals and
vitamins, and healthy bioactive compounds [13]. Lettuce’s qualitative profile varies be-
tween typologies and cultivars [14–16]. In general, green-leaved lettuces are richer in
nitrate, calcium, magnesium, and other essential minerals [17–19], ascorbic acid, lutein,
and β-carotene [20,21]. Instead, red-leaved lettuces show higher contents of anthocyanins,
flavonoids, phenolic acids, and other antioxidant compounds [14,19,22,23]. Moreover,
at the physiological level, red lettuces show similar or even higher photosynthetic per-
formance than green lettuce due to a higher proportion of light effectively driven to
photosynthesis that reduces the demand for energy dissipation and improves water use
efficiency [23–26]. Most of the studies on lettuce that have aimed to identify DLI require-
ments considered green-leaved lettuce. In general, for green-leaved lettuce cultivars, a
DLI of 14–17 mol m−2 d−1 is recommended. Changing light intensity induces several leaf
morpho-anatomical changes in the profiles and ratios of pigments. In scattered or full
red-leaved lettuce, both chlorophylls, carotenoids, and anthocyanin pigments are present.
Under high irradiance, foliar anthocyanin production increases, affecting leaf spectral
properties. Anthocyanins are known to absorb mainly the yellow/green and ultraviolet
wavelengths and blue wavelengths to a lesser extent.

Anthocyanin-rich leaves are less prone to photoinhibition. Therefore, we hypothesised
that under a red/blue light spectrum, the anthocyanin-rich red-leaved lettuce might be
able to support higher light intensities and a higher DLI than those recommended in the
literature for green-leaved lettuce cultivars [14,25]. Furthermore, we hypothesised that a
higher DLI would contribute to higher biomass and an increase of plant nutritional quality.
We tested these hypotheses by investigating three light intensity levels, corresponding to
three DLIs, using a fixed blue:red ratio of 20:80 over a 16 h photoperiod, on photosynthesis,
PSII photochemistry, spectral leaf properties, and biomass of the red-leaved Batavia lettuce
‘Blackhawk’.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Two-week-old seedlings of a red-leaved Batavia lettuce cv ‘Blackhawk’, at the third-
to-fourth leaf stage, were transplanted and grown in Ø 10 cm plastic pots filled with
peat:perlite (80:20 v/v) for 33 days in a growth chamber at a day/night temperature of
23/18 ◦C and RH 70/80%. Plants were fertigated every three days with a half-strength
Hoagland nutrient solution, with pH 5.8 and EC 1.2 dS m−1. Fifteen seedlings were
randomly assigned to each light treatment.

2.2. Lighting Treatments

Plants were grown under a photoperiod of 16 h, from 06:00 to 22:00, provided by a
mixture of blue (B, 20%) and red (R, 80%) LED light (GreenPower LED dynamic module,
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Signify, Eindhoven, The Netherlands) (Figure 1), provided at a photosynthetic photon flux
density at canopy level (PPFD) of 130 µmol m−2 s−1 (BR 130), 259 µmol m−2 s−1 (BR 259),
and 389 µmol m−2 s−1 (BR 389), providing a DLI of 7.49, 14.92, and 22.41 mol m−2 d−1, re-
spectively. The light spectral distribution of the different treatments was assessed by a spec-
trometer (JAZ-ULM-200, Ocean Optics, Dunedin, FL, USA) and converted to µmol m−2 s−1

with Spectrasuite software (Ocean Optics, Dunedin, FL, USA) (Figure 1).
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Figure 1. Spectral distribution of the BR LED light used in the study light (GreenPower LED
dynamic module, Signify, Eindhoven, The Netherlands). Photosynthetic Flux Density at canopy
level (PPFD) of 130 µmol m−2 s−1 (BR 130, DLI 7.49 mol m−2 d−1), 259 µmol m−2 s−1 (BR 259, DLI
14.92 mol m−2 d−1), and 389 µmol m−2 s−1 (BR 389, DLI 22.41 mol m−2 d−1).

2.3. Gas Exchange and Chlorophyll a Fluorescence

Gas exchange and chlorophyll a fluorescence were measured on fully expanded leaves
(one leaf per plant, five plants per lighting treatment), 31 and 30 days after the beginning of
lighting treatments, by a portable photosynthesis system Licor 6400 XT (Licor, Lincoln, NE,
USA), equipped with the 6400–6440 Leaf Chamber Fluorometer (LCF) (Licor, Lincoln, NE,
USA). The LCF blue and red actinic light percentages were 20% and 80% at the respective
growth light intensities of 130, 259, 389 µmol m−2 s−1, and the CO2 concentration was
fixed at 400 ppm. Light use efficiency (LUE) was calculated as the ratio between the leaf net
photosynthesis (Pn) and the incident amount of photons, and intrinsic water use efficiency
(WUEint) was calculated as Pn/E by the software operating in the instrument.

On the same leaves used for gas exchange, chlorophyll a fluorescence was measured us-
ing a portable fluorometer PAM 2500 (Walz, Effeltrich, Germany). Light intensity response
curves were performed 30 days after the beginning of lighting treatments.

Leaves were dark-adapted with a dark leaf clip DLC-8 (Walz, Effeltrich, Germany)
for 30 min; then a 0.6 s saturating light pulse (3450 µmol m−2 s−1) was given to obtain Fm
and F0 values. The fluorescence light response curves were built by increasing the actinic
light from 0 to 2968 µmol m−2 s−1 in eleven steps, applying saturation pulses of 0.6 s
at each step to obtain the maximum light-adapted fluorescence (Fm’) and steady-state
fluorescence (Fs). The minimal fluorescence after the PSII excitation (F0’) was obtained
by turning off the actinic light and applying a far-red pulse of 0.5 s. The PSII maximum
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photochemical efficiency (Fv/Fm) was calculated as Fv/Fm = (Fm − F0)/Fm. The quantum
yield of PSII electron transport (ΦPSII) was calculated as ΦPSII = (Fm’ − Fs)/Fm’, following
Genty et al. [27]. The yield of non-regulated quenching (ΦNO) was calculated as F/Fm.
Photochemical fluorescence quenching (qP) was calculated as (Fm’ − Fs)/(Fm’ − Fo’), and
the non-photochemical quenching was calculated as (Fm/Fm’) − 1 [28]. Based on the
fluorescence light response curve, the electron transport rate (ETR) was calculated at each
illumination step. The plant response to the increasing light intensity was obtained by
fitting each ETR curve according to the model proposed by Platt et al. [29], estimating the
maximal electron transport rate (ETRmax), electron transport rate efficiency at low light
intensity (α, electron photons −1), and the light saturation point (Ik, µmol photons m−2 s−1),
calculated as Ik = ETRmax/α.

2.4. Leaf Optical Properties

Adaxial leaf optical properties and vegetation indexes were measured 30 days from the
beginning of the light treatments, on one leaf per plant, in five plants × lighting treatment
using a PolyPen RP 400 UVIS (PSI, Photon Systems Instruments, Drasov, Czech Republic)
with a spectral response range from 380 nm to 780 nm: leaf absorbance and transmittance
were measured as A = log(I0/I) and T = I/I0, where I0 is the reference light intensity and
I is the measured light intensity. Normalized difference vegetation index (NDVI) was
calculated on leaf reflectance in the near infra-red (RNIR) and the red (RRED) region as
NDVI = (RNIR − RRED)/(RNIR + RRED). Modified chlorophyll absorption in reflectance
index (MCARI1) was calculated on leaf reflectance (R) at 550, 670, and 790 nm, according
to Haboudane [30] as 1.2’(2.5’(R790 − R670)−1.3’(R790 − R550)). Greenness index (G) was
calculated as the leaf reflectance ratio between 554 and 677 nm as R554/R677. Photochem-
ical reflectance index (PRI) was calculated on the leaf reflectance at 531 and 570 nm as
PRI = (R531 − R570)/(R531 + R570) [31]. Carter index was calculated as the reflectance ratio
at 695 and 420 nm Ctr1 = R695/R420, according to Carter [32], anthocyanin and carotenoid
reflectance indexes (ARI1, ARI2 and CRI2) were calculated at 550, 510, 700, and 800 nm
as ARI1 = 1/R550 − 1/R700, ARI2 = R800’(1/R550 − 1/R700), and CRI2 = 1/R510 − 1/R700,
respectively, based on Gitelson and coworkers [33,34].

2.5. Plant Growth

Plant growth was determined at 33 DAT in five plants per lighting treatment at harvest
time, measuring the leaf number and total leaf area, root and leaf fresh and dry weight and
dry matter content. Leaf area was determined by ImageJ software 1.50i version (Wayne
Rasband National Institute of Health, Bethesda, MD, USA) on leaf pictures; dry weight was
measured after drying the samples for 48 h at 70 ◦C; dry matter percentage in leaves and
roots was calculated as DM% = (dry weight/fresh weight) × 100.

2.6. Statistical Analysis

The experiment was carried out on a total of 15 plants per light treatment. All mea-
surements reported in this study considered five plant replicates per light treatment. Data
were analysed by one-way ANOVA using the SPSS 27 software package (Accessed date
11 November 2021, www.ibm.com/analytics/spss-statistics-software), means were com-
pared with Tukey’s HSD post hoc test (p ≤ 0.05). A heatmap was generated using the
Clustvis online tool, and matrix values were normalised as ln (x + 1), with Euclidean
distance and complete linkage [35].

3. Results
3.1. Plant Physiological Results
3.1.1. Gas Exchange

Gas exchange in terms of leaf net photosynthesis and leaf transpiration rate increased
linearly by increasing light intensity at p < 0.05. Compared to BR 130 plants, leaf net
photosynthesis and transpiration increased by 34% and 28% under BR 259, and by 122%

www.ibm.com/analytics/spss-statistics-software
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and 108% under BR 389 (Figure 2). Light use efficiency was higher under low irradiance,
and it decreased by 27% on average for BR 259 and BR 389 compared to BR 130. Intrinsic
water use efficiency was not affected by the light intensity, and it was on average 2.7 mol
CO2/mol H2O (Figure 2).
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Figure 2. (a) Leaf net photosynthesis (Pn), (b) leaf transpiration (E), (c) leaf photosynthesis light use
efficiency (LUE), and (d) intrinsic water use efficiency (WUEint) in Batavia lettuce cv ‘Blackhawk’
grown under three different light intensities (130, 259, 389 µmol m−2 s−1). Mean value plus standard
errors (n = 5, 30 DAT). Different letters indicate significant differences at p < 0.5 according to Tukey’s
HSD post hoc test.

3.1.2. Chlorophyll a Fluorescence Emission

The maximal photochemical efficiency of PSII (Fv/Fm) did not differ between the light
treatments, and it was on average 0.74 (data not shown). The quantum yield of PSII electron
transport (ΦPSII) was higher in plants grown at BR 259 and BR 389 compared to BR 130
plants. This was the case for all tested light intensities (Figure 3a). Likewise, the photochem-
ical quenching of PSII (qP) indicated a higher proportion of open PSII reaction centres in
plants grown under BR 259 and BR 389 compared to BR 130 plants (Figure 3c). In contrast,
the quantum yield of non-regulated heat dissipation and fluorescence emission (ΦNO)
was higher in BR 130 plants than BR 259 and BR 389 plants for light intensities between
0–760 µmol m−2 s−1 but similar at irradiances above 1000 µmol m−2 s−1 (Figure 3b). Com-
pared to BR 130 plants, non-photochemical quenching (NPQ) was higher in BR 389 plants
at light intensities between 50 and 760 µmol m−2 s−1 (Figure 3d), up to 1000 µmol m−2 s−1.
NPQ increased by 31% in BR 130 plants, reaching similar values to BR 259 and BR 389 plants
(Figure 3d).
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Figure 3. Chlorophyll a fluorescence light response curve. (a) Yield of ΦPSII and (b) yield of non-
regulated quenching (ΦNO), (c) photochemical quenching (qP), and (d) non-photochemical quenching
(NPQ) in Batavia lettuce cv ‘Blackhawk’ grown under three different light intensities (130, 259,
389 µmol m−2 s−1). Means value ± standard error (n = 5, 30 DAT).

Light intensity treatment did not influence significantly the ETR light response curves;
the parameters ETRmax, Ik, and α were on average 45, 205, and 0.03 (Table 1).

Table 1. ETR light response curve-fitting results, maximal electron transport rate (ETRmax), minimum
saturating irradiance (Ik), and the slope of the curve (α) in lettuce type Batavia cv Blackhawk grown
under three different light intensities (130, 259, 389 µmol m−2 s−1). Mean values ± standard errors
(n = 5, 30 DAT); ns indicates no statistical difference.

Light Intensity DLI
(mol m−2 d−1) ETRmax Ik α

BR 130 7.49 24.04 ± 10.37 197.15 ± 79.5 0.17 ± 0.06

BR 259 14.92 49.43 ± 10.69 217.94 ± 21.52 0.23 ± 0.04

BR 389 22.41 60.49 ± 10.36 200.0 ± 35.6 0.30 ± 0.02

Mean 55.65 205.03 0.24

Significance

Lighting treatment ns ns ns

3.2. Leaf Optical Properties
3.2.1. Leaf Transmittance and Absorbance

Leaf adaxial absorbance from 360 to 800 nm was lower in plants grown under BR
130, while it did not differ between plants grown under BR 259 and BR 389 (Figure 4). In
particular, in the region of the blue (400–500 nm), green (500–600 nm), red (600–700 nm) and
far red (700–800 nm) spectra, BR 130 plants absorbed 8.9%, 17.58%, 8.3%, and 13.7% less
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light compared to BR 259 and BR 389 plants. Conversely, leaf transmittance was higher in
BR 130 plants, especially in the green (500–600 nm) and in the far-red (700–800 nm) region
of the spectrum, where it was on average 62% and 17.7% higher compared to the other
treatments. The intersection between leaf absorbance and transmittance spectra occurred at
713 nm in BR 130 plants, while it occurred at 716 and 717 nm for BR 259 and BR 389 plants,
respectively (Figure 4).
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3.2.2. Vegetation Indexes

Vegetation indexes were affected by light intensity (Table 2). The NDVI and Ctr1
indices were similar between the three treatments and were on average 0.72 and 2.24
(Table 2). Compared to BR 130 plants, the MCARI1 and PRI indexes decreased linearly
with increasing light intensity by −11% and −27% and by −45% and −126% in BR 259
and BR 389, respectively. The greenness index decreased by 37% only in BR 389 plants.
In contrast, both anthocyanin indexes (ARI1 and ARI2) increased linearly with increasing
light intensity (Table 2). Compared to BR 130 plants, ARI1 increased by 266% in BR 259
and 785% in BR 389 plants. Likewise, the ARI2 increased by 232% and 619% in BR 259 and
BR 389 plants, respectively. The carotenoid reflectance index 2 (CRI2) increased by 57% and
121% compared to BR 130 plant (Table 2).

3.3. Plant Growth

Plants grown under the three lighting regimes produced on average 28 leaves and
reached a total leaf area of 1278.71 cm2 per plant (Table 3). Plant biomass production
significantly increased only in BR 389 plants compared to BR 130 plants, where fresh leaves
and root weight increased by +78% and +416%, respectively, while leaves and root dry
weight were +87% and +588% higher than BR 130 plants (Table 3). The three tested light
intensities did not affect the leaves’ dry matter content. Compared to BR 130 plants, root
dry matter increased by 37% in BR 389 plants and ranged between 7.48–10.23% in BR 130
and BR 389, respectively (Table 3).
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Table 2. Normalized difference vegetation index (NDVI), modified chlorophyll absorption reflectance
index 1 (MCARI1), greenness index (G), photochemical reflectance index (PRI), Carter index 1 (Crt1),
anthocyanin reflectance index (ARI1, ARI2) and carotenoid reflectance index 2 (CRI2) in Batavia
lettuce cv ‘Blackhawk’ grown under three different light intensities (130, 259, 389 µmol m−2 s−1).
Mean values ± standard errors (n = 5, 30 DAT). Different letters indicate significative differences at
p < 0.5 according to Tukey’s HSD post hoc test. Non-significant or significant differences at p < 0.5,
0.01, and 0.001 are reported as ns or *, **, and ***, respectively.

Light
Intensity

DLI
NDVI MCARI1 G PRI Ctr1 ARI1 ARI2 CRI2

(mol m−2 d−1)

BR 130 7.49 0.70 ± 0.00 0.97 ± 0.02a 2.19 ± 0.14a 0.04 ± 0.005a 2.13 ± 0.15 0.75 ± 0.06b 0.48 ± 0.05b 4.86 ± 0.32c

BR 259 14.92 0.72 ± 0.02 0.87 ± 0.03b 2.2 ± 0.29a 0.02 ± 0.015ab 2.37 ± 0.20 2.73 ± 0.97b 1.61 ± 0.57b 7.66 ± 0.59b

BR 389 22.41 0.74 ± 0.02 0.72 ± 0.01c 1.38 ± 0.07b −0.01 ± 0.002b 2.22 ± 0.06 6.6 ± 0.93a 3.48 ± 0.46a 10.74 ± 0.98a

Mean 0.72 0.85 1.92 0.02 2.24 3.36 1.86 7.75

Significance

Lighting treatment ns ** * ** ns *** *** **

Table 3. Plant growth in terms of leaf number, total plant leaf area, fresh leaves weight (leaves
FW), fresh root weight (root FW), dry leaves weight (leaves DW), dry root weight (root DW), dry
leaves biomass content (leaves DM), dry root biomass content (root DM) in lettuce type Batavia
cv ‘Blackhawk’ grown under three different light intensities (130, 259, 389 µmol m−2 s−1). Mean
values ± standard errors (n = 5, 33 DAT). Different letters indicate significant differences at p < 0.5
according to Tukey’s HSD post hoc test. Non-significant or significant differences at p < 0.5 and 0.01
are reported as ns, *, and ** respectively.

Light
Intensity

DLI
(mol

m−2 d−1)

Leaf
Number

(n Plant−1)

Total Plant
Leaf Area

(cm2 plant−1)

Leaves FW
(g FW Plant−1)

Root FW
(g FW Plant−1)

Leaves DW
(g DW

Plant−1)

Root DW
(g DW

Plant−1)

Leaves
DM% Root DM%

BR 130 7.49 27.20 ± 0.73 1340.07 ± 56.75 88.23 ± 4.02b 3.32 ± 0.41b 5.48 ± 0.32b 0.26 ± 0.05b 6.20 ± 0.09 7.48 ± 0.61b

BR 259 14.92 26.80 ± 2.11 1293.03 ± 83.80 112.39 ± 5.41b 5.25 ± 0.31b 6.83 ± 0.61b 0.45 ± 0.05b 6.03 ± 0.29 8.49 ± 0.37ab

BR5 389 22.41 30.00 ± 1.79 1203.02 ± 60.02 156.87 ± 12.58a 17.11 ± 1.38a 10.26 ± 0.70a 1.77 ± 0.22a 6.57 ± 0.17 10.23 ± 0.78a

Mean 28 1278.71 119.16 8.56 7.52 0.82 6.27 8.73

Significance

Lighting treatment ns ns ** ** ** ** ns *

3.4. Heatmap and Cluster Analysis

To obtain an overview of the measured parameters and better distinguish the morpho-
physiological changes induced by light intensity, a cluster heat map was conducted for all
the aforementioned measured parameters.

The cluster heatmap shows that BR 259 is the threshold irradiance within BR 130 and
BR 389 (Figure 5). The light treatments lead to the formation of two main clusters. The first
was occupied by BR 389 plants that clustered alone, mainly as a consequence of an increase
in plant growth in terms of leaf number, fresh and dry biomass accumulation, leaf net
photosynthesis, transpiration, ETRmax, NDVI and ARI1 and ARI2 and CRI2, together with
a lower LUE, G, and PRI index, as well as total leaf area and intrinsic water use efficiency
(Figure 5). The second cluster is split into two by BR 130 and BR 259 plants, mainly due
to common G, PRI, total leaf area, and biomass values. Despite this, BR 130 plants were
characterised by the highest LUE, G, PRI, MCARI1, and total leaf area, as well as the lowest
Fv/Fm and Ik and ETRmax values (Figure 5). On the other hand, BR 259 plants showed
average variations, compared to BR 130 and BR 389, and the highest WUEint and Fv/Fm
and Ik values (Figure 5).
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Figure 5. Heatmap cluster analysis on leaf net photosynthesis (Pn), leaf transpiration (E), leaf
photosynthesis light use efficiency (LUE), and intrinsic water use efficiency (WUEint). Chlorophyll a
fluorescence parameters: maximal electron transport rate (ETRmax), minimum saturating irradiance
(Ik), the slope of the curve (α). The vegetation indexes: normalized difference vegetation index (NDVI),
modified chlorophyll absorption reflectance index 1 (MCARI1), greenness index (G), photochemical
reflectance index (PRI), Carter index 1 (Crt1), anthocyanin reflectance index (ARI1, ARI2) and
carotenoid reflectance index 2 (CRI2), and growth parameters: leaf number, total plant leaf area,
fresh leaves weight (leaves FW), fresh root weight (root FW), dry leaf weight (leaves DW), dry root
weight (root DW), dry leaf matter (%) (leaves DM), dry root matter (%) (root DM) of Batavia lettuce
cv ‘Blackhawk’ grown under three different light intensities (130, 259, 389 µmol m−2 s−1). Original
values are ln (x + 1) transformed; data are expressed with Euclidean distances and hierarchical
clustering with complete linkage.

4. Discussion

Daily light integral effects on green-leaved lettuce have been extensively validated
during the last years under full white or BR spectra [36–40]. The optimal DLI requirement
for lettuce ranges between 14 and 17 mol m−2 d−1; however, this may vary among the
species and the light spectrum used.

Light primary drives the photosynthetic process [9,41]. In our growing conditions, leaf
net photosynthesis increased linearly as light intensity increased, while water transpiration
increased significantly only in BR 389, in agreement with similar studies [36,39,41,42].
Despite this, intrinsic leaf water use efficiency did not vary among the treatments. On
the other hand, light use efficiency was higher under lower light intensities, consistent
with the higher vegetation indexes, G, MCARI1, and PRI, indicating at low irradiance a
higher content of chlorophylls, especially chlorophyll a, in the light-harvesting antenna
complex. We found, indeed, that the vegetation indexes G, MCARI1, and PRI decreased
with increasing light intensity up to 259 µmol m−2 s−1, suggesting better photon use in
the photosynthetic process. This is in agreement with Elkins and co-workers [40], who
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reported improved light absorption and a daily photochemical integral by ΦPSII when
decreasing light intensity and extending the photoperiod. In our growing conditions, we
applied an increasing DLI as a function of light intensity rather than day length extension,
the photoperiod being set at 16 h.

Excess of light may damage the photosynthetic apparatus. The excess excitation
energy negatively affects chloroplasts’ performance, inducing a rapid decline in ΦPSII
and a reduction in carbon fixation [43]. This triggers the activation of photoprotective
mechanisms, like chloroplast movement, reactive oxygen species (ROS) scavenging systems,
cyclic electron flow, and photorespiratory pathways, but also regulated or non-regulated
heat and fluorescence dissipation [37,42,44]. Indeed, the excess of light induces pigment
composition and ratio changes in the light-harvesting complexes. More specifically, it
increases chlorophyll b and carotenoid contents and activates the transcription of several
genes involved in the biosynthesis of photoprotective non-photosynthetic pigments to
quench ROS, thus shielding high-energy wavelengths (e.g., UV and blue), which can lead to
photo-inhibition. Anthocyanins are organic flavonoid compounds primarily responsible for
the dark-red colour in plant tissue under high-energy radiation, such as UV-A (315–400 nm)
or blue and green wavelengths [45]. At the photosystem level, light intensity and quality
affect the PSI and PSII differently; PSI is photo-inhibited by the same amount of red and
blue light, while PSII is mainly photo-inhibited by blue light [46]. Anthocyanin preserves
PSII from photo-inhibition with a photo-abatement effect, intercepting and screening high
energy photons (e.g., UV-A, blue, and green) and by reducing the incidence and severity of
the photooxidative damages, mainly caused by the oxygen-evolving complex (OEC) and
from the inhibition of repair mechanisms of the PSII D1 protein [43,45].

In our experimental conditions, as revealed by the Chl a fluorescence and light inten-
sity response curves, the non-regulated dissipation processes (ΦNO) were higher in BR 130,
indicating higher stress on the photosystems. On the other hand, NPQ was lower than BR
259 and BR 389 in the first part of the light response curve. A similar dissipation capacity
was observed between BR 259 and BR 389 plants. This agrees with chlorophyll pigment
contents and ratios, since at low irradiance, more Chl a is present in the light-harvesting
antenna complexes than Chl b or carotenoids, in line with the change in vegetation in-
dexes. Increasing light intensity decreased leaf greenness, Chl pigments, and PRI indexes
according to LUE decrease, while the ARI1 and ARI2, indexes related to anthocyanin
content, and the carotenoid reflectance index CRI2 increased with increasing irradiance.
This indicates a predominant role at the photosystem level of anthocyanins and carotenoids
in photoprotective action rather than the thermal dissipation mechanism, since WUEint
was not affected and leaf photosynthesis increased [47,48].

In addition, compared to lower irradiances that induced a low anthocyanin index, the
results from the light response curve showed that the quantum yield of ΦPSII decreased
similarly under irradiance above 259 µmol m−2 s−1, according to the fraction of PSII open
reaction centres (qP) that indicated higher light assimilation, in agreement with the similar
absorbance and transmittance spectra. Therefore, the lower yield of ΦPSII in BR 130 plants
may be related to a higher number of blue photons effectively reaching the PSII. These
results agree with the reduced leaf light absorbance and higher transmittance of BR 130
plants and explain the reasons for the decrease of PRI and LUE, since red-leaf plants
show a smaller pool of xanthophyll pigments compared to green-leaf plants [43,49,50],
as anthocyanins offer an alternative to dissipate the excess of light [51,52]. They could
also explain the absence of differences in ETRmax, effectively reducing the number of blue
photons reaching photosystems, contributing to the photosynthetic electron transport.

As a result of assimilative and dissipative processes, higher light intensity promotes
several physiological and morpho-anatomical adaptations, increasing leaf thickness and
stomatal density, resulting in a decrease in specific leaf area (SLA) and a more compact
canopy [53,54]. Changes in leaf traits and pigment profiles are reflected by leaf spectral
properties. Accordingly, BR130 plants transmitted more light than the other treatments
in our experiment, indicating thinner leaves. In addition, the increase in DLI increased
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fresh and dry biomass without influencing the leaf number and the total leaf area, as these
parameters are mainly influenced by light spectral ratios [36,37,54]. However, the biomass
increase was significant at DLIs above 14.9 mol m−2 d−1, indicating a higher DLI and
higher light energy requirement and threshold for Batavia red leaf-type lettuce, as has been
reported for other red-leaf lettuces [47,48] as compared to other types [36,37,39].

5. Conclusions

DLI requirements vary among species and varieties. The DLI lighting strategy cur-
rently considers mainly the use of full-spectrum LEDs to reach specific growth targets.
In our experiment we tested the plant physiological response of red-pigmented lettuce,
lighting with a blue–red spectrum at different DLIs obtained with three different light
intensities.

Our results showed that net photosynthesis increases with light intensity and that
increases in light intensities and DLIs sustain the ETR and stimulate the synthesis of
anthocyanins and carotenoids, with positive effects on plant photoprotection. Furthermore,
the decrease of vegetation indexes (photochemical reflectance index (PRI), greenness (G),
and MCARI1) also indicates a modulation of photosynthetic pigment profiles in response
to plant acclimation to different DLIs. The treatment BR 398 seems to be the most suitable
to improve photosynthetic traits.

To conclude, monitoring leaf optical properties with proximal sensors is suitable for
screening plant capacities to absorb and utilise light, as well as nutritional status, these
being well linked with Chl fluorescence emissions. Among the three light intensities,
389 µmol m−2 s−1 (DLI 22.41 mol m−2 d−1) gave the best results in terms of improving
photosynthetic traits in Batavia red lettuce cv ‘Blackhawk’ in PFAL and enhancing both
production and qualitative traits.
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