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Abstract: The rapid and convenient detection of maturity is of great significance to determine the
harvest time and postharvest storage conditions of apples. In this study, a portable visible and
near-infrared (VIS/NIR) analysis device prototype was developed based on a multispectral sensor
and applied to ‘Fuji’ apple maturity detection. The multispectral data of apples with maturity
variation was measured, and the prediction model was established by a least-square support vector
machine and linear discriminant analysis. Due to the low resolution of the multispectral data,
regular preprocessing methods cannot improve the prediction accuracy. Instead, the spectral shape
features (spectral ratio, spectral difference, and normalized spectral intensity difference) were used
for preprocessing and model establishment, and the combination of the three features effectively
improved the model performance with a prediction accuracy of 88.46%. In addition, the validation
accuracy of the optimal model was 84.72%, and the area under curve (AUC) value of each maturity
level was higher than 0.8972. The results show that the multispectral sensor is an appliable choice
for the development of the portable detection device of apple maturity, and the data processing
method proposed in this study provides a potential solution to improve the detection accuracy for
multispectral sensors.

Keywords: ‘Fuji’ apple; maturity; visible and near-infrared spectroscopy; multispectral sensor;
spectral shape feature

1. Introduction

Apples are one of the most important agricultural products in the global market, which
are nutritious and crisp and are deeply loved by consumers [1]. Maturity is closely related to
the harvest time and postharvest quality of apples, making it a reliable index to scientifically
manage the harvest and storage of apples, thereby prolonging their shelf life and ensuring
their final quality [2,3]. Maturity indicators are determined by destructive measurements,
such as starch pattern index (SPI), firmness, soluble solids content (SSC), Streif index, etc. [4].
In recent years, investigations have been done to fulfill the non-destructive detection need
of the fruit industry. Visible and near-infrared (VIS/NIR) spectroscopy is a promising
solution for the quality characterization of fruits and other agricultural products [5,6] due
to its fast, non-destructive measurement for simultaneous analysis of multiple components
without sample preparation.
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VIS/NIR spectroscopy has been applied to the non-destructive detection of the matu-
rity of apples, pears, and other fruits [7]. Peirs et al. [8,9] used VIS/NIR spectroscopy to
study the prediction of the Streif index of different apple varieties and analyzed the effect of
natural variability on the prediction. Zhang et al. [10] determined the maturity according to
starch dyeing and accurately predicted the apple maturity level by VIS/NIR spectroscopy.
Pourdarbani et al. [11,12] used color and spectral data to make non-destructive discrimina-
tion of the four ripening stages of an apple.

In the past decade, research on portable VIS/NIR analysis devices has gradually
sprung up. The devices are of small size and low manufacturing cost and can realize the
on-site detection of fruit quality [13]. Fan, et al. [14] developed a VIS/NIR analysis device
prototype using a commercial spectrometer (USB2000+, Ocean Optics Inc., Dunedin, FL,
USA) combined with partial least squares regression to achieve non-destructive testing of
apple SSC. Guo, et al. [15] developed a hand-held fruit SSC detector using an STS micro-
spectrometer (Ocean Optics Inc., Dunedin, FL, USA), which was combined with partial
least squares regression to realize the SSC non-destructive testing of kiwifruit, nectarine,
and apricot. Because of the high price of high-resolution spectrometers, some researchers
have explored the potential of some low-cost optical sensors as the collector for spectra of
multiple wavelengths instead. In this case, two common strategies have been applied. The
first one is using photodiodes to collect the spectrum of characteristic LEDs. Zhao, et al. [16]
realized the characteristic spectrum collection of apple quality by using characteristic LED
light sources combined with a photodiode and established a related quantitative analysis
model. Abasi, et al. [17] used six characteristic LED light sources to form an array, combined
with photodiodes to develop a portable fruit quality detector. The other solution is to use
multispectral sensors, which can detect the spectral information of multiple wavelengths
at the same time and has the advantage of low cost. Li, et al. [18] used a 7-wavelength
spectral sensor combined with a tungsten halogen lamp to achieve the non-destructive
detection of moldy apple cores. Yang, et al. [19] designed a VIS/NIR analysis device using
an 18-wavelength spectral sensor for measuring the composition of milk.

Multispectral sensors have low spectral resolution and can only collect a few wave-
lengths of spectral information. The conventional preprocessing methods for the whole
spectrum are no longer applicable for multispectral data. Spectral shape features can be
described by some spectral indices to enhance spectral information according to previous
VIS/NIR studies. Ma, et al. [20] used the spectral absorption index as a pretreatment
method to extract morphological characteristic information from the absorption spectrum
and reflection spectrum to detect the water content of pork. Li, et al. [21] used the nor-
malized spectral ratio to correct the light scattering effect in the original spectrum and
improve the prediction accuracy of SSC and dry matter content of apples. Combined with
the empirical threshold, the spectral indices can also be used to detect fruit diseases [22],
defects [23], and maturity [24]. Spectral shape features could enhance spectral information
and help to improve the prediction accuracy of multispectral sensors.

This study aims to achieve low-cost and convenient non-destructive testing of apple
ripeness by combining multispectral sensors with spectral shape features. A portable
VIS/NIR analyzer based on a multispectral sensor was used to collect the spectral infor-
mation of apples of different maturity. A least-square support vector machine (LSSVM)
and linear discriminant analysis (LDA) were used to build predictive models, and the
performance of the optimal model was validated using apples in different seasons. The
prediction results of multi-spectral data processed by conventional spectral data processing
methods and spectral shape features were analyzed and compared. The results of the
comparison proved that the spectral shape feature is a more effective method for processing
multispectral data, and the multispectral sensor combined with the spectral shape features
can predict apple ripeness non-destructively.
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2. Materials and Methods
2.1. Experimental Samples

The experimental samples were obtained from a commercial orchard in Fufeng,
Shaanxi Province, China. Twelve ‘Fuji’ apple trees with similar growth status were ran-
domly selected as fixed sampling points in the orchard. In 2019, 836 apples (Set-1) at
different maturity stages were collected to develop a calibration model for the device. In
2020, 360 apples (Set-2) of different maturity stages were collected in the same orchard
to verify the performance of the model. All apples picked from the trees were washed
and numbered after being transported back to the lab on the same day. Before spectral
measurements, all samples were stored in the laboratory for 24 h, allowing the samples to
reach room temperature to avoid the influence of temperature.

2.2. Spectral Data Acquisition

Spectral data acquisition was completed by a Vis/NIR analysis device based on
multispectral sensors. The device was mainly composed of a microcontroller, multispectral
sensor, halogen tungsten lamp, display, and power supply unit (Figure 1). The multispectral
sensor (AS7265x, Austria Mikro Systeme, Styria, Austria) can perform spectral detection at
18 wavelengths (410, 435, 460, 485, 510, 535, 560, 585, 610, 645, 680, 705, 730, 760, 810, 860,
900 and 940 nm) from 410 nm to 940 nm. Four 4.5 W halogen tungsten lamps (VIVO-B,
Ocean Optics Inc., USA) were selected as the light source, which have a spectral range
of 360–2000 nm and provide stable illumination. The device was powered by a lithium
battery. The structure of the device was designed using PTC Creo Parametric 5.0 (PTC
Inc., Boston, MA, USA) and produced using a 3D printer. The appearance of the device is
square. The OLED display and the detection probe were placed in the upper part of the
device, the lithium battery and microcontroller were placed in the lower part of the device,
and insulated cotton was added between the battery and the microcontroller. Ventilation
holes were added to the back of the device to enhance heat dissipation.

Figure 1. The schematic (a), the prototype (b), and the detection probe (c) of the Vis/NIR device
based on the multispectral sensor, the spectral response of the sensor (d) and the light source (e).

Previous studies have shown that the interaction mode can obtain more internal
optical information in fruits [25]. Maturity is a comprehensive attribute of apples, and
more internal optical information could contribute to better maturity detection. Therefore,
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a detection probe based on interaction mode was designed to collect spectra (Figure 1a).
The sensor and the light source were integrated into the detection probe to decrease the size
and avoid a complex optical path design. The collimating light source with 45◦ incidence
was arranged around the detection channel in a ring. When the device is working, the light
emitted by the light source will reach the apple surface directly and integrate with fruit
tissue by reflection, scattering and absorption. The sensor will then receive the reflected
and scattered light signal. The diameter of the detection probe was only 50 mm. A soft
black foam ring with an outer diameter of 50 mm was placed on the probe to avoid the
interference of stray ambient light. A soft black foam ring with an outer diameter of 20 mm
was placed around the detection channel to support the fruit and separate the collection area
from the lighting area, ensuring that the measured light signal is from the fruit tissue rather
than the light source. In addition, considering the variation size (diameter 70–120 mm) and
shape of apples, an adaptive structure was designed to ensure that the distance between
the detector and the fruit was approximately fixed. The adaptive structure was realized by
a soft spring (Figure 1a). When testing, pressing the apple can make the spring stretch and
the sensor move down; therefore, the foam ring was tightly attached to the surface of the
apple. After the testing was completed, the spring returned to its original state.

The software of the device was developed by Python, which was used to realize the
control of the device, the acquisition and analysis of spectral data, and the display of
detection results. The integration time was set to 200 ms. The average value obtained by
ten consecutive scans at the same position was recorded as the spectrum of each sample.
The measured spectral data were automatically named and stored using predefined file
name prefixes and save paths. It takes less than three seconds to complete the analysis of
each fruit spectrum. To improve the data stability, we calibrated the light source intensity
using a standard whiteboard (WR-D97, material PTFE) so that the light source intensity
was adjusted to the standard spectrum every time the device was turned on. The dark
spectrum was obtained by turning off the light source, and the original spectrum was
corrected according to Equation (1) [10]:

R =
Rraw − Rdark

Rwhite − Rdark
× 100% (1)

where Rraw represents the original spectrum, Rdark represents the dark spectrum, Rwhite
represents the standard spectrum, and R represents the corrected spectrum.

For the spectral detection system, the signal-to-noise ratio (SNR) is an important
index to evaluate the performance of the system. Walsh, et al. [26] defined SNR as the
average count (intensity) of each selected wavelength divided by the standard deviation.
In addition, the area change rate (ACR) was used as the indicator for the system stability.
ACR describes the variation in spectra measured at the same position of a sample by
calculating the difference in the spectral region area. Before ACR analysis, the spectrum
data is normalized to the range of 0–1 to reduce the influence of different light source
settings in the experiment. ACR is approximately the root-mean-square deviation (RMSD)
of all spectral areas and can be calculated by Equation (2) [27]:

RMSD =

√√√√ 1
N

N

∑
i=1

(Yi − Ymean)
2 (2)

where N represents the number of the spectra, Y represents the area of the ith spectrum,
and Ymean represents the mean area of all spectra.

2.3. Data Measurement

After the spectra collection, the destructive tests were carried out to measure the
maturity of the apples. The starch pattern index (SPI) was measured by cutting the fruit in
half along the equator, soaking half of the fruit in I2-KI solution, and comparing it with
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the Cornell general SPI chart [28]. In addition, other qualities (texture, SSC, acidity) were
measured to observe the quality changes of apples with different maturity. The texture was
characterized by a texture analyzer (TA. XT Express, Stable Micro Systems, Godalming,
UK). The type of probe was P/2 and the puncture depth was 10 mm. According to texture
analysis, the phenotypic texture parameters including pulp firmness, peel firmness, pericarp
elasticity, pulp elasticity, and fruit brittleness were determined [29,30]. The juice of the
remaining half of the fruit was extracted, and the SSC and acidity were measured by a
digital refractometer (PAL-BX/ACID5, Atago, Tokyo, Japan) and a fruit acidity meter
(GMK-835F (apple), G-WON, Seoul, Korea).

According to the SPI, the maturity of apples was characterized by three levels: im-
mature, harvest mature, and eatable mature [10]. The number of apples obtained in 2019
was 270, 320, and 246 for each maturity level. For apples in 2020, the number was 103, 135,
and 122, respectively. The number of the harvest mature apples (326 apples) and immature
apples (274 apples) harvested in 2019 was significantly higher than that of eatable mature
apples (246 apples). To avoid the over-fitting problem caused by sample imbalance, we
selected the same number of samples (246 apples) from immature apples and harvested
mature apples. On this basis, the fruits of each level were divided into calibration set and
prediction set at a ratio of 3:1 by the Kennard–Stone (KS) method. The samples from 2020
were all used to verify the model performance.

2.4. Spectra Preprocessing

Spectra preprocessing can decrease the noise of raw data and improve prediction
accuracy. Common preprocessing methods include Savitzky–Golay smoothing (SGS),
multivariate scattering correction (MSC), standard normal variable transformation (SNV),
and so on. However, those methods can hardly apply to the data of this study since the
spectra measured only contained signals of 18 wavelengths, which is far less than the data
of regular spectrometers. In this study, three spectral shape features (spectral ratio (SR),
spectral difference (SD), and normalized spectral intensity difference (NSID)) were used to
preprocess the spectra. SR and SD were considered effective parameters to evaluate specific
components or properties of fruits, like fruit maturity and surface damage. Lleó, et al. [24]
calculated the spectral index related to SR and SD by three wavelengths (Index1 = Rλ=720
+ Rλ=634 − 2Rλ=674, Index2 = 2Rλ=674/(Rλ=720 + Rλ=634)) for peach maturity detection.
NSID is a standardized index, also known as the normalized vegetation index in remote
sensing, which is used to generate images showing the amount of vegetation (relative
biomass). Jie, et al. [31] used SR and NSID (Index1 = Rλ=730/Rλ=803, Index2 = (Rλ=730 −
Rλ=803)/(Rλ=730 + Rλ=803)) to assess watermelon maturity. Although these spectral indices
are calculated by only three wavelengths, they effectively revealed the spectral shape
features highly related to fruit maturity. The equations for spectral shape features are as
follows [18,31]:

SR =
Rλ=i
Rλ=j

(3)

SD = Rλ=i − Rλ=j (4)

NSID =
Rλ=i − Rλ=j

Rλ=i + Rλ=j
(5)

where Rλ=i and Rλ=j represent the spectral reflection intensity of the ith and jth wavelength
in a spectral curve, respectively.

In previous VIS/NIR studies, a single spectral shape feature (spectral index) has also
been successfully applied to detect the firmness and maturity of peaches, strawberries, and
other fruits [24,31,32]. In this study, four commonly used spectral indices were compared
with the multivariate analysis of spectral shape features. Specifically, 680 nm is an important
wavelength related to chlorophyll content, which is suitable for checking the maturity and
ripening process of apples [33]. The peaks (645 nm and 730 nm) of the spectral curve on
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both sides of 680 nm were both selected with 680 nm to establish the spectral index to
identify apple maturity. The equations for spectral indices are as follows [10]:

Index1 = Rλ=730 + Rλ=645 − 2Rλ=680 (6)

Index2 =
Rλ=730 + Rλ=645

Rλ=680
(7)

Index3 =
Rλ=730 − Rλ=680

Rλ=720 + Rλ=680
(8)

Index4 = log10
Rλ=730

Rλ=680
(9)

2.5. Model Establishment and Evaluation

The least-square support vector machine (LSSVM) and linear discriminant analysis
(LDA) were used to establish the calibration model for maturity prediction. LSSVM is an
improved form of support vector machine, which simplifies the solution of the problem
by transforming the solution of the quadratic optimization problem into the solution of a
system of linear equations. LSSVM can handle linear and nonlinear multivariate analysis.
Before training the LSSVM model, the optimal combination of the regularization parameter
of the model and the kernel function parameter of the radial basis function is determined
by using the two-dimensional grid search method [34]. LDA projects sample spectral
variables to the best discriminant vector space to ensure that the same category of data
after projection is as close as possible, and different categories of data are separated as far
as possible [35,36].

For the spectral index, it is necessary to determine an optimal threshold for sample
maturity assessment. The Otsu method is an effective algorithm to determine the threshold
of image binary segmentation in image analysis [37]. Variance is a measure of the uniformity
of gray distribution. The larger the between-class variance between the background and
the target in the image, the greater the difference between the two parts. Misclassification
will make the between-class variance lower. Therefore, the segmentation that maximizes
the variance between classes could minimize the probability of misclassification. For the
spectral index, after arranging the spectral index in descending order, the method for
maximizing between-class variance can be used to determine the optimal threshold between
immaturity and harvest maturity, as well as between harvest maturity and eatable maturity.

The accuracy was used to evaluate the overall accuracy of the classifier. The confusion
matrix, recall, precision, and F1-Score were used to further analyze the prediction results.
The receiver operating characteristic curve (ROC) can demonstrate the prediction ability of
the classifier. In the ROC graph, the closer the curve is to the upper-left edge of the graph,
the better the performance of the classifier. The equations for each evaluation index are as
follows [10]:

accuracy =
TP + TN

TP + TN + FP + FN
(10)

recall =
TP

TP + FN
(11)

precision =
TP

TP + FP
(12)

F1-Score =
2 × precision × recall

precision + recall
(13)

where TP represents the correctly classified positive sample; TN represents correctly clas-
sified negative samples; FP represents the positive sample of misclassification; and FN
represents the negative sample of misclassification.
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3. Results and Discussion
3.1. The Sensor Stability Test

The white ball made of polytetrafluoroethylene was used as a reference to test the
stability of the spectrum collected by the multispectral sensor. In order to observe the effect
of preheating time on the stability of the sensor, the spectrum was collected every 2 min in
the first 10 min. Then, spectrum was collected every 10 min, and a total of 200 spectra were
collected. The SNR and ACR were calculated to reflect the stability of the sensor. Figure 2a
shows the SNR at different wavelengths. The SNR of the sensor at different wavelengths
was 20.840–47.308. Figure 2b shows the ACR values of each measurement. Since the device
was not fully preheated at the beginning, the collected spectrum fluctuated greatly, and
the maximum ACR value was 7.094. After 10 min, the fluctuation of ACR decreased. The
dotted line represents that the average ACR value obtained after 10 min was 3.787. The
SNR and ACR values of the sensor in this study were close to the previous research on
the dynamic transmission spectrum detection system [1,38], indicating that this sensor has
good stability.
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3.2. Apple Quality at Different Maturity Levels

The quality changes of ‘Fuji’ apples during ripening are shown in Figure 3. During
apple ripening, the color gradually turned red (Figure 3a). Due to the increase in the
activities of amylase, invertase, and sucrose synthase in the fruit, the starch was gradually
hydrolyzed, the starch staining area decreased (Figure 3a), SSC increased (Figure 3c), and
the acidity decreased (Figure 3d). The texture changed due to the changes in pectin content
and cell wall composition during ripening. There were differences in firmness (Figure 3e),
pericarp hardness (Figure 3f), pericarp resilience (Figure 3g), flesh resilience (Figure 3h),
and fruit brittleness (Figure 3i) among apples with different maturity levels. The above
quality changes will affect the measured spectral data, which provides a basis for using
VIS/NIR spectroscopy to detect apple maturity.

3.3. Spectral Analysis

The spectral data before 600 nm was affected by the content of anthocyanins in apples,
so it is not suitable for the maturity detection of bagged apples [39,40]. Ten wavelengths
in the wavelength range of 600–940 nm were selected for analysis. The spectral curves of
different maturity and the spectral intensity distribution at different wavelengths are shown
in Figure 4. At a given wavelength, the spectral intensity of high-maturity apples was lower
than that of low-maturity apples, and there was a similar trend. The chlorophyll absorption
peak at 680 nm and the downward trend close to the water absorption peak at 940 nm can be
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observed. A similar phenomenon was also observed by Zhang, et al. [10]. After the Kruskal–
Wallis test, the spectral intensity of apples with a different maturity was significantly
different at the same wavelength, which shows that the spectral information obtained
based on a multispectral sensor has the potential to effectively detect apple maturity.

Figure 3. ‘Fuji’ apple quality changes at different maturity levels: (a) apple fruit and starch staining
image, (b) apple-pulp puncture force-displacement curve, and (c–i) the distribution of SSC, acidity,
firmness, pericarp firmness, pericarp resilience, flesh resilience, and fruit brittleness, respectively.
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3.4. Modeling Based on Traditional Methods

The calibration models were developed using LSSVM and LDA. Several common
pretreatment methods (SGS, MSC, and SNV) were used to compare with the original
spectrum. Table 1 shows the prediction results of the developed models. The prediction
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performances of the LSSVM models were better than that of the LDA models because
LSSVM can deal with the potential nonlinear relation between spectral data and fruit
maturity [41]. The accuracy of the LSSVM model and LDA model based on the raw spectra
was 84.70% and 82.51%, respectively. Compared with the raw spectra, the models based
on the pretreated spectrum did not achieve better prediction accuracy. The accuracy of
the calibration set was 80.36–89.01%, and that of the prediction set was 71.58–81.97%.
Compared with the previous study, the prediction accuracy of multispectral sensors in
predicting apple ripeness was significantly lower than that of the Vis/NIR spectrometer [10].
This result could be attributed to the fact that the pretreatment methods effective for regular
spectra with high resolution are hardly applicable for multispectral data.

Table 1. Prediction results of the model based on different pretreatment methods.

Model Pretreatment
Calibration Set Prediction Set

Sample Correct Accuracy/% Sample Correct Accuracy/%

LSSVM

RAW 555 485 87.39 183 155 84.70
SGS 555 470 84.68 183 142 77.60
MSC 555 494 89.01 183 150 81.97
SNV 555 492 88.65 183 147 80.33

LDA

RAW 555 483 87.03 183 151 82.51
SGS 555 446 80.36 183 131 71.58
MSC 555 466 83.96 183 144 78.69
SNV 555 474 85.41 183 146 79.78

The prediction results of the model developed based on the raw spectra and LSSVM
is shown in Table 2. The recall rate of the harvested mature samples (88.52%) was higher
than that of the immature samples (83.61%) and the eatable mature samples (81.90%), and
the precision (77.14%) was significantly lower than that of the immature samples (87.93%)
and the eatable mature samples (90.91%). According to the confusion matrix, this is mainly
because more immature and eatable mature samples were misclassified as being of harvest
maturity, resulting in poor credibility of the developed model for the prediction of harvest
maturity. Therefore, it is necessary to further improve the prediction accuracy of the model
for immature and eatable mature samples.

Table 2. Confusion matrix, recall, precision, and F-score based on the Raw-LSSVM model.

Model Maturity Category 1 2 3 No. Recall/% Precision/% F-Score/% Accuracy/%

Raw-LSSVM
1 51 7 3 61 83.61 87.93 85.71 84.70%
2 5 54 2 61 88.52 77.14 82.44
3 2 9 50 61 81.90 90.91 86.21

3.5. Modeling Based on Spectral Shape Features
3.5.1. Spectral Index

The spectral indices can reflect the shape features of the spectral curves. Specifically,
680 nm is an important wavelength related to chlorophyll content. The peaks (645 nm
and 730 nm) of the spectral curve on both sides of the 680 nm were both selected with
680 nm to establish a spectral index to identify the maturity level. The Otsu method was
used to determine the threshold in the calibration set, and the prediction set was used to
verify the effectiveness of the threshold. The distribution and threshold determination
process for Index1 is shown in Figure 5a,b. In the process of determining the threshold, the
between-class variance increases gradually in the initial iterative stage and then decreases
gradually. When the between-class variance was at its maximum, the optimal threshold
could be determined. Table 3 shows the threshold of four spectral indices.
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Table 3. The threshold of spectral indices.

Threshold
Spectral Index

Index1 Index2 Index3 Index4

Threshold-1 22.975 2.3987 0.1110 0.0969
Threshold-2 13.945 2.2326 0.0687 0.0567

After determining the optimal threshold, the reliability of the threshold was verified
on the prediction set. The distribution of the spectral index of the prediction set is shown
in Figure 5d–f, where the dotted line represents the threshold. The prediction accuracy of
the spectral indices was 77.60–80.87%. Index1 has the best prediction performance, with
an accuracy of 80.87%. According to the results, the maturity level of apples can be easily
identified by the spectral index combined with a threshold. However, because the selected
wavelength (645 nm, 680 nm, and 730 nm) was mainly related to the absorption peak of
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chlorophyll, the spectral index contains less internal quality information of apples, and the
prediction accuracy was low, so it should not be directly applied.

3.5.2. Preprocessing Based on Spectral Shape Features

Table 4 shows the prediction results based on different spectral shape features. Simi-
larly, the prediction results of the LSSVM model were better than that of the LDA model.
Compared with preprocessing methods such as MSC, better prediction results were ob-
tained using spectral shape features, and the prediction results of SR and NSID were better
than the raw spectra, in which SR-LSSVM has the highest prediction accuracy, and the
accuracy of the calibration set and prediction set was 89.73% and 87.43%, respectively. The
prediction result of the combination of the three features was higher than that of every
single feature. The prediction performance of the LDA model was significantly improved,
with a prediction accuracy of 87.98%. The LSSVM model still achieved the best prediction
accuracy of 88.52%. The results show that both the single features and their combination
can improve the model performance.

Table 4. Prediction results of the model based on different spectral shape features.

Model Pretreatment
Calibration Set Prediction Set

Sample Correct Accuracy/% Sample Correct Accuracy/%

LSSVM

SR 555 498 89.73 183 160 87.43
SD 555 474 85.41 183 154 84.15

NSID 555 492 88.65 183 157 85.79
SR + SD + NSID 555 497 89.55 183 162 88.52

LDA

SR 555 494 89.01 183 154 84.15
SD 555 487 87.75 183 153 83.61

NSID 555 487 87.75 183 152 83.06
SR + SD + NSID 555 506 91.17 183 161 87.98

The prediction result of the calibration model based on spectral shape features com-
bined with LSSVM is shown in Table 5. The recall, precision, and F-Score were 86.89–90.16%,
84.38–92.98%, and 86.89–89.83%, respectively. The results show that the developed classifier
can accurately predict the maturity level of apples. Compared with the prediction results
of the model established directly using the raw spectra, the precision of the harvest mature
increased from 77.14% to 84.38%. The reliability of the prediction results of harvest mature
was greatly increased, indicating that the spectral shape features can be used to obtain
more effective spectral information and improve the prediction performance of the model.

Table 5. Confusion matrix, recall, precision, and F-score based on the SR + SD + NSID-LSSVM model.

Model Maturity Category 1 2 3 No. Recall/% Precision/% F-Score/% Accuracy/%

SR + SD + NSID-LSSVM
1 55 5 1 61 90.16 88.71 89.43 88.52%
2 4 54 3 61 88.52 84.38 86.89
3 3 5 53 61 86.89 92.98 89.83

3.6. Validation of the Device

After implementing the optimal LSSVM model into the device, the detection perfor-
mance of the model was evaluated using the samples obtained in 2020. The validation
result is shown in Figure 6. The validation accuracy was 84.72%. The recall, precision, and
F-Score were 84.43–85.44%, 82.01–87.29%, and 83.21–85.83%, respectively. All the evalu-
ation indicators were higher than 82%, indicating that the developed model can predict
the maturity level of apples at relatively high precision. Further analysis of the validation
results using the ROC curve shows that the area under curve (AUC) values of different
maturity were all higher than 0.8972, indicating that the developed model still has good
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prediction performance under the effect of seasonal variation. The results show that the
multispectral sensor combined with the data analysis strategy can be used as a cheap and
portable alternative for a spectrometer in the case of apple maturity detection.
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3.7. Discussion

In general, the multispectral sensors combined with spectral shape features can well
distinguish the maturity levels of apples in this paper. The prediction accuracy of the
optimal model, namely the SR + SD + NSID-LSSVM model, in the calibration set was 89.55%,
the prediction accuracy of the prediction set was 88.52%, and the prediction accuracy of the
external verification set was 84.72%. The quality of apples changed significantly during
ripening, resulting in significant differences in spectral reflectance among apples with
different maturity levels, which provided a theoretical basis for the prediction of apple
ripening in this study.

However, non-destructive detection of apple maturity based on multispectral sensors
was not easy. In this study, both traditional methods and spectral shape feature analysis
can well distinguish immature and eatable mature samples. This result could be attributed
to the fact that the contents of endogenous substances and spectral information of these
two maturity levels of apples are of huge differences. However, through the analysis of
the samples misclassified by the model, it is found that some of the samples are easily
misclassified. The maturity of these samples is usually between two maturity levels, and
there is little difference in quality and spectrum. A similar phenomenon was also observed
by a previous study [10]. In fact, in the subsequent growth of these samples, the maturity
will gradually change to the next level, especially for immature samples. Therefore, in
order to solve this problem in the actual production, the mature time is still an important
reference. Another reason for misclassification is that maturity is an overall attribute of
apples, and the interaction model can only collect local information, so there will be
misclassification of immaturity and edible maturity. For this kind of sample, the detection
method needs to be improved, and the transmission spectrum is a reliable way to detect the
internal properties of fruits [42]. In future research, transmission spectra can be collected
for maturity detection to improve detection accuracy.

Multispectral sensors combined with spectral shape features have unique advantages.
Because the absorption peaks of substances in VIS/NIR spectra are wide and overlapping,
the spectral variables are collinear [43]. The reduction of spectral resolution can eliminate
the collinear problem. The decrease in spectral resolution will lose part of the spectral infor-
mation, which directly leads to the decline of the performance of multispectral sensors [19].
The spectral shape feature can be used to calculate the shape information contained in
the spectral curve, which improves the detection accuracy of the multispectral sensor. In
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addition, the unique advantage of spectral shape features to eliminate the adverse effects
of physical and biological variability on spectral information may also be the reason for the
higher prediction accuracy [21,44].

In summary, a multispectral sensor combined with data analysis techniques can be
used in the detection of fruit maturity and internal diseases instead of a spectrometer.
However, the quantitative detection of fruit quality, such as SSC and firmness, needs more
accurate and rich spectral information, so the application of multispectral sensors in fruit
quality quantitative detection needs further research.

4. Conclusions

In this study, apple maturity can be detected rapidly and accurately at low cost
by combining multispectral sensors with spectral shape features. There are significant
differences in spectral information of apples with different maturity at the same wavelength
due to significant differences in quality. Compared with the common pretreatment methods,
spectral shape features were effective for processing multispectral information. The model
based on the combination of SD, SR, NSID, and LSSVM had the highest accuracy, with
88.80% of prediction accuracy and 84.72% of validation accuracy. Our results proved that
quality changes induce significant spectral changes in apples during ripening and the
spectral changes can be detected by low-resolution multispectral sensors. As a tool for
rapid and convenient detection of apple maturity, low-cost multispectral sensors could
serve to determine the best harvest date and post-harvest processing strategy. As this study
is aimed at ‘Fuji’ apples, the application of the developed model in apples of other cultivars
should be further studied in the future and extend to practical fruit production.
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