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Abstract: MYB (myeloblastosis) transcription factors plays an important role in various physiological
and biochemical processes in plants. However, little is known about the regulatory roles of MYB
family genes underlying seed oil biosynthesis in Camellia oleifera. To identify potential regulators,
we performed the genome-wide characterizations of the MYB family genes and their expression
profiles in C. oleifera. A total of 186 CoMYB genes were identified, including 128 R2R3-type MYB
genes that had conserved R2 and R3 domains. Phylogenetic analysis revealed the CoR2R3-MYBs
formed 25 subgroups and possessed some highly conserved motifs outside the MYB DNA-binding
domain. We investigated the promoter regions of CoR2R3-MYBs and revealed a series of cis-acting
elements related to development, hormone response, and environmental stress response, suggesting
a diversified regulatory mechanism of gene functions. In addition, we identified four tandem clusters
containing eleven CoR2R3-MYBs, which indicated that tandem duplications played an important
role in the expansion of the CoR2R3-MYB subfamily. Furthermore, we analyzed the global gene
expression profiles at five stages during seed development and revealed seven CoR2R3-MYB genes
that potentially regulated lipid metabolism and seed maturation in C. oleifera. These results provide
new insights into understanding the function of the MYB genes and the genetic improvement of
seed oil.

Keywords: genomic analysis; gene expression; gene family; MYB transcription factor; seed oil
biosynthesis

1. Introduction

The regulation of gene expression plays an important role in most biological processes,
such as growth, development, and response to environmental signals [1]. Transcriptional
regulation of gene expression mainly depends on the recognition of promoter elements by
transcription factors [2].

MYB (myeloblastosis) is one of the largest families of transcription factors in plants.
In 1987, the first plant MYB transcription factor was discovered, and a protein-coding
gene at the COLORED1 site was identified to affect the accumulation of pigments in the
aleurone scutellum tissues of the kernel in maize [3]. In the model plant Arabidopsis thaliana,
the conserved sequences of the MYB family members were characterized initially [4].
As the Arabidopsis genome was fully sequenced, comprehensive characterizations of the
MYB genes at the genome-wide scale were reported in A. thaliana [5]. In recent years,
MYB proteins have been identified in a range of plant species, including pear (Pyrus
bretschneideri), poplar (Populus trichocarpa), and more [3,6].

The various regulatory functions of MYB members mainly depend on their sequence
structure. The N-terminus of MYB members has a highly conserved MYB DNA-binding
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domain, which is usually composed of 1~4 imperfect repeats (denoted as R) [7]. The C-
terminal region outside the MYB DNA-binding domain is found to play important roles in
the activation or inhibition of gene expression [7]. Each R contains approximately fifty-two
amino acids, forming three helices. The second and third helices of each R form a helix-turn-
helix (HTH) structure that binds to the DNA major groove. These repeats have 2–3 highly
conserved tryptophan (W) residues that are critical in the formation of the HTH structure.
Based on the number of Rs, MYB proteins are divided into four major subfamilies: the
MYB proteins with a single or a partial R are named “1R-MYB/MYB-related“, with two
Rs are called “R2R3-MYB”, with three Rs are called “3R-MYB” factor, and with four Rs
are called “4R-MYB” [5]. Among them, 4R-MYB is found to be the smallest group and not
well-known. The 3R-MYBs usually contain five members in higher plants and have been
shown to play important roles in cell cycle control [8]. The 1R-MYB contains R3 and R1/R2
type genes, which are involved in secondary metabolism control and organ morphogenesis,
respectively [9–11].

R2R3-MYBs have been extensively demonstrated to be involved in primary and sec-
ondary metabolism [12–14]. For instance, in Arabidopsis, AtMYB52, AtMYB54, AtMYB69
(subgroup 21) and AtMYB103 positively regulate the cell wall thickening of fiber cells [15].
AtMYB75, AtMYB90, AtMYB113, and AtMYB114 (subgroup 6) involve in anthocyanin
biosynthesis [12]. In poplar, PtMYB165 is a major inhibitor of flavonoid pathways [16]. In
addition to playing an independent role in the regulation of plant secondary metabolism,
MYB protein can also bind bHLH and WD40 protein to form the ternary MYB-bHLH-
WD40 complexes, which regulate the biosynthesis of flavonols, anthocyanins, and pro-
cyanidins [17–20].

R2R3-MYBs also play a key role in regulating lipids metabolism. AtMYB30 has
been shown to activate the synthesis of the very-long-chain fatty acids (VLCFAs) [21].
Additionally, AtMYB92 directly activates the BCCP2 promoter, which encodes a component
of the fatty acid (FA) biosynthetic pathway [22]. However, more R2R3-MYB genes act as
suppressors in lipid metabolism. The expression level of AtMYB76 is negatively correlated
with the content of FA in mature seeds [23]. AtMYB89 inhibits seed FA accumulation by
regulating KCS11, WRI1, and BCCP1 [13]. AtMYB123 inhibits seed FA biosynthesis by
targeting FUS3 [24]. Additionally, AtMYB118 negatively regulates FA biosynthesis in the
endosperm by repressing maturation-related genes [25].

C. oleifera is one of the trees in the world that produces edible oil, belonging to the
Camellia genus. It has been widely cultivated as an oil crop, in many other countries,
including China, the Philippines, India, Japan, Brazil, Thailand, and South Korea [26].
Moreover, the active ingredient of camellia seed cake is saponin, which is a plant pesticide
that can also be used for chemical cleaning, machine rust removal, etc. [27]. Camellia oil, the
main product of C. oleifera seeds, is extensively used as cooking oil in South Asia. There
are mainly seven fatty acids in Camellia oil, including two saturated fatty acids and five
unsaturated fatty acids [28]. Additionally, the rapid accumulation of oil contents begins
at the stage of seed kernel maturation [29]. The unsaturated fatty acid content of Camellia
oil is much higher than that of peanut oil and soybean oil, and the vitamin E content is
twice that of olive oil [30]. It remains unclear how R2R3-MYB proteins are involved in the
regulation of seed development and oil metabolism.

To uncover the potential regulators related to seed oil biosynthesis, we conducted a
comprehensive characterization of MYB family genes in C. oleifera. The members of the
MYB family were identified using the recently published genome of C. oleifera [31]. Sub-
sequently, the sequence characteristics, phylogenetic analysis, chromosomal localization,
and collinearity of C. oleifera R2R3-MYBs were studied. We also analyzed the expression
patterns of R2R3-MYBs at different seed development stages using RNA-seq data. Based
on the gene co-expression network analysis, we identified seven CoR2R3-MYB genes and
six putative downstream genes of them that may play important roles in seed develop-
ment and lipid metabolism. This study will help to explore the potential function of the
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R2R3-MYB transcription factor in C. oleifera and provide important candidate genes for
C. oleifera breeding.

2. Materials and Methods
2.1. Sequence Analysis of MYB Transcription Factors

The amino acid sequences of C. oleifera are derived from the whole genome (ac-
cession number: PRJNA732216, including SRR14710457 to SRR14710508). BLASTP and
HmmerSearch methods were used for the MYB transcription factors identification of
C. oleifera. Initially, the candidate MYB transcription factors were also identified by HM-
MER3.2.1 using the MYB DNA-binding domain HMM (hidden Markov model) profile
(Pfam Number: PF00249) as the reference [32]. The HMM profile was downloaded from
the Pfam database (http://pfam.xfam.org/, accessed on 1 June 2021). The longest amino
acid sequence was selected for each gene. In parallel, we performed a sequence similar-
ity search with the amino acid sequences from the Arabidopsis Information Resources
(TAIR) database (https://www.arabidopsis.org/index.jsp, accessed on 1 June 2021) through
BLASTP analysis by the Bioedit software (Version7.0.5.3, e-value < 1 e−10; available at
http://www.mbio.ncsu.edu/BioEdit/bioedit.html, accessed on 1 June 2021), in order to
screen candidate MYB transcription factors with high sequence homology and to elim-
inate repeated sequences. Then, the result of HmmerSearch whose e-value is less than
1 e−10 is selected and union with the result of BLASTP. Finally, the Online website SMART
(http://smart.embl-heidelberg.de/, accessed on 5 June 2021) was used to further verify
whether it contained MYB transcription factors characteristics, and MYB type according to
the number of repeats.

2.2. Sequence Features Analysis of CoR2R3-MYBs

The online website CELLO v.2.5 (http://cello.life.nctu.edu.tw/, accessed on 10 June
2021) was used to carry out the subcellular localization prediction. The visualization of the
coding region structure analysis was based on the annotation file (GFF3, General Feature
Format) of the C. oleifera genome. Weblogo software online (http://weblogo.berkeley.edu/
logo.cgi, accessed on 20 June 2021) was used to draw the sequence logo of R2 and R3. SWISS-
MODEL was used to draw the three-dimensional structure of the R2R3-MYB consensus
sequence of C. oleifera. Using the online website MEME (Version5.4.1, https://meme-suite.
org/meme/doc/meme.html, accessed on 22 June 2021) predicted the conserved motif
sequence of CoR2R3-MYB transcription factors with the following parameters: number
of motifs (10), expect motif sites (anr) [33]. SMART and NCBI CDD were also used to
determine the R2R3-MYB domain architecture with the default parameter. All of them were
visualized by Tbtools software (Version1.09861, https://github.com/CJ-Chen/TBtools,
accessed on 1 June 2021) [34]. To investigate the domain characteristics, 128 C. oleifera R2
and R3 repeats were aligned by ClustalW of MEGA X software [35]. To investigate cis-acting
elements in the CoR2R3-MYB gene promoter regions, the 2 kb upstream regions of the
CDS were scanned by the Search for CARE program on the PlantCARE database website
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 1 August
2021) and Plant Transcription Factor Database (http://planttfdb.gao-lab.org/index.php,
e-value < 1 e−5, accessed on 12 June 2022). We selected promoters of genes with MYB
binding elements in both databases for display. Intron length distribution density diagram
and cis-acting element diagram were plotted with R package “ggplot2” [36].

2.3. Chromosomal Location and Synteny Analysis

We visualized the localization of CoR2R3-MYBs on chromosomes. The tandem genes
were identified by the following criteria: (1) homologous CoR2R3-MYB genes were located
within 150 kb, and (2) these genes were separated by 2 or fewer other genes.

Multiple Collinearity Scan toolkit (MCScanX) was used to analyze gene duplica-
tion events [37]. Two model plants, A. thaliana and P. trichocarpa, were selected for in-
terspecies collinearity analysis. Genome and annotated files of A. thaliana (PRJNA10719,
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GCF_000001735.4) and P. trichocarpa (PRJNA17973, GCF_000002775.4) are downloaded
from NCBI. Then, TBtools software was used to visualize the above results [34].

2.4. Phylogenetic Analysis

Multi-sequence alignment of 128 full-length CoR2R3-MYB proteins was performed by
ClustalW and the phylogenetic tree was conducted by the neighbor-joining method (NJ)
with 1000 bootstrap replicates [38]. They were all completed using MEGA X software [35].
Multi-sequence alignment of 126 A. thaliana R2R3-MYBs,128 C. oleifera R2R3-MYBs, and
5 “Landmark” MYB transcription factors of other species was conducted using MUSCLE
of MEGA X software [35]. MYB transcription factors of five other species are HvGAMYB
(accession number: AAG22863.1), PtGAMYB (AZQ25486.1), NtMYB1 (AAB41101.1), PhMY-
BAN2 (BAP28593.1), AmMYBPHAN (CAA06612.1). All of them were downloaded from
NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 22 August 2021). Tbtools software
was used to call trimAl (Version1.2, http://trimal.cgenomics.org/, accessed on 1 June 2021)
and IQ-TREE (Version1.6.12, http://www.iqtree.org/, accessed on 1 June 2021), trim the
results of multiple sequence alignment and find the most suitable amino acid substitution
model (VT+R10), and finally build a Maximum likelihood (ML) phylogenetic tree with
5000 ultrafast bootstrap replicates [34,39,40]. iTOL online tool (Interactive Tree of Life,
Version 6.3.2, https://itol.embl.de/, accessed on 28 May 2021) was used to beautify the
phylogenetic tree and 25 subgroups of Arabidopsis R2R3-MYB proteins were introduced to
classify CoR2R3-MYB proteins [41].

2.5. Analysis of CoR2R3-MYBs Expression Pattern at Five Different Stages of Seed Development

RNA-seq data of seeds at five different developmental stages (PRJNA668531) were
downloaded from NCBI Short Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/
?term=, accessed on 22 October 2021). The five developmental stages of seeds were T1, T2,
T3, T4, and T5. The oil content gradually increased from T1 to T5 and reached the highest
at T5 [29]. Quality control of RNA-seq data was performed using FastQC (Version 3), and
qualified data were used for mapping to the reference genome of C. oleifera by Hisat2
(Version 2.1.0) [42]. The Sam files obtained above were converted to BAM file format using
Samtools (Version 1.9) and reads in BAM files were sorted [43]. String Tie (Version 1.3.6)
performs initial sequence assembly, generates a GTF file for each BAM file, combines GTF
files containing transcripts information into a single GTF, and combines these transcripts
into a non-redundant set of transcripts [44]. Next, these transcripts were reassembled,
and gene expression abundances were estimated (normalized by FPKM, Fragments Per
Kilobase Million). Finally, CoR2R3-MYBs expression levels were extracted. All expression
data were converted through log2, and heatmaps were drawn through the R package
“pheatmap” to show the expression patterns of CoR2R3-MYB genes.

2.6. Weighted Correlation Network Analysis (WGCNA) and Screening of Hub Genes

The WGCNA R Shiny was used to analyze the co-expression of genes [45]. The genes
whose logFPKM was less than 1 in 90% of the samples were filtered out, and the genes
whose median absolute deviation was in the top 10,000 were selected to construct a scale-
free network. The scale-free network was constructed with the soft threshold corresponding
to R2 ≥ 0.8 for the first time, then modules were obtained using the default settings. The
module eigengene (ME, the first principal component of a given module) values were
associated with the sample. We selected the turquoise module with the largest number of
genes, which is strongly correlated with the T5 stage which has the highest oil content, to
explore the involvement of the CoR2R3-MYBs in lipid-related functions. The hub genes were
screened according to the eigengene connectivity (kME) value. We selected the CoR2R3-
MYBs with a kME value ≥ 0.9 as the module hub genes to study the possible function of
the CoR2R3-MYBs. These CoR2R3-MYBs and their co-expressed genes (weight > 0.3) were
annotated based on GO and Swiss-Prot (https://www.uniprot.org/downloads, accessed on
12 November 2021) [46]. TBtools software was used to conduct GO enrichment according to
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the GO annotation information. We selected the top five terms with the smallest p-value in
the three parts of GO, respectively, for display. Next, the Cytoscape software (Version 3.8.2)
was used to perform the co-expression regulatory network based on the annotation of
Swiss-Prot [47]. The expression profiles of hub genes and their co-expressed genes related
to lipid metabolism were plotted using the R package “pheatmap”.

3. Results
3.1. Identification of MYB Transcription Factors in C. oleifera

Based on the BLASTP and HmmerSearch analysis, 44 1R-MYB proteins, 137 2R-MYB
proteins, and 5 3R-MYB proteins were obtained (Table S1). We found that nine 2R-MYB
genes were less conserved with consensus sequences, less than 40%, and displayed extra
sequence features determined by the SMART analysis (Table S2). We categorized the nine
2R-MYB genes into the “Unusual MYB proteins”. In summary, we reported a total of 186
MYB transcription factors in C. oleifera, containing 44 1R-MYB proteins,128 R2R3-MYB
proteins, 5 3R-MYB proteins, and 9 “Unusual” MYB proteins (Table 1). We found that the
number of MYB genes is comparable to the model plants, A. thaliana, and P. trichocarpa, and
they all have five 3R-MYB members (Table 1) [5,6].

Table 1. Numbers of MYB transcription factors in three plant species.

Species R2R3 3R 1R and
MYB-Related

“Unusual” MYB Genes with Two
or More Repeats Total Reference

A. thaliana 126 5 64 2 197 [5]
P. trichocarpa 196 5 152 1 354 [6]

C. oleifera 128 5 44 9 186 This study.

3.2. Protein Sequences Analysis of CoR2R3-MYBs

We analyzed the protein sequences and found that the longest R2R3-MYB protein
(CoMYB115) contained 1444 amino acids, and the shortest (CoMYB13) contained 107 amino
acids (Table S3). The prediction of subcellular localization indicated that 124 CoR2R3-MYB
proteins were located in the nucleus, 3 in the mitochondrial, and 1 in the extracellular
(Table S3).

To further understand the sequence features of the CoR2R3-MYB proteins from an
evolutionary perspective, we constructed a phylogenetic tree based on 128 R2R3-MYBs
of C. oleifera (Figure S1A). We found that most proteins in the same clade have similar se-
quence features. The protein domain analysis showed that most of them had the conserved
R2 and R3 domains in the N-terminal (Figure S1C). Additionally, there are zero to five
low-complexity regions on the C-terminal (Figure S1C). Consistent with this result, we
showed that most members from the same clade have one or more identical motifs outside
the MYB domain (Figure S1B).

3.3. Sequence Conservation of the R2R3 Domain

To investigate the features of the CoR2R3-MYB domains, we aligned the basic region
of the CoR2R3-MYB proteins, consisting of about 104 residues containing the R2 and R3
sequences (Figure 1A,B). The consensus of the R2R3 domain was highly conserved to that
of Arabidopsis, and only eight amino acid residues were different [5]. Consistent with the
results of other species, both R2 and R3 repeats contained regularly spaced and highly
conserved triple tryptophan residues (W) in CoR2R3-MYBs (Figure 1B,C), which were
important in maintaining the HTH structure (Figure 1C). In R3 repeats, the first W residue
(position 59) was usually substituted by phenylalanine (F). In addition, we found other
conserved amino acid residues in CoR2R3-MYBs in R2 repeats (Figure 1A) and R3 repeats
(Figure 1B). Among them, three conserved amino acid residues were located between
the first and second W residues, and six were located between the second and third W
residues in R2 repeats (Figure 1A). One conserved amino acid residue was located between
the first and second W residues, and five were located between the second and third W
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residues in the R3 repeats (Figure 1B). We used the homology modeling method to reveal
the three-dimensional structure of the CoR2R3-MYB consensus and found that both R2
and R3 formed the typical HTH structure (Figure 1C). This confirmed the conservation
of HTH formed by the second helix and third helix in the DNA recognition domains of
MYB proteins.
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3.4. Gene Structure Analysis of CoR2R3-MYBs

These R2R3-MYBs were divided into six categories: including one, two, three, four,
five, and twenty-one exons, respectively (Figure S1, Tables S4 and S5). The majority of
CoR2R3-MYB genes (88 in total) had three exons (Table S5). We found that the length of
these exons is highly conserved, and most of them are between 0 and 500 bp (Figure 2A).
However, the intron length was highly variable (Figures 2B and S1D). The length of most
introns ranged from 0 to 4000 bp, with a small number of introns ranging from 4000 bp to
8000 bp, and only one intron exceeding 8000 bp (Figure 2B).

Although the length of these introns varied, their number, position, and phase were
largely conserved. We divided the CoR2R3-MYB genes into 11 patterns (A-K) according
to their number, position, and phase of introns in the DNA binding domains (Figure 2C
and Table S6). We found that except for eight CoR2R3-MYBs in which the DNA binding do-
mains had no introns (pattern A), all other CoR2R3-MYB DNA binding domains displayed
different intron distribution patterns (Figure 2C). The intron phase determines which exons
may or may not be targeted for alternative splicing [48]. Exons flanked by two introns of the
same phase, including the pattern I and J, may undergo alternative splicing (Figure 2C). The
pattern H was the most common intron distribution pattern (57.03%) (Figure 2C), which
included exons flanked by two introns of different phases (Figure 2C), and alternative
splicing of this pattern could result in premature stop-codons.
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Figure 2. Distribution of exon length, distribution of intron length, and distribution patterns of introns
in the DNA binding domain of CoR2R3-MYBs. (A) Distribution of exon length. (B) Distribution of
intron length. The green line is the density of the distribution. (C) A total of 11 distribution patterns,
named A to K. Triangles and numbers represent the positions and splicing phases of introns (0,
phase 0; 1, phase 1; 2, phase 2), respectively. The horizontal bars in different colors represent the MYB
DNA-binding domain in different patterns. The number of introns in each pattern is shown on the
left. The number and percentage of CoMYBs in each pattern are shown on the right.

3.5. Promoter Cis-Acting Elements Analysis of CoR2R3-MYBs

We intercepted the two kb upstream region of the coding sequences (CDS) of each
CoR2R3-MYBs as the promoter region to predict the cis-acting elements. Additionally, we
classified these cis-acting elements into 27 categories (Figure 3A), which were involved
in the development, phytohormone response, and environmental response (Figure S2).
Among them, the number of light response elements was the largest (Figure 3A). In addition,
we found many MYB binding sites in the promoters of these R2R3-MYBs, including the
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MYB binding site involved in flavonoid biosynthetic genes regulation, light responsiveness,
and drought response (Figure S2).
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Figure 3. Prediction of the cis-acting elements of promoters of 128 R2R3-MYB genes in C. oleifera.
(A) The stacked bar chart represents the sum of the cis-acting elements in each category. (B) Statistical
analysis of 27 categories of cis-acting elements in 4 regions of promoters (0–499 bp, 500–999 bp,
1000–1499 bp, and 1500–2000 bp). The colors and numbers in the grid indicate the number of these
cis-acting elements in the region. The darker the red color in the grid, the greater the number of
cis-acting elements in that region than in other regions.

To understand the regulatory function of the CoR2R3-MYB genes, we divided the
promoter region into four sections, starting from the five prime ends, which were 0–499 bp,
500–999 bp, 1000–1499 bp, and 1500–2000 bp, respectively, and analyzed the distribution
of cis-acting elements in each region. We found that the light response elements were the
largest in all regions (Figure 3B). The cis-acting elements of various hormone responses are
less distributed between 1000 and 1499 bp. However, various growth and development-
related cis-acting elements were enriched in the range of 1000–1499 bp (Figure 3B). Addi-
tionally, the stress response cis-acting elements were enriched at 500–999 bp and 1500–2000 bp
regions. MYB binding sites are enriched at 1000–1499 bp and 1500–2000 bp (Figure 3B).
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3.6. Chromosomal Location and Synteny Analysis

Chromosomal localization analysis showed that CoR2R3-MYBs were distributed on all
15 chromosomes of the C. oleifera genome (Figure 4). In addition, two R2R3-MYB genes were
distributed in the scaffold (Table S7). The CoR2R3-MYB genes were renamed CoMYB1 to
CoMYB128 based on their position on the 15 chromosomes and scaffold (Table S7). We found
some CoR2R3-MYB genes are tightly packed in some regions of chromosomes (Figure 4).
We further determined that some of these genes evolved from tandem duplication events
within local chromosomes. There are four tandem duplication events in three chromosomes,
containing 11 CoR2R3-MYB genes (Figure 4).
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The gene names in red text indicate tandem duplication. The scale on the left is measured in
megabase (Mb).
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To further explore the potential evolutionary mechanism of the CoR2R3-MYBs, an
intra-species collinearity analysis of C. oleifera was carried out. In the C. oleifera genome, a
total of 393 segmental duplication events occurred, and 49 syngeneic CoR2R3-MYB gene
pairs were involved (Figure S3; Table S8). To explore the evolutionary driving force of the
CoR2R3-MYB genes, we also analyzed the non-synonymous and synonymous substitution
rates (Ka and Ks) of the CoR2R3-MYB syngeneic gene pairs in the collinear region. The
results showed that the Ka/Ks ratio was much less than 1 (Table S8), indicating that the
evolution of CoR2R3-MYB genes was mainly driven by purification selection.

Furthermore, we performed the collinearity analysis of C. oleifera with two other
representative species, including Arabidopsis and poplar (Figure S4). We found that the
number of orthologous R2R3-MYB gene pairs between C. oleifera and Arabidopsis was 54
(Figure S4A and Table S9). Additionally, there are 92 orthologous R2R3-MYB gene pairs
between C. oleifera and poplar (Figure S4B and Table S9). Some of these R2R3-MYB genes
(52 CoR2R3-MYBs) were collinear with both Arabidopsis and poplar (Table S9), suggesting
that these syntenic gene pairs may have existed before ancestral divergence. Notably, we
found some syntenic gene pairs (two CoR2R3-MYB genes) in C. oleifera and Arabidopsis were
not present in C. oleifera and poplar (Table S9), suggesting that these orthologous gene pairs
maybe not conserved during the evolutionary process. Additionally, some syntenic gene
pairs (40 CoR2R3-MYB genes) were found in C. oleifera and poplar (Table S9), which did not
exist in C. oleifera and Arabidopsis. These syntenic gene pairs may have emerged after the
divergence of herbaceous and woody plants in the process of evolution.

3.7. Phylogenetic Analysis

The phylogenetic tree of 126 Arabidopsis R2R3-MYBs, 128 Camellia R2R3-MYBs, and
5 “Landmark” MYB transcription factors in other species were constructed using the
maximum likelihood method. Phylogenetic trees were grouped according to the unique
conserved motifs of 25 subgroups of Arabidopsis R2R3-MYBs (Table 2) [5]. Compared
with A. thaliana, we found that six subgroups of C. oleifera expanded, fourteen subgroups
contracted, and five subgroups neither expanded nor contracted (Table S10). We also
observed “species-specific” clades containing only C. oleifera or A. thaliana R2R3-MYB
proteins. That implied ancestral gene duplication and loss events. One clade (between
S2 and S16) contains only R2R3-MYBs of C. oleifera (Figures 5 and S5), which suggests that
proteins in the clade may have specialized functions that are either lost in Arabidopsis or
acquired after divergence from the last common ancestor. five subgroups (S3, S10, S12, S15,
S19) do not contain any CoR2R3-MYBs (Figures 5 and S5).

Table 2. Conserved motifs of subgroups.

Subgroup Conserved Motif

Subgroup1 (S1) YASS

Subgroup2 (S2) MxFW//SFW

Subgroup3 (S3) WFKHLESELGLEExDNQQQ

Subgroup4 (S4) LNL[E/D]L

Subgroup5 (S5) TKAxRC

Subgroup6 (S6) PRPRxF

Subgroup7 (S7) Sx(14)GRT

Subgroup8 (S8) LRKMGIDPLTHKPL

Subgroup9 (S9) AQWESARxxAExRLxR

Subgroup10 (S10) QxxAAAxxN//KxQLxHxMxQ//DDxxSDSxWK

Subgroup11 (S11) PRxDLLD

Subgroup12 (S12) [L/F]LN[K/R]VA

Subgroup13 (S13) GIDPxTHK[P/L]L[S/I]xx[E/G]

Subgroup14 (S14) R2R3: [W]-x(20)-[W]-x(19)-[W]-x(12)-[F]-x(18)-[W]-x(18)-[W]
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Table 2. Cont.

Subgroup Conserved Motif

Subgroup15 (S15) WVxxDxFELSxL

Subgroup16 (S16) PxLxFxEW

Subgroup17 (S17) QQ[F/E]QQ

Subgroup18 (S18) GLPxYP

Subgroup19 (S19) PxLxFSEW

Subgroup20 (S20) WxPRL

Subgroup21 (S21) FxDFL

Subgroup22 (S22) QEMIxxEVRSYM

Subgroup23 (S23) RVxRxxxF//PxxGxxGC

Subgroup24 (S24) QxGxDPxTH
Subgroup25 (S25) LxxYIxxxN

Assign subgroups as previously reported in Arabidopsis. However, some motifs were reinterpreted, and some of
the previously defined subgroups were not obvious, because we comprehensively considered both Arabidopsis
and Camellia R2R3-MYB genes. “x” represents any amino acid residue; the numbers in “()” represent the number
of amino acid residues; the letters in “[]” represent amino acid residues in the same position; “/” stands for “or”;
“//” stands for “and”.
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3.8. Expression Analysis of CoR2R3-MYBs Genes during Seed Development

To investigate the expression pattern of the CoR2R3-MYB genes in C. oleifera, the
transcriptional abundances of the CoR2R3-MYB genes at different seed development stages
were studied using RNA-Seq. Of the 128 CoR2R3-MYB genes, 100 genes were lowly
expressed (FPKM ≤ 10) or undetectable in at least 90% of the samples, and 28 genes were
highly expressed (FPKM >10) in more than 10% of the samples (Table S11). Of the 28 genes,
the expressions of 18 genes gradually decreased with the increase in oil content (Figure 6).
On the contrary, two genes (CoMYB2 and CoMYB61) were highly expressed at stage T5,
when the oil content was highest (Figure 6). In addition, one gene (CoMYB106) was
expressed uniformly in five stages, five genes (CoMYB54, CoMYB60, CoMYB89, CoMYB90,
CoMYB103) were highly expressed at T2 and T3 stages, one gene (CoMYB118) was highly
expressed at the T4 stage, and one gene (CoMYB41) was highly expressed only at the T1
stage (Figure 6).
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Figure 6. Hierarchical clustering of the expression patterns of 28 R2R3-MYBs in C. oleifera at five
different stages of seed development. Red means high expression, and blue means low expression.
The five developmental stages of seeds were T1 (210 DAP, days after pollination), T2 (235 DAP), T3
(258 DAP), T4 (292 DAP), and T5 (333 DAP). The oil content gradually increased from T1 to T5 and
reached the highest at T5.

We evaluated the functions of AtMYBs that are homologous or representative in
the same subgroup in the phylogenetic tree to understand the potential functions of
these genes (Table 3). We classified the functions of these genes into three categories:
lipid metabolism-related processes, developmental processes, and stress-related processes
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(Table 3). AtMYB89, in the S21 subgroup, significantly inhibited seed FA accumulation
by regulating WRI1 and BCCP1, suggesting that CoMYB46 and CoMYB47 in the same
subgroup might also perform the same function [13]. Together with CoMYB45, CoMYB60,
CoMYB70, and CoMYB85, AtMYB30, and AtMYB96 in subgroup S1 regulate the biosyn-
thesis of the VLCFAs [21,49]. AtMYB123 in the same subgroup as CoMYB67 inhibits seed
FA biosynthesis by targeting FUS3 [24]. AtMYB118, belonging to the same subgroup
as CoMYB89 and CoMYB90, negatively regulates FA biosynthesis in the endosperm by
repressing maturation-related genes [25].

Table 3. The biological processes or potential functions that 28 CoR2R3-MYBs are involved in.

CoR2R3-MYBs Subgroup
Representative within a Subgroup
or Most Homologous R2R3-MYB
Genes of Arabidopsis Thaliana

Function or Biological Process of AtMYBs Reference

CoMYB46; CoMYB47 S21 AtMYB89; AtMYB110 Inhibit seed FA accumulation by regulating
WRI1, BCCP1 [13]

CoMYB67 S5 AtMYB123 Inhibit seed FA biosynthesis [24]
CoMYB85; CoMYB45;
CoMYB60; CoMYB70 S1 AtMYB30; AtMYB96 Regulate VLCFAs Biosynthesis [21,49]

CoMYB89; CoMYB90 S25 AtMYB118; AtMYB119 Negatively regulate FA biosynthesis in the
endosperm [25]

CoMYB68 None AtMYB26 Male sterility [50]
CoMYB5; CoMYB50 None AtMYB5 Control outer seed coat differentiation [51,52]
CoMYB109; CoMYB3 S13 AtMYB61 Mucilage deposition; lignin biosynthesis [53,54]

CoMYB116 S23 AtMYB1 Upregulate Tapetum-specific promoter
A9 activity [55]

CoMYB74; CoMYB118 None AtMYB99 Unknown -
CoMYB106; CoMYB119 S18 AtMYB33; AtMYB65 Stamen development; leaf development [56]

CoMYB41 S17 AtMYB71; AtMYB79 Unknown -
CoMYB103; CoMYB54 S4 AtMYB4 Antioxidant defense [57]

CoMYB61 S20 AtMYB116; AtMYB62 Phosphate starvation responses [58]
CoMYB18; CoMYB2;
CoMYB81; CoMYB82;

CoMYB17
S22 AtMYB44; AtMYB73 Abiotic stress response [59,60]

“None” means not assigned to a subgroup. “-” means no relevant literature has been found. We classified the
functions of these genes into three categories: lipid metabolism-related processes were indicated with an orange
background, developmental processes were indicated with a blue background, and stress-related processes were
indicated with a gray background.

3.9. Gene Co-Expression Network Underlying the Seed Development

We performed WGCNA to determine the genes associated with lipid metabolism
or seed maturation [43]. A total of 10 gene modules were identified and labeled with
different colors (Figure S6A). The number of genes in these modules ranged from 74 to 6863
(Table S12). We correlated these modules with five seed development stages with different
oil content (Figure S6B). Among them, red and turquoise modules had a high correlation
with oil content (Figure S6B), suggesting that they played an important role in the oil
content of C. oleifera seeds. Next, we analyzed turquoise modules with a large number of
genes. In this module, there were 17 CoR2R3-MYB genes (Table S13). Additionally, the
kME value greater than 0.9 was considered as the hub gene. As a result, eight CoR2R3-MYB
genes were identified as hub genes. Then, their co-expressed genes (weight > 0.3) were
detected. We found no co-expressed genes with a weight value greater than 0.3 in CoMYB45,
and CoMYB109 had the most co-expressed genes (487) (Table S14 and Figure 7A). Thus, we
constructed a gene co-expression network using the seven CoR2R3-MYB genes and their
co-expression genes (Figure 7A).

To understand the biological function of genes, we performed a GO enrichment
analysis on these genes. Among the top five terms with the smallest p-values of the three
parts of GO, we found that genes related to lipid binding were significantly enriched, as
well as items related to the biological processes necessary for life, chromatin assembly,
and nucleosome assembly (Figure S6C). Swiss-Prot annotations were also performed
to understand the function of these co-expressed genes in more detail. Among these
co-expressed genes, at least 13 genes were found to be related to lipid metabolism or
seed maturation (Figure 7A), including CAC3, encoding the α subunit of the acetyl-CoA
carboxylase (ACC) which is the first enzyme in the fatty acid synthesis pathway [61].
Among them, nine genes had the same expression pattern as CoR2R3-MYB hub genes,
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and four had the opposite expression pattern (Figure 7B). We detected cis-acting elements
in the promoter regions of these genes and found that six genes had MYB binding sites
(Figure 7C).
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Figure 7. The co-expression network of 7 CoR2R3-MYB genes and expression patterns of 7 CoR2R3-
MYB genes and their co-expressed genes related to lipid metabolism or seed maturation. (A) The
co-expression network of 7 CoR2R3-MYB genes and their co-expression genes. Each dot represents
a gene; the orange dots in the innermost circle represent the CoR2R3-MYB genes; the pink dots
represent genes associated with seed maturation or lipid metabolism. (B) Expression patterns of
7 CoR2R3-MYB genes and their co-expressed genes related to lipid metabolism or seed maturation
(homogenize by row). T1 (210 DAP), T2 (235 DAP), T3 (258 DAP), T4 (292 DAP), and T5 (333 DAP)
represent five different stages of seed development, respectively. The oil content gradually increased
from T1 to T5 and reached the highest at T5. (C) Prediction of cis-acting elements in the promoters of
lipid metabolism or seed maturation-related genes containing MYB-binding elements. We selected
promoters of genes with MYB binding elements in both databases (PlantCARE and Plant Transcription
Factor database) for display. The MYB binding elements are indicated by arrows. The black arrow
indicates that the element is from the PlantCARE database, the blue arrow indicates that the element
is from the Plant Transcription Factor database, and the red arrow indicates that the element exists in
both databases.
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4. Discussion

The MYB is one of the most important transcription factor families in plants. Camellia
oil is a high-quality seed oil beneficial to human health, with the reputation of “Oriental
olive oil” [28]. In our study, a total of 186 MYB genes (44 1R-MYBs, 128 R2R3-MYBs,
5 3R-MYBs, and 9 “Unusual” MYBs) were identified from the genome of C. oleifera (Table 1).
Consistent with the results of Arabidopsis and poplar, the CoR2R3-MYB subfamily was the
largest subfamily of the MYB gene family (Table 1) [5,6]. Sequence and gene structure
analysis of CoR2R3-MYB DNA-binding domains showed that the domain of R2R3-MYB
was highly conserved (Figures 1 and 2). However, the C-terminal amino acid sequence was
varied (Figure S1). These results suggested the conservation of the N-terminal R2R3-MYB
domain which was a DNA-binding domain and the diversity of C-terminal activation
or inhibition domains which endowed MYB members with a variety of regulatory func-
tions. Although the C-terminal amino acid sequence is varied, these regions still have
conserved motifs that may confer additional functions on the protein. One statement is
that their position and conserved motifs in the C-terminal may play an important role
in determining their binding properties and performing specific functions [62]. Previous
studies in Arabidopsis have supported this statement: GL1 was required to initiate trichrome
differentiation in Arabidopsis [63]. The protein encoded by the gl1–2 alleles did not have
the corresponding function, because gl1–2 lacked that conserved motif compared with
GL1 [63].

Therefore, we grouped the phylogenetic trees according to the unique conserved
motifs at the C-terminal (Figure 5), and the genes in the same subgroup may play the
same function. We found that the S25 subgroup of C. oleifera was expanded (Figure 5 and
Table S10). It was interesting that tandem replication events occurred in five genes of this
subgroup (Figure 4). Additionally, AtMYB118 of this subgroup negatively regulates the
biosynthesis of endosperm FA by inhibiting mature-related genes [25]. Thus, these genes
might be evolved due to the adaptation to the properties of C. oleifera and are associated
with Camellia oil biosynthesis. We also observed “species-specific” clades containing only
C. oleifera or A. thaliana R2R3-MYB proteins. One clade (between S2 and S16) contains only
R2R3-MYBs of C. oleifera (Figure 5). It is important to note that we use the term “species-
specific” in the context of a group of species whose genomes are currently sequenced.
More genome sequences are needed to determine the presence and absence of the clade
at the genus level [64]. If the clade was obtained during the divergence of the most recent
common ancestor, the clade can be described as a lineage-specific expansion of C. oleifera,
reflecting a species-specific adaptation.

Based on the RNA-seq data, we analyzed the expression patterns of 128 CoR2R3-
MYBs at five different stages of seed development (Figure 6). Of the 128 CoR2R3-MYB
genes, 28 genes were determined as highly expressed during seed development. We found
that their expression patterns can be roughly divided into four categories: one was a
high expression in the early stage of seed development and a low expression in the late
stage (Figure 6); one was a high expression in the late stage of seed development and low
expression in the early stage (Figure 6); one was a high expression in the middle stage of
seed development, low expression in early and late stage (Figure 6); one was expressed
uniformly in five stages (Figure 6). Among them, the number of the first type is the largest
(including 18 genes), and with the development of the seed, the expression level gradually
decreased (Figure 6). Interestingly, in these genes, together with CoMYB46 and CoMYB47,
AtMYB89 in the S21 subgroup significantly inhibited seed FA accumulation by regulating
WRI1 and BCCP1 [13]. Together with CoMYB45, CoMYB70, and CoMYB85, AtMYB30
and AtMYB96 in subgroup S1 regulate the biosynthesis of the VLCFAs [21,49]. Together
with CoMYB67, AtMYB123 (TT2) inhibits seed FA biosynthesis by targeting FUS3 [24].
This may suggest that these CoR2R3-MYBs may play a negative regulatory role during
seed maturation.

Using WGCNA, we constructed a gene co-expression network using the seven CoR2R3-
MYB genes and their co-expression genes. Interestingly, we found that the number of co-
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expressed genes of CoMYB109 was significantly higher than that of several other CoR2R3-
MYB genes (Table S13). These results suggested that CoMYB109 might play an important
role in seed maturation or lipid metabolism. We annotated the co-expressed genes and
found that at least 13 of them were associated with lipid metabolism or seed maturation
(Figure 7A). Among them, nine genes had the same expression pattern as the CoR2R3-MYB
hub genes, and three genes had the opposite expression pattern as the CoR2R3-MYB hub
genes (Figure 7B). Cis-acting elements were detected in the promoter region of these genes
and six genes were found to have MYB binding sites (Figure 7C). Therefore, we proposed
that MYB may regulate these genes through binding to the cis-acting elements of the
promoter regions of these genes to affect lipid metabolism or seed maturation.

5. Conclusions

This study was the first report of the comprehensive analysis of the CoR2R3-MYB
subfamily based on the C. oleifera genome. A total of 128 CoR2R3-MYB genes were ob-
tained from the C. oleifera genome. These CoR2R3-MYB genes were distributed on all
15 chromosomes and have conserved R2 and R3 repeats. Tandem duplication and synteny
analysis showed that tandem duplication and segmental duplication played an important
role in gene family expansion. Promoter detection revealed cis-acting elements involved
in various reactions. The possible functional role of the CoR2R3-MYBs was predicted
based on its phylogenetic tree. In addition, the expression of CoR2R3-MYBs was diverse
during seed development. Finally, we identified seven CoR2R3-MYB genes and six pu-
tative downstream genes of them that may play important roles in seed development
and lipid metabolism. These results have an important reference value for the functional
identification of R2R3-MYBs and genetic improvement of seed oil in C. oleifera.
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