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Abstract: The water status of fruit and nut crops is critical to the high productivity, quality and value
of these crops. Water status is often estimated and managed with indirect measurements of soil
moisture and models of evapotranspiration. However, cultivated trees and vines have characteristics
and associated cultural practices that complicate such methods, particularly variable discontinu-
ous canopies, and extensive but low-density, variable root systems with relatively high hydraulic
resistance. Direct and continuous measurement of plant water status is desirable in these crops as
the plant integrates its unique combination of weather, soil and cultural factors. To measure plant
water potential with high temporal sampling rates, a stem-embedded microchip microtensiometer
sensor has been developed and tested in several fruit crops for long-term continuous monitoring
of stem water potential. Results on several fruit crops in orchards and vineyards have been good
to excellent, with very good correlations to the pressure chamber standard method. The primary
challenge has been establishing and maintaining the intimate contact with the xylem for long periods
of time, with variable stem anatomies, stem growth and wound reactions. Sources of variability in
the measurements and utilization of the continuous data stream, in relation to irrigation scheduling,
are discussed. Direct continuous and long-term field measurements are possible and provide unique
opportunities for both research and farming.

Keywords: fruit crops; water stress; irrigation; sensors; microtensiometer; stem water potential;
water relations

1. Introduction

The water status of fruit and nut crops is critical to vegetative growth, yield and
crop quality, sustainability, and management challenges [1–3]. The water status at any
moment is the complex integration of the effects of soils, rainfall, evaporative demand,
plant development and radiation interception, crop and vegetative management, irrigation
and competing floor management, and the unique physiological characteristics of a species.
As perennial crops, they have processes, such as the initiation and development of flower
buds and the development of carbon and mineral nutrient reserves, that span and affect
more than one year. For example, early season water stress in grapevines was shown to
have strong negative effects on bud fruitfulness, cropping and vegetative growth in the
following year [4,5]. Consequently, optimizing the water status of fruit crops is important
to support a current crop and its growth, but also to ensure sustained cropping.

Fruit and nut crops are complex perennial systems with discontinuous canopies and
often competing plants in the alleyways that make accurate estimations of water use and
plant water stress more difficult than continuous canopy monocultures (Figure 1). Large
plants with root systems that are large, often deep, low density, and sometimes very erratic
in distribution with soil structure or nutrients, make the placement of soil moisture probes
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uncertain [6,7]. We estimate that the rhizosphere (the 1 mm zone around the roots) of
a mature apple tree may only represent about 2% of the rooting volume of soil. Conse-
quently, the very low root length densities (RLD—total root length per surface area or
volume of soil) that supply large canopies with water can lead to localized drying around
the few roots that must have very high intakes rates of water per length of root [6]. This
means that the effective soil moisture of the rhizosphere at mid-day may not be repre-
sented by the bulk soil moisture we measure with soil probes. Species such as grasses, that
have 50–500 times the RLD, will likely have the same rhizosphere water potential as the
bulk soil.

The discontinuous canopies of fruit crops are in some cases strongly manipulated
by growers into unnatural forms such as thin vertical, V, Y, U or T shapes [8,9] with
varying planting densities and on varying rootstocks [10] having large effects on water
use. Winter and summer pruning and shoot positioning may affect leaf area densities
and solar radiation interception that affects water use rates. The level of cropping can
also affect stomatal opening, and thus water use and potentials [11]. Although meteoro-
logical methods have been developed to estimate the water use of fields, the combined
use of the trees or vines and the cover crops, weeds or bare soil of the alleyways make
the interpretation of whole-field data more difficult when using drip irrigation of only
the trees.

In addition to the structural aspects, somewhat higher plant hydraulic resistances
(Rplant) in many fruit crops than annuals make them sensitive to dynamic atmospheric
evaporative demands, regardless of soil water status [12,13]. This leads to very dynamic
water stress patterns, especially in humid climates with variable radiation and evaporative
demands. Such dynamic behavior of water stress requires a high sampling rate to be able to
understand how water status can affect cumulative processes such as fruit or shoot growth.

Water management is difficult to optimize without having appropriate and timely
measurements of plant water status to determine how the plants respond to the natural
environment. Another critical, yet rarely attempted, method is to determine if the irrigation
actually has had the intended effect of regulating stress, and avoiding over-irrigation and
possible pollution by leaching. Due to this complexity, it is difficult to model the interactions
of all the factors that may affect the ultimate water stress in the orchards and vineyards. So,
it is preferable to let the plant integrate the many influences and then measure it directly.
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For irrigation management, the primary questions are: (1) how much to irrigate;
(2) when to irrigate; (3) whether the irrigation gave the intended effect on plant water
status; and (4) was there any waste of water, giving negative environmental impacts?

How much to irrigate? Many methods of soil moisture monitoring or ET modeling
with data from ag weather systems have been commonly used for many years [1,2], as
well as general experiences of the grower. More recently, research methods such as sap
flow [15,16] or surface renewal estimation of field water use [17,18] have been developed
for grower use. All of these techniques are useful to estimate the amount of irrigation
needed to replace the water use when there is no significant stress. However, each has its
limitations especially when deficit irrigation is used, which is fairly often in fruit and nut
crops. Deficit irrigation is used to obtain desired stress levels that will provide specific
outcomes such as restricting vegetative growth, improving fruit quality, or saving limited
water [19–23].

When to irrigate? And does it give the desired level of stress? Irrigation scheduling is
more difficult unless there is some measurement or estimate from a dynamic model. Since
the root zone is not well defined, it is not inherently clear with large deep-rooted crops
how much of the measured soil water should be depleted before irrigation. Weather has
a large effect on fruit crop water stress during the day, so combining soil and forecasted
meteorological models can be used to decide on when to irrigate. Again, grower experience
is often used.

Many research studies of water stress effects on plants find that growth or function
(photosynthesis, transpiration) is best related to a fundamental measure of plant water
status, i.e., water potential, than to soil water or weather correlations which can vary
in each situation or time. Additionally, the goal of water management can differ with
the species and markets. For example, apple has a basically linear fruit weight growth
over most of the season, and market demands are for large crops of large fruit. So, the
goal is, generally, to limit significant water stress as fruit growth must be maintained at
a fairly high level all season without waste [3,24]. However, in grapes and stone fruits
that have a lag period of fruit growth in the middle of the season, deficit irrigation can be
applied to control excessive vegetative growth, while having little to some effect on fruit
growth [19,22,25]. Regulated water status in wine grapes has been found to have strong
impacts on fruit and wine composition, quality, and value, though the optimal values
appear to vary with cultivar [19,22,26,27]. Thus, optimizing water management for precise
stress targets, based on plant water status, requires accurate measurements of plant water
status. It is also important to avoid the waste of limited water resources and to avoid
pollution from leaching [28].

Lakso and Intrigliolo [14] reviewed many of the methods tested to estimate the water
status of fruit crops. Briefly, soil water potentials may be well correlated to plant water
potentials, but in fruit crops with deep and low root density these correlations may be very
poor. Remote sensing based on spectral reflection has been examined many times and found
to correlate in some cases to plant water potentials, especially when the water potentials
are manifested as larger canopies (see also review by Gautam and Pagay [29]). However,
the generality seems to be limited, as typically the R2 values do not exceed about 0.7 due to
many variable interferences (e.g., variations in radiation, humidity, restrictive plant forms,
wind, crop load effects on stomatal conductance, anisohydric stomatal behavior) requiring
local calibrations. Additionally, the temporal sampling by remote sensing is generally
very limited. The very high spatial sampling, however, is a great advantage over limited
plants with direct measurement. Since there is often large temporal and spatial variability
in fruit crop plantings, the optimal approach should be a combination of soil methods
such as detailed mapping, remote sensing, atmospheric and physiological modeling with
bench-marking by direct measurement of the plant water potential, and growth. New
machine learning approaches show promise for integrating the many factors involved [30].
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Plant Measurements to Estimate or Measure Water Status

A key question for scheduling irrigation or other water management is whether the
action actually gives the desired water status of the crop. There are several methods that
measure the plant directly to provide answers. One type of measurement is the moni-
toring of shoot or fruit growth rates, or changes in tissue dimensions (stem, leaf or fruit
shrink/swell) as a response to stress. They are valuable as they measure, directly, some
key processes of fruit production such as fruit growth. However, they are only correlated
to water potentials, and tissue physical properties can change during the season, so corre-
lations to water potential can change, necessitating re-calibration [14,31,32]. Additionally,
two-dimensional dendrometry on three-dimensional fruit becomes much less sensitive
in the late season. For example, measuring commercial-sized apple growth, we found
diameter changes of 1.1 mm/day 2–3 weeks after bloom, but only 0.2 mm/day in the weeks
before harvest, increasing the noise-to-signal ratio.

The standard for practical field measurements of water status is the Scholander Pres-
sure Chamber (SPC) developed in the 1960s [33,34], which is a manual instrument that
gives spot measurements of plant water status. With proper precautions and operator
training [35] the SPC has underpinned most of the progress in plant water relations for the
past 50 years, and the relationships between water stress and plant responses.

SPC measurements made on exposed leaves are considered leaf total water potential,
which is the water potential in the stem plus the additional drop in potential across the
petiole and the leaf blade [35]. If the leaf is covered in reflective polyethylene bags to
stop transpiration after about 30 min or more, the leaf equilibrates with the stem and
provides a more integrated measurement of the stem water potential [35,36]. Similarly, if
SPC measurements are made pre-dawn when there is little or no transpiration, the plant
equilibrates with the wettest soil around the root system to give a measure of “effective”
soil water potential, though there are issues of interpretation discussed below.

Of the choices of leaf versus stem water potential, the best single measure is that of stem
water potential as: (1) it integrates the water status of many or all of the canopy better than
that of a single exposed leaf that is affected strongly by its unique exposure and location;
(2) it is more stable for that reason than exposed leaf potentials as sunlight moves across
a canopy; (3) it is a better measure of the water potentials of slowly-transpiring organs such
as shoot tips and fruit that are more closely equilibrated with the stem; and (4) at pre-dawn
it is the estimate of the effective soil moisture. Patakas [37] found that stem potentials were
a more reliable indicator of plant water status among different irrigation treatments, as
partial stomatal closure gave the same mid-day leaf water potentials, obscuring the differ-
ences in well-watered and stressed grapevines. For these reasons stem water potentials
have become the preferred measurement of water stress in fruit crops [36,38–41].

As mentioned above, the water potential of a field tree or vine is very dynamic.
Consequently, to appropriately measure a dynamic system, a high frequency of sampling
is needed. With the amount of variation in water potential over the day in fruit crops
sampling at no less than two times, the pre-dawn maximum and mid-day minimum,
would be needed to generally understand daily stress patterns. Of course, sampling
more often would help identify the daily pattern in more detail, including when the daily
minimum actually occurs which may depend on canopy structure and row orientation [42].
The term “mid-day” has been used loosely to mean from solar noon to late afternoon.

Fernandez [43] has outlined the following major characteristics of an ideal water status
sensor for use in the field (lightly edited by senior author):

• capable of direct measurement of plant water potential;
• accurate (0.01 MPa or better) and stable over the full physiologically relevant range of

plant water potential (0 to −3 MPa or lower);
• produces continuous, real-time measurements over months to years;
• simple to install and operate with minimal sensitivity to temperature variations

and contaminants;
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• as small as possible to allow precise spatial measurements and to minimize disruption
of tissue upon embedding;

• reasonable cost to manufacture and deploy; many sensors may be needed to resolve
spatial variations;

• compatible with wireless networks for real-time data collection and spatial integration.

The objective of this report is to provide information on innovation in water relations;
the microtensiometer and how it works; examples of the kind of data it provides; a dis-
cussion of how to interpret the data in relation to other methods; what the limitations and
sources of variation or error are; and its potential value to irrigation scheduling.

2. Materials and Methods

The Microtensiometer for Monitoring Stem Water Potential—Based on 15 years of
research and development by the authors at Cornell University and FloraPulse Company
(www.florapulse.com), a practical microtensiometer has become commercially available for
woody plants [44–48]. The microchip sensor is based on the same principle as the classic
soil tensiometer, but is only 5 × 5 mm. The water volume is estimated to be between 5 and
10 nL, and the pressure is measured by a piezoresistive pressure transducer. The chip is
held in an 8 mm diameter cylindrical probe exposing the chip edge that is the site of water
exchange (Figure 2).
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Figure 2. Photographs of the FloraPulse microtensiometer and installation. The sensing edge of the
chip is held in a probe and held in contact with the xylem by the outer steel sleeve. After driving the
sleeve into the stem, the sleeve is a drill guide, and a liquid clay paste is injected before the sensor
probe is inserted. The nut of the sleeve then holds the spring-loaded probe in position.

Installation—The probe is embedded in the stem of woody plants, and possibly
annuals with relatively woody stems. Since the cylindrical sensor probe is about 8 mm in
diameter, it is recommended for use in stems that are at least 5 cm in diameter to avoid
excess injury that may affect the readings. A stainless-steel sleeve with barbs provides
a drill guide and holds the sensor unit against the xylem. A fine clay paste is inserted
between the sensor edge and the xylem tissue, and helps to maintain good liquid contact
with the sensor as drilling into wet xylem tissue leaves imperfect surfaces. After installation,
all interfaces are covered well with silicone caulk material to stop water exchange and
reduce the chances of disease entry.

The sensor unit is available as a wired sensor for connection to normal data loggers
or is connected to a dedicated solar-powered wireless data logger. The logged data from

www.florapulse.com
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the sensor is cellularly transmitted to the cloud and can be accessed via a user interface
on the FloraPulse website, as shown in the example dashboard below (Figure 3). Since the
mid-day minimum value is a key parameter, it can be displayed for easier interpretation
with additional color-coded bands of stress levels defined for the crop by prior published
research. Baseline stress levels that estimate the expected stress of a well-irrigated plant
under those weather conditions, discussed below, are shown by the blue line to look for
deviations that indicate soil moisture limitations. Additional data on irrigation amounts
applied and any SPC readings conducted can be added to the database. The full 20 min
reading dataset can be downloaded if desired (right side of the dashboard). The microten-
siometers have been tested in a range of crops over the last 5 years. These characteristics
meet most of the criteria proposed by Fernandez above.
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Figure 3. Example of the FloraPulse user interface. At the (left) is a plot of only mid-day minimum
stem potentials with color-coded indications of relative stress levels. On the (right) is a plot of all
data which can be downloaded. In the (middle) section is where irrigation amounts, and times and
manual stem potentials can be added to the database.

Previous research has shown that there can be significant variability in the stem water
potential within an apple tree [49] that may affect the relationship of stem water potentials
via microtensiometer versus by SPC. The variability in stem water potential, as a function of
the vascular distance from the soil, was tested by bagging leaves in ‘Gala’/M.9 tall spindle
apple trees at different vascular distances above the soil. This was conducted on two days
in late summer in New York, by measuring mid-day stem potentials under consistently
sunny, but varying evaporative demands.

3. Results

Field Testing - The daily pattern of stem potential variations, diurnally and with
different weather, measured with the microtensiometer are demonstrated in Figure 4. In
this example, in an N–S oriented orchard, the diurnal minima were typically found at about
16:00 h. The sensor does show somewhat of a lag, discussed below, buffering out rapid
changes in radiation (Figure 5). In that study, we found that stem potentials conducted on
bagged leaves with the SPC were able to respond somewhat faster. Nonetheless, greater
time sensitivity is not needed for using continuous data to guide irrigation.

An example of long-term monitoring and differential irrigation is shown in Figure 6
where seasonal trends are seen in a wine grape vineyard trial in California, with two deficit
irrigation regimes that allowed stress to begin early or mid-season. If a grower has an ideal
seasonal stress pattern, this allows precise monitoring to be able to attain their goal.

The microtensiometer has been tested in many field trials with a range of fruit and
nut species in arid zones. In general, the results have been most consistently accurate in
apple and almond plants that have quite a uniform xylem in the stems, with many small
vessels. Though we have less experience with other stone fruits such as cherry and plum,
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the results have been very good with these species (data not shown). Results have been less
consistent with grapevines. Walnuts have been a major challenge as any drilling into the
trunk leads to excessive liquid exudation, even though SPC measurements show expected
xylem tensions. Preliminary results with citrus, avocado, hazelnut, blueberry and kiwi
have shown promise but need further trials.

Horticulturae 2022, 8, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 4. A typical diurnal pattern of stem water potential in an ‘Empire’/M9 apple tree in New York 

with mild-moderate soil moisture deficit in July. The first two days were sunny and warm, the third 

day overcast and the fourth day partly cloudy. 

 

Figure 5. Example of the microtensiometer response in an apple tree to rapid changes in radiation 

on a variably cloudy day. Data were collected every minute to examine response time. Stem poten-

tials are inverted to make the comparison to radiation more direct. 

Figure 4. A typical diurnal pattern of stem water potential in an ‘Empire’/M9 apple tree in New York
with mild-moderate soil moisture deficit in July. The first two days were sunny and warm, the third
day overcast and the fourth day partly cloudy.

Horticulturae 2022, 8, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 4. A typical diurnal pattern of stem water potential in an ‘Empire’/M9 apple tree in New York 

with mild-moderate soil moisture deficit in July. The first two days were sunny and warm, the third 

day overcast and the fourth day partly cloudy. 

 

Figure 5. Example of the microtensiometer response in an apple tree to rapid changes in radiation 

on a variably cloudy day. Data were collected every minute to examine response time. Stem poten-

tials are inverted to make the comparison to radiation more direct. 

Figure 5. Example of the microtensiometer response in an apple tree to rapid changes in radiation on
a variably cloudy day. Data were collected every minute to examine response time. Stem potentials
are inverted to make the comparison to radiation more direct.
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Figure 6. Daily stem water potentials in grapevines over three months with two irrigation regimes
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stress levels considered mild, moderate and severe, respectively [40]. Data courtesy of E&J Gallo
Winery, Modesto, CA, USA.

4. Discussion

Interpreting Results. -Although the microtensiometer can provide data every minute
if desired, we currently only have significant experience from pressure chambers in relating
water potentials to plant response at two times diurnally—pre-dawn at the time of minimal
transpiration and stress, and at mid-day around the time of maximal stress.

The pre-dawn values are interpreted as the root zone water potential with the whole
plant acting as a soil tensiometer if there is no transpirative flux, an assumption that may
not be safe [50]. In this example (Figure 7), note that in July not only were the mid-day stem
potentials quite low, but the pre-dawn stem potentials were also low indicating significant
soil moisture deficit. After irrigation, both pre-dawn and mid-day values increased, but
the pre-dawn values were still not as high as desired. A shorter interval before the next
irrigation was able to restore the pre-dawn values to, basically, well-watered soil levels.
This is the type of real-time information that can provide guidance to optimize irrigation.
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Since perennial plants such as fruit crops have large and deep root systems, direct
measurement of the plant water potentials is considered preferable to soil moisture probes
where positioning the probes is problematic. In arid regions where water is primarily
available in the drip zone, roots often concentrate. However, in humid regions root growth
may occur anywhere the soil water, nutrients, oxygen and bulk density allow. As shown
by Ameglio et al. [51], in heterogeneous soils, small sources of water may be able to
rehydrate the plant pre-dawn indicating good soil water availability, but under high
evaporative demands during mid-day those small volumes may not be able to sustain
normal transpiration fluxes. So, it is best to interpret the minimal stress values around
dawn as reflecting the wettest soil in the root zone.

Since the greatest dry matter production and largest amounts of water use occur
around mid-day, the water potentials at that time are critical to growth and productivity.
Mid-day minimum stem potential values integrate the soil potential limitations, the evap-
orative demand, and other factors that may affect gas exchange and stomatal opening,
complicating interpretation. To help differentiate these effects, a baseline water potential
has been defined as the mid-day stem water potential that would be expected for plants
with non-limiting soil moisture, with an adjustment for the evaporative demand due to
vapor pressure deficit (VPD) [36,52]. If the measured stem potential is more negative than
the baseline after adjusting for VPD, that indicates that soil water has become limited to
some extent, and irrigation may be needed. It should be noted that this approach is only
based on VPD response and assumes sunny conditions, which may not be the case on
cloudy days in humid climates.

Sources of Variation or Error—The term “error” implies that there is a true accurate
measurement for comparison. As mentioned above, the SPC is the standard, though due to
variations in operator procedures and variation within a tree, a single SPC measurement
cannot be called truly accurate. So, we will use the term variation except for in controlled
tests of the sensor chips. After many refinements in the micro-electro-mechanical systems
(MEMS) manufacture and testing to eliminate those chips that do not meet specifications,
we find that the inherent sensor error under controlled testing is quite small compared to
other sources of error. The sensor time constant (tau—the time to reach about 63% of the
total response to a stepwise change in potential) is less than 15 min for the sensor itself.
The tau of the entire sensor, mating paste and plant tissue is difficult to determine and
likely varies with each species—and perhaps plant—possibly due to a response of stem
capacitance to changes in stem potential or tissue transmission of water potentials, though
that is not clear. However, observations of the response of the sensor to rapid changes in
solar radiation and the close correlation to the SPC indicate that the tau is fast enough to
respond adequately for irrigation management or most water stress research (Figure 5).
Such rapid changes are likely not very significant to the integrated processes of growth
or daily dry matter production. Field measurements in apple trees during rapid changes
in radiation found that pressure chamber measurements on leaves could respond within
1–2 min. Consequently, the stem microtensiometer lags somewhat behind pressure chamber
values. This has been seen also during rapid changes in the morning or evening, but we
find very good correlations with pre-dawn minimal and late afternoon maximal stress
values which are the key values for irrigation management as mentioned above.

Clearly, variation in the installers’ choice of stem or branch location, and condition
and consistency of the installation method (sleeve insertion, precision drilling of the hole to
the xylem, insertion of enough mating compound, etc.) is a potential source of variation
especially if the process is new to the installer. Variation of the plant stem anatomy appears
to be another source of variation, as we have generally found that fine uniform wood, as
in apple, gives the most consistently good installations. Besides variable stem structure,
grapevines also have large vessels in variable arrangements which may lead to single
and chains of embolisms of the very large vessels [23,53] that may disrupt the hydraulic
interface with the sensor. Finally, the plant response to sensor installation and longer-term
growth or wound response appears to be the major source of variation or error. Walnut is
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especially difficult due to excessive exudation from the xylem, presumably parenchyma,
after drilling, even though leaf pressure chamber readings show expected xylem tensions.
The apparent co-existence of significant negative and positive pressures in adjacent portions
of the same tissue, likely in ray parenchyma, is not well understood. Since this type of
internal water potential sensor has never been used before, and fruit crop stem structure
variation and wounding responses rarely examined, extensive empirical testing of many
species will be required to optimize sensor use in each species.

Correlation to the Pressure Chamber—The pressure chamber has been the standard
field method, especially for stem potential more recently. The microtensiometer uses
a different principle of measurement, but they both measure water potential. So, it is
desirable for the two methods to be highly correlated to allow users to apply the prior
knowledge and critical water potential values learned from previous research, and field
experience to the newly available data stream. We and our collaborators have conducted
many field calibrations between the pressure chamber and the microtensiometer, and found
good to excellent correlations when the sensors are performing normally (Figure 8) and in
pear [46].
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Figure 8. Relationships of early morning and mid-day stem water potentials conducted in the field
between the microtensiometer sensor and the Scholander Pressure Chamber on separate studies on
almond and grape in California and apple in New York. The figure is reproduced from Lakso et al.,
2022 with the addition of the previously unpublished apple data.

However, there is good reason to question whether the microtensiometer and the
SPC should give exactly the same values. The pressure chamber method uses leaves from
different parts of the canopy which may induce variation in stem potentials, compared to
the typical trunk location of the microtensiometer. In the case of apple trees, we have found
that under high evaporative conditions the stem potential drops about 0.07 to 0.09 MPa per
meter of vascular distance from the soil level [49] (Figure 9). We measured the variation
in stem water potentials with the SPC in a narrow tall spindle ‘Gala’/M9 apple tree, 3 m
tall, on two sunny days of mild temperature and VPD (upper line) and warmer and higher
VPD (lower line), and found similar values of the slope of 0.08–0.09 MPa m−1. It should be
noted that grapevines have much lower potential drops with vascular distance due to their
large vessels, about 0.015 MPa per meter (data not shown), a negligible variation across
a normal grapevine.
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Figure 9. Changes in stem water potential by pressure chamber with vascular distance from the soil
in a Gala tall spindle apple tree on two sunny days 4 days apart. The upper relation was found on
a mild day (24 ◦C, 65% RH, 1 m s−1 wind), while the lower relation was found on a day with higher
evaporative demand (27 ◦C, 43% RH, 3 m s−1 wind). The square symbol on each relation indicates
the expected stem potential at 0.4 m; the microtensiometer location using the regressions for each day.

Additionally, there can be very significant variation in pressure chamber readings due
to operator variation in the many subtle techniques of leaf selection, handling
before pressurizing, protective enclosures, rate of pressurization and determining
endpoints [35,54]. Levin et al. [55] concluded that operator variation affected potential
readings more than any specific technique of the method, which supports the extensive
experience of the senior author. Nonetheless, the correlations with the SPC indicate that
prior experience can be applied to the microtensiometer data.

General Limitations of Plant Sensors

As with any direct plant sensor (microtensiometer, sap flow, dendrometry) the mea-
surement is a measure on a given plant. So, due to cost and/or logistics there is generally
quite limited spatial sampling which can be important in orchards and vineyards that
are located on highly variable soils and topographies. The answer to the common ques-
tion of “how many plants needed to be monitored?” is “it depends”. Spatial sampling
requirements depend on spatial variation. The greater the spatial variation, the greater the
need to integrate direct sampling at high frequency but low spatial resolution, with high
spatial resolution methods correlated to water status. These may include aerial remote
spectral sensing [56], soil mapping by electromagnetic sensing, or proximal sensing of plant
characteristics such as spectral methods [57] or d13C sampling of grape must [58]. The
integration of the different data can be via modeling, or identifying major soil or growth
variations in the fields to guide placement of limited numbers of monitored plants.

Whatever methods are utilized, it is important to understand the principle of the
method, what the underlying assumptions are in any situation (i.e., calm, full sun conditions
or soils at field capacity may be required), and what are the conditions under which
a method will not work. Many publications have presented results comparing an indirect
method (soil or remote) to direct water status measurements, but too rarely do they discuss
the limitations of the methods or conditions under which it would work better or worse.
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In many cases, the studies that do not give strong positive results are not published, the
so-called “file drawer effect” [59] which may be understandable, but knowledge of when
technologies will not work is very important when considering grower adoption.

For example, aerial remote sensing of the canopy temperature of grapevines will be
more effective if the weather is often clear and sunny and the canopies are broad, in which
the images include many large basal leaves. Large leaves in the sun heat up significantly
with stomatal closure, which is the basis of the correlation to water stress. In contrast, in
thin vertical canopies, the aerial image from directly above sees only the top of the narrow
canopy. The leaves imaged are the best-ventilated small leaves that heat up much less than
larger basal leaves on the lower side of the canopy that heat up the most [60]. In apple
trees, the stomates in the field are very well coupled to the photosynthesis of the leaves [61].
This means that any factor not related to water that affects photosynthesis, such as mineral
nutrition or crop load, will affect leaf temperature with no direct relation to water stress,
and thus give artifacts in thermal estimation of water stress.

It is critical to have collaboration between engineers developing or testing technolo-
gies to estimate crop water status, and crop physiologists who understand the plant and
management side of the relationship. If growers are to use new technologies, they need
to understand both when they will work, and when they will not work. Again, the more
direct and fundamental the measurement, the more general the usefulness will be.

5. Conclusions and New Opportunities

The microtensiometer for continuous monitoring of stem water potentials of fruit crops
has demonstrated the potential to provide a much greater understanding of variations in the
stem water potential that integrates aerial and soil environment, as well as the physiology
and management of fruit crops. Such data also improve the ability to determine if water
management practices, whether by irrigation or crop management (pruning, training, weed
management), actually reach the desired level of stress for optimal performance, however
that is defined.

The ability to obtain season-long diurnal data, especially in conjunction with fruit
expansion data, also opens new opportunities to use such detailed knowledge of wa-
ter relations and plant responses to understand, model, and bench-mark other methods
and guide irrigation. Perhaps there will be more precise times of the day to irrigate
for different purposes, such as supporting or controlling vegetative growth versus fruit
growth [62–64]. Integrals of predawn or mid-day water potentials over long periods in
the season have been found to be well correlated to plant physiology [65], but these are
currently labor-intensive with the pressure chamber, and necessarily limited to several
days of measurement, especially in variable weather. However, are there other times
during the day in which integrals are better related to fruit or vegetative development? The
richness of such continuous data streams offers many opportunities to better understand
water relations, support integrative modeling, improve water management, help document
appropriate water usage, and contribute to the sustainability of a limited natural resource.
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