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Abstract: Estimation of fruit size on-tree is useful for yield estimation, harvest timing and market
planning. Automation of measurement of fruit size on-tree is possible using RGB-depth (RGB-D)
cameras, if partly occluded fruit can be removed from consideration. An RGB-D Time of Flight
camera was used in an imaging system that can be driven through an orchard. Three approaches
were compared, being: (i) refined bounding box dimensions of a YOLO object detector; (ii) bounding
box dimensions of an instance segmentation model (Mask R-CNN) applied to canopy images, and
(iii) instance segmentation applied to extracted bounding boxes from a YOLO detection model. YOLO
versions 3, 4 and 7 and their tiny variants were compared to an in-house variant, MangoYOLO, for
this application, with YOLO v4-tiny adopted. Criteria developed to exclude occluded fruit by filtering
based on depth, mask size, ellipse to mask area ratio and difference between refined bounding box
height and ellipse major axis. The lowest root mean square error (RMSE) of 4.7 mm and 5.1 mm on
the lineal length dimensions of a population (n = 104) of Honey Gold and Keitt varieties of mango
fruit, respectively, and the lowest fruit exclusion rate was achieved using method (ii), while the RMSE
on estimated fruit weight was 113 g on a population weight range between 180 and 1130 g. An
example use is provided, with the method applied to video of an orchard row to produce a weight
frequency distribution related to packing tray size.

Keywords: in-field; orchard automation; fruit sizing; machine vision; proximal sensing; instance
segmentation; object detection

1. Introduction
1.1. Context

Mango fruit harvest and marketing planning requires information on crop load, both
in terms of fruit number and size [1]. Several research groups have attempted estimation
of lineal dimensions of fruit on-tree using machine vision, as reviewed by [2]. In some
work, fruit are positioned at a known distance from the camera, e.g., [3], while in other
work, a reference scale is placed in the image plane, e.g., Apolo-Apolo et al. [4]. However,
camera to fruit distances will vary between 1 and 3 m in a practical application of imaging
from a farm vehicle driven between orchard rows. Depth cameras can be used to assess
camera to fruit distance, as employed for size estimation by Kurtser et al. [5] for grape
clusters, Gené-Mola et al. [6] for apple fruit, Lin et al. [7] for citrus fruit, Zheng et al. [8] for
cucumber, eggplant, tomato and pepper fruit, and Wang et al. [9] for mango fruit.

These reports, however, deal with non-occluded fruit only. For non-occluded fruit,
estimation of fruit lineal dimensions using machine vision is primarily determined by error
in the camera to fruit distance measurement, and by the resolution of the fruit boundary
in the image, which is impacted by image resolution. Measurement of partly occluded
fruit introduces another error, with under-estimation of fruit dimensions. In previous
work by our group [9], fruit detection was based on a cascade detector with a histogram
of oriented gradients (HOG) features, followed by Otsu’s thresholding [10] that uses a
grey-level histogram to threshold images. It was proposed that partly occluded fruit be
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removed from consideration by a specification on the ratio of the length of the major to
minor axis of an ellipse fit within the bounding box boundaries. A custom defined kernel
filter was also applied for removal of linear features such as fruit stalks and panicles.

1.2. Object Detectors

In recent years Convolutional Neural Network (CNN) based detectors have replaced
the cascade detector method of fruit detection (as reviewed in [11]) and therefore the
previous method [9] stands to be improved by adoption of a CNN based technique. ‘State
of art’ CNN based options relevant for fruit detection and fruit sizing are object detectors
and instance segmentation. For object detection with bounding box, single stage models
such as SSD, YOLO and RetinaNet are used for real-time applications while two-stage
detection models such as R-CNN, SPPNet, Faster R-CNN, Mask R-CNN are also in use for
object detection and segmentation tasks.

The CNN based single stage object detector YOLO, generates a bounding box around
detected objects, with a confidence score and class id. The YOLO detector divides images
into several grids of equal dimensions where the probability of each grid cell containing an
object is calculated and bounding box coordinates and object classes are predicted for each
cell. Once a bounding box containing object is obtained, further processing can be under-
taken to segment object pixels within each bounding box, e.g., using Otsu’s thresholding
or instance segmentation. A refined bounding box can then be fit, corresponding to the
maximum pixel width of segmented pixels in the vertical and horizontal directions. The
dimensions of this box can be used to estimate the lineal dimensions of the fruit.

The first YOLO model was released in 2016 by [12], with versions 2 and 3 following in
2018. The backbone network was replaced with Darknet-53 in YOLOv3. Our group [13]
developed MangoYOLO from features of YOLOv3 and YOLOv2 (tiny) for detection of
mango fruit in images of tree canopies. MangoYOLO was benchmarked to be superior
to the dual stage detector Faster R-CNN and the single stage detector SSD based on
prediction accuracy, speed and required computing resource in the application of mango
fruit detection. YOLOv4, released in April 2020 by [14] as an improvement on v3, consists
of CSPDarknet53 (Cross Stage Partial Darknet53) as a network backbone, Spatial Pyramid
Pooling (SPP) and Path Aggregation Network (PANet) as neck and YOLO detector head
(same as YOLOv3). YOLOv4-tiny (Figure 1) is a scaled version of YOLOv4 with a reduced
number of convolution layers, only two YOLO detection heads and fewer anchor boxes
used for generating bounding boxes. This model was optimised for machines with low
compute capability. There are several customised versions of YOLOv4 available with
more CNN and detection layers, different backbones and activation functions. Following
YOLOv5 and YOLOv6, which were unofficial versions in that they were not described in a
refereed journal article, Bochkovskiy and colleagues released v7 in 2022, with the claim of
higher speed and accuracy of “all known object detectors” [15]. All versions except v5 and
v6 are available in a Darknet framework.

Whether the recent YOLO versions provide a performance improvement for the mango
fruit detection application has not been evaluated.

Comparisons of model performance across published studies are compromised by use
of different image sets in respective studies. Our group has made publicly available a data
set of mango fruit on-tree as used in the development of the MangoYOLO architecture,
with >400 downloads to date [13]. This dataset was used by [16] for creation of customised
detection models, benchmarked to MangoYOLO. The data set is used in the current study
for comparison of new YOLO deep learning models (v4 and 7), relative to MangoYOLO.
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Figure 1. Example YOLO network structure (YOLOv4-tiny).

Object detectors such as YOLO provide higher inference speed but produce individual
bounding boxes around the detected object. Depending on the shape and orientation of
the object the boxes can include part of the background along with the detected object.
Indeed, such background is typically included in training snips. Such a method is suited
to object detection, localisation and counting however, tasks such as fruit sizing require
further processing on the bounding box region of interests (RoIs) to segment fruit only
pixels. Post processing on individual ROIs increases the computation cost.

1.3. Segmentation

CNN based image segmentation methods are broadly categorized into semantic and
instance segmentation. Semantic segmentation methods such as UNet [17] are designed
to classify pixels into individual classes, therefore segmenting out objects of interest on
images. Although quite good in terms of processing speed, the semantic method becomes
useless in applications where the objects are clustered (overlapping), where overlapping
objects merge into one segment.

Instance segmentation methods on the other hand produce a segmentation mask
for each object, eliminating the problem of fruit clustering to some extent. An instance
segmentation model applies an object class label to each pixel in an image, with multiple
objects of the same class treated as individual objects. Mask R-CNN is a commonly
employed instance segmentation model which generates separate instances with masked
regions and is recommended for separation of overlapped objects [18]. Mask R-CNN is
an extension of Faster R-CNN [19], where a fully convolution network (FCN) [20] branch
is added on each region of interest (ROI) that predicts segmentation masks in parallel
with classification and bounding box regression branches. Mask R-CNN first generates
candidate region of interests (ROIs) using a Region Proposal Network (RPN), then ROIs are
pooled into fixed size in feature maps with the help of a ROIAlign layer, which makes it a
two stage detection/segmentation model. A fully convolutional network is then used in the
mask branch to segment the image at pixel level within each ROI and the model classifies
the identified ROIs [18]. Being a two-stage approach and requiring feature extraction
operations on each ROI at the second stage, Mask R-CNN is computationally expensive
and often unable to process images at higher frame rates as compared to the YOLO based
object detection models. However, higher mask accuracy means Mask R-CNN can be
beneficial for applications that do not require real time operation.

Mask R-CNN has been used in several fruit on-tree classification applications, e.g.,
for apple fruit [21], and mature and immature tomatoes [22]. Mask R-CNN has also
been used in fruit sizing. Using a RGB camera with inclusion of a reference scale in the
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image, [23] reported use of Mask R-CNN to segment tomato fruit in estimation of lineal
dimensions which were then used in estimation of fruit mass. A mean average error of
2.4 and 2.6 mm on fruit length and width, respectively, and a mean average percentage
error of 7.1% for weight estimation, was achieved for images of non-occluded fruit on an
artificial background. [24] used Mask R-CNN segmentation on images acquired using a
ZED mini stereo camera in estimation of on-plant tomato fruit dimensions, reporting a R2

of 0.90 and 0.93 on height and width predictions, respectively (estimation error was not
reported). These studies did not consider the treatment of occluded fruit.

The current study considers the use of instance segmentation models as an alternative
to Otsu’s thresholding as used in fruit sizing by [12].

1.4. Objectives

This study was undertaken to improve the estimation of mass of on-tree fruit from
RGB-D imagery. The study extends the earlier work of our group [12] on shape fitting for
removal of occluded fruit in a fruit sizing application, through use of a CNN based detection
and/or segmentation network rather than use of cascade detector for fruit detection and
Otsu’s thresholding. The current work is also based on our earlier work recommending
use of the time of flight (ToF) based Azure Kinect (Microsoft, Redmond, WA, USA) over a
number of depth cameras, for the fruit sizing application, based on accuracy on object size
measurement, use in daylight and cost [25].

Two tasks were set: (i) documentation of the detection performance of the key versions
of YOLO object detectors, for the mango sizing application; and (ii) a comparison of the
use of a YOLO object detector followed by fitting of a refined bounding box to object pixels
as segmented by Otsu’s thresholding or by instance segmentation, in comparison to direct
use of an instance segmentation model on the entire image, with recommendation of a
method for use in sizing of fruit on-tree. Criteria for removal of partly occluded fruit were
also compared.

2. Materials and Methods
2.1. Image Sets

Three data sets were used in training and testing the object detection and instance
segmentation models (Table 1). Data set A was used in the context of the YOLO models,
allowing direct comparison to the results of Koirala, et al. [13]. Data set B was used for
the Mask R-CNN instance segmentation models. All images in Dataset B and Dataset
C used in this study are available at https://doi.org/10.25946/21655628 (accessed on 15
October 2022).

Table 1. Description of image datasets used for training and testing object detection and instance
segmentation models.

Dataset Description

Dataset-A

Training set of 1300 tiles and test set of 130 tiles of 512 × 612 pixels RGB
images of cultivar Calypso fruit at Childers, QLD, Australia. The images
were captured using a 5 MP (megapixels) ace 1300ac camera (Basler,
Ahrensburg, Germany) operated at night under 400 W LED flood lighting,
with a GNSS system for geolocation, on an imaging rig mounted to a farm
vehicle, as described in [1]. Dataset acquired from [13].

Dataset-B

Training set of 454 tiles and test set of 92 images of 540 × 640 pixels.
Images were of cultivar Honey Gold and Keitt at Bungundara, QLD,
Australia, captured at night with an Azure Kinect RGB-D camera mounted
on the imaging rig described in [1].

Dataset-C
Training set of 1080 and test set of 120 bounding box snips acquired using
YOLOv4-tiny detection on Dataset-B images. Image size is variable with
width and height < 256 pixels.

https://doi.org/10.25946/21655628
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2.2. Training of YOLO and Mask R-CNN Models

Two types of CNN based models were trained: the single stage object detector YOLO
(Figure 1) and the instance segmentation model Mask R-CNN (Figure 2). Both YOLO and
Mask R-CNN models were trained on a High Performance Computing System, using a
Tesla P100 GPU with 16 GB GPU memory, 2.6 Ghz Intel Xeon Gold 6126 CPU.
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Figure 2. Mask R-CNN head architecture, involving addition of a Mask branch to ResNet [18] and
backbone with feature pyramid network (FPN) [26].

Three YOLO architectures and their tiny versions, v3, 4 and 7, were compared to the
in-house developed MangoYOLO. All models were trained on the [14] data set for 5000 it-
erations. All YOLO models compared were trained with batch size of 64, subdivision 8,
learning rate of 0.001 and momentum of 0.9. Batch normalisation was used, and activation
function used was leaky ReLU. Input resolution for all models set to 608 × 608, and all
models trained in Darknet platform (https://github.com/AlexeyAB/darknet, accessed on
15 October 2022).

Mask R-CNN models were trained for 50 epochs using Dataset-B and Dataset-C
(Table 1). The datasets were annotated with VGG Image Annotator [27] using polygon
annotation tool to create pixel-level ground truth annotation of training and test data. The
dataset was randomly divided into a training set of 454 images (83%) and a test set of
92 images (17%). A pre-trained (on COCO dataset) ResNet-101 model was used for transfer
learning. A learning rate 0.001, momentum 0.9, and a RPN NMS threshold of 0.7 were
applied. All network layers were trained. For use of Mask R-CNN with bounding boxed
images, a data set of 1200 snips of individual mango fruit were acquired from YOLOv4-tiny
model detections in Dataset-B images. Two instance segmentation models were trained
using the Matterport implementation of Mask R-CNN (https://github.com/matterport/
Mask_RCNN, accessed on 15 October 2022), and the two best performing models were
used in the study.

An example output from detection model in each method is provided in Figure 3.

https://github.com/AlexeyAB/darknet
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
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 1 Figure 3. Example of model outputs for: (i) YOLOv4-tiny bounding box on detected fruits; (ii) Mask
R-CNN instance segmentation on image tile; (iii) instance segmentation applied to bounding box
produced by a YOLOv4-tiny detection model.

2.3. Fruit Sizing Methods

Three approaches to fruit sizing were compared.
Method 1 employed a YOLOv4-tiny detection model as an object detection model,

replacing the cascade detector used by [9]. Each output bounding box was expanded
by 5 pixels on each side to ensure that all fruit pixels were included inside the box. The
OpenCV implementation of Otsu’s thresholding method was then used to segment fruit
pixels as a binary threshold image. As a replacement to the hand-crafted feature for
line filtering used in [12], OpenCV’s structuring element filtering was applied using a
2 × 10 kernel applied both horizontally and vertically to eliminate noise and remove
stalk and panicles, if present, in the segmented image (Figure 4, rows i and ii). This
solution is not always effective (see Figure 4, rows iii and iv), e.g., in situations where:
(i) background objects, although linear in appearance, are larger than the structuring
element kernel (morphological operation problem), and (ii) the colour of the background is
very similar to the fruit colour (thresholding problem), compared to instance segmentation
(Figure 3). Ellipse and minimum bounding rectangle fitting on the segmented binary mask
was then applied, with criteria on depth, ellipse area vs mask area, major axis length vs
rectangle height and overall pixel size of the mask used to filter out images with incomplete
segmentation or object occlusion by another fruit or leaves.

The image processing pipeline of Method 1 is illustrated in Figure 5.
A Mask R-CNN model was used to segment fruit pixels on the images in two

approaches–(a) using the entire image (Method 2, Figure 6) and (b) using image snips
defined by bounding boxes generated by the YOLOv4-tiny detector (Method 3, Figure 7).

Method 2 avoided use of the YOLO detection model by employing the instance seg-
mentation model Mask R-CNN with ResNet-101 as extraction backbone network, feature
pyramid network (FPN) and path aggregation network (PAN) (Figure 2). Masked instances
generated by segmentation network is further analysed by fitting ellipse and minimum
bounding rectangle (Figure 6). Exclusion criteria were then applied to filter out incomplete or
overfitted masks per instance. An example output image using Method 2 is shown in Figure 8.



Horticulturae 2022, 8, 1223 7 of 17

Horticulturae 2022, 8, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 3. Example of model outputs for: (i) YOLOv4-tiny bounding box on detected fruits; (ii) Mask 

R-CNN instance segmentation on image tile; (iii) instance segmentation applied to bounding box 

produced by a YOLOv4-tiny detection model. 

2.3. Fruit Sizing Methods 

Three approaches to fruit sizing were compared. 

Method 1 employed a YOLOv4-tiny detection model as an object detection model, 

replacing the cascade detector used by [9]. Each output bounding box was expanded by 5 

pixels on each side to ensure that all fruit pixels were included inside the box. The 

OpenCV implementation of Otsu’s thresholding method was then used to segment fruit 

pixels as a binary threshold image. As a replacement to the hand-crafted feature for line 

filtering used in [12], OpenCV’s structuring element filtering was applied using a 2 × 10 

kernel applied both horizontally and vertically to eliminate noise and remove stalk and 

panicles, if present, in the segmented image (Figure 4, rows i and ii). This solution is not 

always effective (see Figure 4, rows iii and iv), e.g., in situations where: (i) background 

objects, although linear in appearance, are larger than the structuring element kernel 

(morphological operation problem), and (ii) the colour of the background is very similar 

to the fruit colour (thresholding problem), compared to instance segmentation (Figure 3). 

Ellipse and minimum bounding rectangle fitting on the segmented binary mask was then 

applied, with criteria on depth, ellipse area vs mask area, major axis length vs rectangle 

height and overall pixel size of the mask used to filter out images with incomplete seg-

mentation or object occlusion by another fruit or leaves. 

(a) (b) (c) (d)  

    

(i) 

    

(ii) 

 
(i) 

 
(ii) 

 
(iii) 

 1 

Horticulturae 2022, 8, x FOR PEER REVIEW 7 of 17 
 

 

    

(iii) 

    

(iv) 

Figure 4. Segmentation using thresholding and morphological transformation: (a) image from 

YOLOv4-tiny bounding box, (b) thresholding using Otsu’s method, (c) stalk and noise removal us-

ing structuring element filtering with horizontal (2 × 10 pixels) and vertical (10 × 2 pixels) kernel 

filtering applied, (d) segmented portion of RGB image. Examples (i) and (ii) represent well seg-

mented fruit, while (iii) and (iv) represent problems resulting from overlap with other fruit and 

leaves. Image (iii) is common to Figure 3. 

The image processing pipeline of Method 1 is illustrated in Figure 5. 

 

Figure 5. Method 1–Fruit sizing based on YOLOv4-tiny detection and Otsu’s thresholding. This 

method is an adoption of Wang et al. [9], with changes in object detector and filter for stalk removal. 

A Mask R-CNN model was used to segment fruit pixels on the images in two ap-

proaches–(a) using the entire image (Method 2, Figure 6) and (b) using image snips de-

fined by bounding boxes generated by the YOLOv4-tiny detector (Method 3, Figure 7). 

Method 2 avoided use of the YOLO detection model by employing the instance seg-

mentation model Mask R-CNN with ResNet-101 as extraction backbone network, feature 

pyramid network (FPN) and path aggregation network (PAN) (Figure 2). Masked in-

stances generated by segmentation network is further analysed by fitting ellipse and min-

imum bounding rectangle (Figure 6). Exclusion criteria were then applied to filter out in-

complete or overfitted masks per instance. An example output image using Method 2 is 

shown in Figure 8. 

Figure 4. Segmentation using thresholding and morphological transformation: (a) image from
YOLOv4-tiny bounding box, (b) thresholding using Otsu’s method, (c) stalk and noise removal using
structuring element filtering with horizontal (2 × 10 pixels) and vertical (10 × 2 pixels) kernel filtering
applied, (d) segmented portion of RGB image. Examples (i) and (ii) represent well segmented fruit,
while (iii) and (iv) represent problems resulting from overlap with other fruit and leaves. Image (iii) is
common to Figure 3.
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Figure 8. An example output image using Method 2, criteria set B. Fruit enclosed with green bounding
box and blue ellipse are non-occluded fruits and considered for sizing. Fruit enclosed by red ellipse
are occluded or failed to fulfil criterion set.

Method 3 is a combination of both detection and instance segmentation methods
(Figure 7) with the intent of increasing segmentation accuracy with some compromise
to processing time. YOLOv4-tiny detection model was used to detect fruit on tree and
extract bounding box coordinates with confidence score. The bounding box is expanded by
5 pixels on all sides to ensure fruit is enclosed by the bounding box. A Mask R-CNN model
trained on fruit snips was then used to segment fruit pixels inside each bounding box.
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In all three methods, fruit size was extracted from the height and width of the refined
bounding box that enclosed the largest connected component (masked region). Pixel
number was converted to length (mm) using thin lens theory (Equation (1)), where D is
the camera to object distance, estimated as the average of distance values for a 5 × 5 pixel
array from the centre of each refined bounding box.

f
D

=
image size
real size

(1)

where f is the focal length of the camera, which is different for x-axis and y-axis, and is
obtained from the intrinsic parameters of the depth camera.

2.4. Estimation of Fruit Mass

Mass of mango fruit (M) can be estimated using linear dimensions (cm) of length (L),
width (W) and thickness (T) [28]. The linear relationship M = kLWT, where k is a factor
between 0.49–0.51, was found robust across various growth stages and growing conditions
(e.g., R2 of 0.97 and RMSE of 28.7 g [29]).

However, while fruit L can be estimated from images of on-tree fruit viewed from
the inter-row, i.e., the camera perspective, the orientation of the fruit is not controlled. As
per [9], the horizontal width of the visible fruit will be, on average, the mean of W and T,
and M can be calculated as:

M = kL
(

W + T
2

)2
(2)

2.5. Exclusion Criteria

In a tree canopy image, fruit may be occluded by leaves, branches or other fruit
(Figure 9). As mango fruit are not spherical, the size of occluded fruit cannot be estimated
by simple projection of the visible contour, as undertaken by Gené-Mola, et al. [6] for apple.
It is therefore necessary to reject occluded fruit from the measurement pipeline.

Horticulturae 2022, 8, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 8. An example output image using Method 2, criteria set B. Fruit enclosed with green bound-

ing box and blue ellipse are non-occluded fruits and considered for sizing. Fruit enclosed by red 

ellipse are occluded or failed to fulfil criterion set. 

2.4. Estimation of Fruit Mass 

Mass of mango fruit (𝑀) can be estimated using linear dimensions (cm) of length (𝐿), 

width (𝑊) and thickness (𝑇) [28]. The linear relationship 𝑀 = 𝑘𝐿𝑊𝑇, where k is a factor 

between 0.49–0.51, was found robust across various growth stages and growing condi-

tions (e.g., 𝑅2 of 0.97 and 𝑅𝑀𝑆𝐸 of 28.7 g [29]). 

However, while fruit L can be estimated from images of on-tree fruit viewed from 

the inter-row, i.e., the camera perspective, the orientation of the fruit is not controlled. As 

per [9], the horizontal width of the visible fruit will be, on average, the mean of 𝑊 and 

𝑇, and 𝑀 can be calculated as: 

𝑀 = 𝑘𝐿 (
𝑊+𝑇

2
)

2

  (2) 

2.5. Exclusion Criteria 

In a tree canopy image, fruit may be occluded by leaves, branches or other fruit (Fig-

ure 9). As mango fruit are not spherical, the size of occluded fruit cannot be estimated by 

simple projection of the visible contour, as undertaken by Gené-Mola, et al. [6] for apple. 

It is therefore necessary to reject occluded fruit from the measurement pipeline. 

 

Figure 9. Examples of fruit occlusion by (i) leaf, (ii) other fruit; (iii) panicle. 

   
(i) (ii) (iii) 

 1 Figure 9. Examples of fruit occlusion by (i) leaf, (ii) other fruit; (iii) panicle.

The criteria of Wang, et al. [9] on features of an ellipse fitted to the object were adopted
(criteria set B) and adapted (criteria set A) to judge whether a mango fruit was occluded or
completely imaged (Table 2).

Table 2. Criteria sets for identification and exclusion of partly occluded fruit.

Criteria Criteria Set-B Criteria Set-A

Threshold for ellipse area in pixels 500 to 12,000 500 to 12,000

Area ratio between area inside contours and ellipse area >0.97 >0.90

Eccentricity of ellipse (fitted ellipse being closer to circle) <0.75 <0.8

Absolute difference between refined bounding box
height and ellipse major axis length (in pixels) <5 <8
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Two stages were implemented in dealing with overlapping fruit detected with YOLO
and marked with bounding boxes. First, the intersection between detected bounding boxes
was calculated and a specification of <20% of intersection of bounding boxes employed for
size measurement of detected objects (fruit). Next, objects were excluded based on depth
information, with the mean non-zero depth value of a 5 × 5 pixel matrix from the centre of
each bounding box calculated and the fruit (bounding box) at the greater distance (>3.5 m)
excluded from the sizing pipeline.

For the Mask R-CNN output, a bounding rectangle fitted to mask area was used to
estimate height and width of each segmented fruit instance. An ellipse was fitted to the
mask contours. Outputs of ellipse and mask area ratio, ellipse major axes and mask height
difference, segmented area pixel number and depth values at the centre of bounding boxes
were used in criteria for fruit to be eligible as candidates for size estimation.

2.6. Fruit Sizing Exercises

Images of fruit on tree (cultivars Honey Gold and Keitt) were acquired at night using
an Azure Kinect RGB-D camera mounted to the orchard imaging system used by [1].

In one exercise, images of tree canopies were acquired approximately two weeks
before commercial harvest with the camera in a stationary position. Every fruit in the field
of view was then labelled for reference. The length and width of labelled fruit was then
manually assessed using a calliper (DCLR-1205, Clockwise Tools, Valencia, CA, USA) with
a manufacturer reported measurement accuracy of ±0.04 mm. As an estimate of reference
method error, the standard deviation of repeat measurements of mango fruit dimensions
using a calliper was assessed to be 1.2 mm (n = 50). Fruit were then harvested and weighed
to an accuracy of 1 g (PGL-2002, Adam Equipment, Perth, WA, Australia). This process
was undertaken for 60 fruit of the cultivar Honey Gold and 44 fruit of the cultivar Keitt
(Table 3).

Table 3. Fruit lineal dimensions as assessed using calipers, for two populations of fruit.

Length (mm) Width (mm) Weight (g)
MAX MIN AVG SD MAX MIN AVG SD MAX MIN AVG SD

HG (n = 60) 128.2 82.7 107.5 9.4 110.3 65.1 91.2 10.1 - - - -
Keitt (n = 44) 160.9 75.5 110.1 17.0 122.8 66 88.6 12.6 1430 180 499 247

In a second exercise, images of tree canopies were acquired with the camera moving
past the trees at approximately 6 km/h. Images were acquired at 5 fps of each side of a
750 m row of Honey Gold trees (approximately 150 trees).

2.7. Statistics

The following statistics were used in characterisation of performance of object detec-
tion models and to analyse output sizing data:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × precision.recall
(precision + recall)

(5)

Average Precision (AP) = ∑N
i=1 (Ri+1 − Ri)

max P(r)
r ≥ Ri+1

(6)

Mean Average Precision (mAP) =
1
N ∑N

i=1 APi (7)
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where TP = true positives, FP = false positives, and FN = false negatives.
The following statistics were used in characterisation of the fruit sizing methods,

relative to manually assessed fruit dimensions, where n = total number samples, y = ground
truth values, yi = predicted values and y = mean of ground truth values.

RMSE =

√
∑n

i=1(y − yi)
2

n
(8)

R2 = 1 − Sum o f squares o f residuals (RSS)
Total sum o f squares (TSS)

= 1 − ∑n
i=1(y − yi)

2

∑n
i=1(y − y)2 (9)

Bias = Ground truth values − predicted values (10)

The sample size required to adequately represent a population was estimated as:

n = t
(

SD
e

)2
(11)

where e denotes accepted error at desired probability level, SD denotes standard deviation
of population, and t denotes associated t statistic value.

3. Results and Discussion
3.1. Model Performance for Fruit Detection

Several full and tiny YOLO versions were trained and tested using the images sets
of Koirala et al. (2019), allowing direct comparison with the previously published results
of MangoYOLO. An example Precision–Loss chart is provided from the training of the
YOLOv4-tiny model, for which average precision plateaued after 2000 iterations (Figure 10)
at 0.986 mean average precision (mAP) with a F1 score of 0.94 at 0.5 IoU threshold, with
a detection speed of 5.5 ms per 612 × 512 pixels tiled image while using 655 Mb GPU
memory (Tesla P100 GPU) and 23 ms per full image (1920 × 1080 pixel image) (i.e., capable
of processing~43 fps) with use of 1261 Mb of GPU memory.

The performance of the YOLO models were similar in terms of mAP, and the light
versions had similar inference time (Table 4). We conclude that while YOLO continues to
evolve, the improvement in object detection accuracy for the mango fruit on tree application
is relatively minor, with research effort better placed into other aspects of the application.
YOLOv4-tiny was adopted in this study based on its small model size and high inference
speed, which allows for real-time use on edge computing devices.

Training of the Mask R-CNN model converged well within ten epochs, indicating no
significant model overfitting (Figure 11). The model trained for 50 epochs with Resnet-101
backbone had the best mAP (see Table 5). The best mAP achieved was 95.6 for a model
trained with tiled image sets. The segmentation model trained with ResNet-101 backbone
was used for the fruit sizing exercises in this study.



Horticulturae 2022, 8, 1223 12 of 17
Horticulturae 2022, 8, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 10. Precision-Loss chart for the training of YOLOv4-tiny model. 

The performance of the YOLO models were similar in terms of mAP, and the light 

versions had similar inference time (Table 4). We conclude that while YOLO continues to 

evolve, the improvement in object detection accuracy for the mango fruit on tree applica-

tion is relatively minor, with research effort better placed into other aspects of the appli-

cation. YOLOv4-tiny was adopted in this study based on its small model size and high 

inference speed, which allows for real-time use on edge computing devices. 

Table 4. Performance comparison of YOLO models for a mango fruit detection application. Training 

and test sets of [13] were used. Best result for a given criterion is shown in bold. 

Models 
mAP  

IoU = 0.5 

At Confidence Threshold 0.80 
Speed (ms) BFLOP 

Model 

Weights (MB) F1 FP Avg. IoU (%) 

MangoYOLO 98.55 0.95 22 79.1 5.71 15.6 52.5 

YOLOv3 98.96 0.94 26 82.6 28.9 139.5 234.9 

YOLOv3-tiny 98.06 0.93 23 80.7 5.2 11.6 33.1 

YOLOv4 99.2 0.97 26 82.9 32.2 127.3 244.2 

YOLOv4-tiny 98.63 0.94 22 82.4 5.5 14.5 22.4 

YOLOv7 99.11 0.89 1 86.8 27.6 103.2 139.4 

YOLOv7-tiny 99.02 0.91 3 86 7.7 11.8 23 

Note: mAP denotes mean average precision, F1 denotes harmonic mean of precision and recall, FP 

denotes false positive, IoU denotes intersection over union and BFLOP denotes billion floating point 

operations. 

Training of the Mask R-CNN model converged well within ten epochs, indicating no 

significant model overfitting (Figure 11). The model trained for 50 epochs with Resnet-101 

backbone had the best mAP (see Table 5). The best mAP achieved was 95.6 for a model 

trained with tiled image sets. The segmentation model trained with ResNet-101 backbone 

was used for the fruit sizing exercises in this study. 

Table 5. Mean average precisions (mAP) of trained Mask R-CNN models. 

Model mAP (Tiled Images) mAP (Bounding Box Snips) 

Mask R-CNN (ResNet101) 95.6 85.28 

Mask R-CNN (Resnet50) 88.35 78.75 

Figure 10. Precision-Loss chart for the training of YOLOv4-tiny model.

Table 4. Performance comparison of YOLO models for a mango fruit detection application. Training
and test sets of [13] were used. Best result for a given criterion is shown in bold.

Models mAP
IoU = 0.5

At Confidence Threshold 0.80
Speed (ms) BFLOP

Model
Weights (MB)F1 FP Avg. IoU (%)

MangoYOLO 98.55 0.95 22 79.1 5.71 15.6 52.5
YOLOv3 98.96 0.94 26 82.6 28.9 139.5 234.9

YOLOv3-tiny 98.06 0.93 23 80.7 5.2 11.6 33.1
YOLOv4 99.2 0.97 26 82.9 32.2 127.3 244.2

YOLOv4-tiny 98.63 0.94 22 82.4 5.5 14.5 22.4
YOLOv7 99.11 0.89 1 86.8 27.6 103.2 139.4

YOLOv7-tiny 99.02 0.91 3 86 7.7 11.8 23

Note: mAP denotes mean average precision, F1 denotes harmonic mean of precision and recall, FP denotes false
positive, IoU denotes intersection over union and BFLOP denotes billion floating point operations.
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Table 5. Mean average precisions (mAP) of trained Mask R-CNN models.

Model mAP (Tiled Images) mAP (Bounding Box Snips)

Mask R-CNN (ResNet101) 95.6 85.28

Mask R-CNN (Resnet50) 88.35 78.75

3.2. Exclusion of Occluded Fruit

The YOLOv4-tiny detector used in Method 1 and 3 achieved detection of 157 fruit,
whereas the Mask R-CNN instance segmentation employed in Method 2 detected 160 fruit
in the same images. A manual count of fruit on images was 154, suggesting few false
positives in the detection.

The stricter settings of criteria B resulted in rejection of 42% of detected fruit (average
across the three methods), compared to 26% for criteria A (Table 6). There was an interaction
between Method and criteria set, with Method 2 and 3 resulting in the lowest and highest
exclusion rates respectively.

Table 6. Percentage of sample fruit accepted by two criteria for each of three sizing methods.

Exclusion Criteria
Fruit Acceptance (%)

HG Keitt Total

Criteria—A
Method 1 80 68 75
Method 2 80 77 79
Method 3 67 68 67

Average 74

Criteria—B
Method 1 45 52 48
Method 2 71 68 70
Method 3 58 50 55

Average 58

To compare processing time for all methods, a single image of 1920 × 1080 pixels was
processed using a 7th generation Intel Core i5 processor. Method 1 processed an image in
1.4 s, while Methods 2 and 3 took 5.5 and 15.5 s, respectively. These processing times can be
improved significantly with the use of dedicated GPU and using optimised models, such
as TensorRT models. Further research will be focused on optimizing the image processing
pipeline for GPU enabled edge devices.

Unlike fruit load estimation, an orchard assessment of fruit size distribution does not
require assessment of all fruit. The number of samples (n) required for a reliable estimate
of the population mean is a function of population SD, accepted error (e) and desired
probability level and associated t statistic (t) [27] (Equation (11)). For example, given e of
2 mm and a SD of fruit length of 17 mm (for Keitt, Table 3), at a 95% probability and using
Equation (11), the required n is 141. Thus, the exclusion of a large number of fruits in a
processing pipeline is not of concern, unless the size distribution of excluded fruit differs
from that of the population mean. This was not the case in practice for either Honey Gold
or Keitt populations (Table 7).

Table 7. Mean ± SD of calliper length measurements for populations retained and excluded on the
basis of criteria to identify occluded fruit for Method 2, Criteria A and B. Units are in mm.

Retained HG
(mm)

Excluded HG
(mm)

Retained Keitt
(mm)

Excluded Keitt
(mm)

Criteria—A
L 107.3 ± 10.0 108.0 ± 6.0 113.3 ± 17.3 99.1 ± 9.9
W 90.9 ± 10.6 91.6 ± 8.2 91.17 ± 12.4 79.8 ± 8.8

Criteria—B
L 107.4 ± 9.7 107.7 ± 8.4 110.6 ± 15.8 108.9 ± 18.5
W 92.2 ± 9.9 88.8 ± 10.3 89.13 ± 11.3 87.4 ± 14.5
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3.3. Fruit Sizing Method Evaluation

For fruit length evaluation, the best sizing assessment result, in terms of RMSE and R2,
was achieved using Method 2 for the Honey Gold population, with the result improved
by use of exclusion criteria B compared to criterion A. Method 2 also gave the best RMSE
and R2 for the Keitt population under criteria set A, but Method 3 did best under criteria
set B. Absolute bias varied between 0.7 and 4.2 mm, with the minimum bias achieved with
Method 1 in three of the four cases considered. Based on RMSE, Method 2 is recommended,
although processing speed was one third of Method 1. The harsher exclusion criteria in set
B is recommended.

3.4. Fruit Weight Estimation

Fruit weight was related to lineal measurements of fruit by a linear and a power
function by [28]. For Keitt fruit, weight (W) estimation from calliper measurements of
lineal dimensions (L, W and T), the linear relationship M = kLWT was characterised by a
R2 = 0.9977 and RMSE = 11.8 g, while for a power function (M = C1(LWT)C2 ) R2 = 0.9995

and RMSE = 12.4 g, where C1 and C2 are constants. The relationship of M = kL
(

W+T
2

)2

was characterised by a linear correlation R2 = 0.9996 and RMSE = 11.7 g, and a power

function (M = C1

(
L
(

W+T
2

)2
)C2

), with R2 = 0.9995 and RMSE = 12.4 g, where C1 = 0.5757

and C2 = 0.9895. The linear relationship is thus recommended over the power function.
Using machine vision estimates of fruit length and width, fruit weight estimated using a
linear correlation model for this fruit population (range of 180 and 1130 g, Table 3) was
characterised by an R2 of 0.83, bias of −114 g and bias-corrected RMSE of 113 g.

The estimation of mass of a mango fruit on-tree from lineal dimensions is prone to
greater error than for a circular-symmetric fruit, given the variation in mango fruit width
in different orientations. Thus, while the RMSE on estimation of fruit lineal dimension in
this study (4.7 mm) (Table 8) was comparable to that achieved in other studies and other
fruit, e.g., 4.9 mm RMSE for mango length [9] and 5.1 mm RMSE for apple diameter at 40%
visibility of fruit surface [6], the RMSE on estimation of mass was large, at 113 g, compared
to that for axi-symmetric fruit, e.g., 18 g for tomato [23] and 15.5 g or for passion fruit [30].
Authors of [31] reported 95 and 96.7% accuracy on mass estimates for carrot and cucumber,
respectively. For mango, [3] reported a RMSE of 10.4 g based on segmented fruit area,
for measurements made in a well-lit indoor environment involving non-occluded fruit.
However, [28] reported up to 29% over estimation of fruit mass for estimates based on
machine vision measurements of fruit length only. This study achieved a lower bias for
machine vision-based estimates of mango fruit mass through use of the two dimensions of
length and apparent width.

Table 8. Statistics of RMSE, R2 and bias on estimation of fruit length using three methods (M1:
YOLOv4-tiny with Otsu’s thresholding; M2: Mask R-CNN segmentation method; M3: YOLOv4-tiny
bounding box + instance segmentation) and two criteria. Units of RMSE and bias are mm. Best result
for each population and metric is bolded.

Honey Gold Keitt

M1 M2 M3 M1 M2 M3

Criteria—A
RMSE 6 5.2 6 7.6 7.8 6.5

R2 0.7 0.8 0.7 0.9 0.9 0.9
Bias 0.7 2 1.5 −1.3 −3.8 −4.2

Criteria—B
RMSE 5.9 4.7 5.4 6.8 5.1 5.6

R2 0.8 0.9 0.8 0.9 0.9 0.9
Bias 3 3.1 1 −2.1 −2.4 −3.8
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To demonstrate the intended practical use, Method 2 with criteria set B was employed
on video of an orchard row, with output of a fruit length and weight frequency distribution
(Figure 12). This information could be used to assist harvest timing decisions given
information on rate of size increase and target size, and in evaluation of the proportion of
fruit in populations from different flowering events.
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Figure 12. Frequency distribution of (i) fruit length and (ii) fruit weight, based on fruit lineal
dimensions estimated from Honey Gold orchard row imaged at 5 fps. Fruit weight categories match
those of Australian fruit tray sizes. Fruit weight was calculated using estimated length and width.

4. Conclusions

Much published effort has been placed into comparison of object detectors. For our
application case, the detection performance of the YOLO versions was similar, with mAP
between 98.6 and 99.2% across six architectures. We suggest research effort is therefore
better placed in other aspects of the application. The tiny variants of each YOLO version
were around one-tenth the model size and five times the speed of the full-size version,
while detection performance was similar. Deployment of the tiny versions is therefore
appropriate in support of real time processing in edge computing, as required, e.g., in
automated harvesting or spray control.

For sizing of fruit on-tree, the elimination from consideration of partly occluded fruit
is required. For generation of a size frequency distribution for which only a sample of fruit
need to be assessed, the use of stricter criteria on the exclusion of fruit from consideration
is recommended for the resulting decrease in size estimation error.

For sizing of fruit within YOLO bounding box detections, use of Otsu’s thresholding
method was faster than use of Mask R-CNN instance segmentation, however, there was a
higher risk of false segmentation because of occlusions by other fruit, leaves or panicles. A
sizing method using instance segmentation of the entire images achieved the best result
in estimation of fruit size, e.g., with a RMSE of 5 mm on length estimation, resulting in
an RMSE of 113.8 g for fruit weight estimation based on L and apparent W estimates.
However, this was at the penalty of a four-fold increased processing time (1.4 to 5.5 s per
full resolution image). Improvement in these estimates could be achieved with use of
higher resolution cameras and fine-tuned instance segmentation models.
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