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Abstract: Moisture and potassium deficiency are two of the main limiting variables for squash
crop performance in many water-stressed places worldwide. If major output decreases are to be
avoided, it is critical to detect signs of crop stress as early as possible in the growth cycle. Proximal
remote sensing can be a reliable technique for offering a rapid and precise instrument and localized
management tool. This study tested the ability of proximal hyperspectral remotely sensed data to
predict squash traits in two successive seasons (spring and fall) with varying moisture and potassium
rates. Spectral data were collected from drip-irrigated squash that had been treated to varied rates
of irrigation and potassium fertilization over both investigated seasons. To forecast potassium-
use efficiency (KUE), chlorophyll meter (Chlm), water-use efficiency (WUE), and seed yield (SY)
of squash, different commonly used and newly-introduced spectral index values for three bands
(3D-SRIs), as well as a Decision Tree (DT) model, were evaluated. The results revealed that the
newly constructed three-band SRIs based on the wavelengths of the visible (VIS), near-infrared
(NIR), and red-edge regions were sensitive enough to measure the four tested parameters of squash
in this study. For instance, NDI558,646,708 presented the highest R2 of 0.75 for KUE, NDI744,746,738

presented the highest R2 of 0.65 for Chlm, and NDI670,628,392 presented the highest R2 of 0.64 for SY of
squash. The results further demonstrated that the principal component analysis (PCA) demonstrated
the ability to distinguish moisture stress from potassium deficiency stress at the flowering stage
onwards. Combining 3D-SRIs, DT-based bands (DT-b), and the aggregate of all spectral characteristics
(ASF) with DT models would be an effective strategy for estimating four observed parameters with
appropriate accuracy. For example, the model’s approximately 30 spectral characteristics were
extremely important for predicting KUE. Its outputs with R2 were, for the training and validation
datasets, 0.967 (RMSE = 0.175) and 0.818 (RMSE = 0.284), respectively. For measuring Chlm, the
DT-DT-b-20 model demonstrated the best. In the training and validation datasets, the R2 value was
0.993 (RMSE = 0.522) and 0.692 (RMSE = 2.321), respectively. The overall outcomes showed that
proximal-reflectance-sensing-based 3D-SRIs and DT models based on 3D-SRIs, DT-b, and ASF could
be used to evaluate the four tested parameters of squash under different levels of irrigation regimes
and potassium fertilizer.
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1. Introduction

Squash (Cucurbita pepo L.) is a popular cucurbit vegetable crop in many parts of
the world. It is a commercial crop that is grown in both open fields and greenhouses,
particularly in the Mediterranean region [1–3]. It provides numerous medicinal and health
benefits for humans [4], as well as adequate levels of proteins, minerals, vitamins and
carbohydrates for human nutrition [5].

Water scarcity is regarded as the most significant constraint to plant growth and devel-
opment in arid and semi-arid environments, yielding more than any other environmental
factors [6–10]. It is clear that a lack of water, even for a short period, alters the physio-
biochemical characteristics of crops, which inhibits their growth and productivity [11–13].

Fertilization is also important for absorbing macronutrients, determining their amount
in various plant organs, and determining final yield. Due to the quick accumulation
of vegetable mass in a relatively short period of harvest, squash crops are fertilization-
responsive vegetable crops [14–16]. Potassium is a vital nutrient for plant growth and
development, so developing an optimal water–potassium fertilization management strategy
to improve their application efficiency is crucial [17,18].

In locations where there is a lack of moisture and fertilization, agricultural crop pro-
duction is always monitored using point-sampling techniques (traditional methods), which
are laborious, expensive, and seem to have poor spatial representation [19–23]. Therefore,
to support current agricultural practices, especially in nations where current agricultural
systems are unable to meet the high demands of rapid population growth, robust and fast
techniques for spotting stress in various agricultural crops are necessary. Accurate, rapid,
non-destructive, and cost-effective estimation of a wide range of phenotypic crop traits is
possible with the help of proximal remote sensing, which can complement or even replace
traditional methods [24–26]. The remote sensing technique can detect even minor changes
in various biophysical and biochemical aspects of the plant canopy caused by moisture and
or fertilization deficiencies in the range from the visible (VIS) to the near-infrared (NIR)
and shortwave infrared (SWIR). Broadly, changes in above-ground biomass, leaf pigments,
leaf area index, leaf water content and nutrient content are reflected in changes in the crop
canopy’s spectral signature [27,28]. Plant pigments, such as chlorophyll and carotenoids,
absorb a lot of visible light, especially blue and red light. Furthermore, the diffusion and
scattering of radiation as a result of dry matter and leaf tissues has a significant impact on
canopy reflectance in the NIR range [29–33].

Spectral vegetation indices derived from in situ ground-based remotely sensed data
have been shown in prior studies to be useful for identifying stressed vegetation in a
wide range of agricultural crops. These include, for example: the determination of aerial
plant biomass [34–37]; chlorophyll a concentration [38–42]; crop grain yield [43,44]; leaf
area index [45–47]; nitrogen content [48,49]; water stress [31,50]; pest injuries; and plant
diseases [25,51,52]. Many earlier research studies have shown that ground-based remotely
sensed data can be utilized to evaluate growth parameters and crop health status; however,
most of the studies concentrated on detecting moisture shortage stress, whereas potassium
deficiency has received comparatively less attention in the literature. This study examined
the feasibility of utilizing ground-based remote sensing to detect potassium and moisture
stress at the canopy scale. It is crucial to make measurements at the canopy scale in order
to evaluate how well satellite imagery might be used for site-specific management.

Model-based feature selection methods, for example, identify a subset of features with
strong discriminative and foretelling power [53]. By reducing extraneous features and
limiting over-fitting, this method can improve model performance. Moreover, it retains the
initial feature representation, which boosts interpretability [54]. Prediction and modeling
increasingly require feature selection algorithms [55]. Many research studies have been
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conducted to investigate the use of various strategies for dimensionality reduction in data.
Each variable’s weighed regression coefficient in the partial least-squares (PLS) model
highlights the importance of wavelength in the model for partial least-square regression
(PLSR) [56]. In the decision tree (DT) and random forest (RF), all variables are ranked in
order of relevance [57]. Glorfeld [58] created a back-propagation neural network index
for identifying the most important variables. Furthermore, hyper-parameter selection
has a substantial influence on the ability of any machine learning (ML) model, which has
numerous benefits: it has the potential to improve the performance of ML algorithms [59],
as well as the repeatability and fairness of scientific studies [60]. It might play a crucial role
in improving the prediction model because it has direct influence over training algorithm
behavior [61]. Consequently, we may expect that changing hyper-parameters will have a
remarkable influence on the accuracy of squash crop quality measurements.

The objectives of the current study were to (i) estimate the effects of irrigation treat-
ments and potassium fertilization on four traits of squash (KUE, Chlm, WUE and SY);
(ii) evaluate the performance of common and three-band SRIs to assess the four traits of
squash; (iii) assess the potential role of ground-based remote sensing based on spectral
bands to detect and distinguish water and potassium stress spectrally; and (iv) evaluate
the performance of the DT model based on the spectral bands, SRIs and data fusion of both
spectral bands, and of SRIs to predict the four investigated traits of squash.

2. Materials and Methods
2.1. Experimental Description

Over the spring and fall seasons of 2018, two field experiments were conducted at
a private farm in the Elshagaa region, Egypt (latitude of 30◦4′12” N and longitude of
30◦19′48′′ E). Non-disturbed soil samples were taken at two depths of the soil profile (0–30,
and 30–60 cm) to identify some physical and chemical characteristics of the experimental
soil, which was classified as loamy sand in texture, with an average bulk density of 1.53
g cm−3, an electrical conductivity (EC) of 1.32 dS m−1, and a pH of 7.39. The particle
size distribution was found to be 87.3% sand, 6.36% silt, and 6.34% clay. The chemical
analysis of the experimental soil, which includes cations and anions, is shown in Table 1.
Squash was planted in the first week of March and the last week of July, with a growing
season of around 100 days from planting to harvest. In addition, the soil’s hydrophysical
characteristics were determined as detailed in Table 2. Nitrogen fertilization in the form of
ammonium nitrate was applied in three equal doses at 30, 45 and 60 days after planting at
a rate of 285 kg N ha−1.

Table 1. Some chemical analysis of the experimental soil at different depths.

Soil Depth, cm EC, dS/m−1 pH
Cations, Meq/L Anions, Meq/L

Mg++ Ca++ K+ Na+ Co3−−− HCo3−− Cl− So4−−

0–30 1.32 7.39 3.2 3.21 1.28 4.77 0.0 2.71 7.18 2.54
30–60 1.17 7.21 3.33 3.34 1.37 4.61 0.0 2.77 7.36 2.51

Table 2. Mechanical analysis and some soil physical properties.

Depth, cm ρb, g cm−3 FC, % WP, % AW, %
Particle Size Distribution, %

Texture
Sand Silt Clay

0–30 1.40 16.9 9.34 7.56 87.3 6.36 6.34 Loamy
sand

30–60 1.56 15.13 8.35 6.78 86.3 7.52 6.18 Loamy
sand

FC, field capacity; WP, wilting point; AW, available water; ρb, bulk density.

2.2. Solar–Powered Pumping and Drip Irrigation Systems

The solar–powered pumping system comprised 40 solar cells (JKM 250P-60) placed in
two groups of 20 modules each, which were connected in series before being connected
together in parallel (Figure 1). Every solar module measured 165 cm length, 99.2 cm
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in width and 4 cm in thickness. To collect the most sunlight, the solar cell system was
directed toward the south. The 40 PV cells (250 W) generated enough energy required
to operate the submersible pump, which supplied the required amount of water for the
entire farm. This solar-powered irrigation system was built to irrigate around 10 hectares
farm. Solar radiation fluctuated throughout the year, with maximum and minimum val-
ues of 7.1 and 3.8 kWh m−2 recorded in June and December, respectively. The solar
power system was connected to a 10 kW power controller (PS9K2) with 98% overall effi-
ciency. Water was delivered to either a drip irrigation system or a concrete water reservoir
(10 m length × 10 m width × 5 m depth) by a 7.5 kW PUC-SJ30-7 submersible pump.
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Figure 1. A schematic layout of the solar-powered pumping system connected with the drip irrigation
network. K1, K2 and K3 are 150, 200, and 250 kg/ha of potassium treatments, respectively.

The drip irrigation system was used to irrigate the experimental plots, which consisted
of 16 mm polyethylene lateral lines spaced at 1.0 m and emitters spaced at 0.5 m. In the
system, a pressure differential tank was installed for the application of different fertilizers.
An experimental unit was tested with three replicates using a split-plot design with nine
35 m long lateral lines with 4 L h−1 built-in emitters. The primary plots received irrigation
treatments at random, while the secondary plots received K rates. Using Class A pan
evaporation data, the applied irrigation water was determined based on reference evapo-
transpiration (ETo). With three replicates, the experiment was set as a split-plot design. The
primary plots were watered at a certain pace, whereas the secondary plots were fertilized
with potassium at a different rate. Squash plants were given nine various combinations
of moisture (1.00, 0.75 and 0.50 ETc) and potassium rates (100, 150 and 250 kg K ha−1).
Starting two weeks after planting, potassium fertilization was applied weekly throughout
the growing cycle, with the total amount of K varying based on the rate of each treatment.
All experimental plots were fully irrigated for 21 days to guarantee the best germination
ratio, and then various treatments were applied.

2.3. Calculation of Irrigation Water Requirements

According to the formula of Doorenbos and Kassam [62], reference evapotranspiration
(ETo) was calculated according to the Class A pan evaporation technique as follows:

ETo = Epan× Kpan (1)

where ETo represents the reference evapotranspiration (mm d−1), Epan represents the daily
measured pan evaporation (mm d−1), and Kpan is the pan coefficient, which was taken
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as 0.75 for the experimental location based on the local climatic conditions. According to
Vermeiren and Jopling [63], the total irrigation water applied was calculated as follows:

AIW =
ETo× Kr× I

Ea
(2)

where AIW represents the total depth of applied water, mm; ETo the reference evapotran-
spiration, mm day−1; and the reduction factor, Kr, is influenced by the type of ground
cover. According to James [64], this was assumed to be 1.0 (spacing between drip lines was
<1.8 m). Ea is the drip irrigation system efficiency, which was assumed to be on average 0.8.
I is the irrigation interval, days.

Irrigation time was identified before each irrigation event according to Ismail [65]
as follows:

T = (
AIW × A

q
) (3)

where T is the duration of irrigation (h), A is the area sprayed by each emitter (m2), and q is
the discharge rate of the emitters (h−1 L).

According to the previous equations, the total amounts of water applied to different
treatments in both investigated seasons were 371 and 308 mm for 1.00 ETc for the spring and
fall seasons, respectively. The watering regimes of 0.75 and 0.50 ETc were then identified as
percentages of 1.00 ETc for both seasons.

2.4. Determination of Squash Seed Yield and Chlorophyll Meter

At harvest, a 4 m2 area from each treatment was collected to assess the overall pro-
duction of squash seeds. Concurrent with collecting spectra reflectance from the squash
canopy, we also measured the Chlm at the leaves. Each treatment’s Chlm was measured
with the use of a handheld SPAD chlorophyll meter (Konica-Minolta, Osaka, Japan).

2.5. Water-Use Efficiency

The following equation was implemented to determine water-use efficiency:

WUE =
squash seed yield (kg ha−1)

applied irrigation water (m3 ha−1)
(4)

2.6. Potassium-Use Efficiency (KUE)

Potassium-use efficiency represents the ratio between squash seed yield and the entire
amount of potassium added to the crop over the growing season, and was calculated as
follows:

KUE =
Y
K

(5)

where KUE represents the potassium-use efficiency, kg of squash seeds (kg K2O5)−1; Y
refers to the seed squash yield in kg ha−1 in a certain treatment; and K is the applied
amount of K2O5 to the same treatment.

2.7. Reflectance Measurement Acquisition and Selection of Spectral Reflectance Indices

The spectra of squash plants’ canopies were measured with a spectroradiometer from
ASD that had a field of view of 3.5◦. Because of the need for a wider scanning area, the
detector was mounted on the end of a telescopic pole and maintained at a fixed height of
about 1.25 m above the ground. The spectrometer could measure light with a wavelength
of from 350 nm to 1075 nm. On cloud-free days between 11:30 to 13:30 h GMT, spectra
were acquired from crop canopies under sun radiation. The spectrum reflectance of the
sensor was calibrated using a white spectralon. Processed spectra were then used to derive
different SRIs. Table 3 lists some of the most widely used SRIs as well as the method for
calculating, along with references. Eighteen SRIs, including the six most widely used SRIs
and twelve freshly advanced three-band (3-D) SRIs, were examined (Table 3). Statistics
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were displayed on contour maps as determination coefficients (R2) between four measured
parameters (KUE, Chlm, WUE, and SY) with three-band SRIs (Figure 2). These indices
were calculated by integrating potentials at any three wavelengths from a spectrum region
ranging from 390 to 750 nm. According to Elsayed et al. [66], three-dimensional spectral
reflectance maps were created. The provided maps are critical for establishing the optimal
spectral region with feasible wavelengths and understanding the significance of three-band
SRIs (Table 3).

Table 3. Several SRI indices explored in this study are described.

SRIs Formula References

Published SRIs
NDI780,550 (R780 − R550)/(R780 + R550) [67]
Normalized chlorophyll index (NCI) (R750 − R678)/(R750 + R678) [68]
Normalized difference index (NDI970,670) (R970 − R670)/(R970 + R670) [66]
Normalized water index 1 (NWI-1) (R970 − R900)/(R970 + R900) [69]
Normalized water index 3 (NWI-3) (R970 − R880/(R970 + R880) [70]
Normalized water index 41 (NWI-4) (R970 − R920/(R970 + R920) [71]
Newly three-band SRIs
Normalized difference index (NDI)
NDI558,646,708 (R558 − R646 − R708)/(R558 + R646 + R708) This work
NDI538,708,648 (R538 − R708 − R648)/(R538 + R708 + R648)
NDI558,644,708 (R558 − R644 − R708)/(R558 + R644 + R708)
NDI744,746,738 (R744 − R746 − R738)/(R744 + R746 + R738)
NDI704,580,712 (R704 − R580 − R712)/(R704 + R580 + R712)
NDI704,712,582 (R704 − R712 − R582)/(R704 + R712 + R582)
NDI602,598,600 (R602 − R598 − R600)/(R602 + R598 + R600)
NDI644,630,652 (R644 − R630 − R652)/(R644 + R630 + R652)
NDI648,662,624 (R648 − R662 − R624)/(R648 + R662 + R624)
NDI670,628,392 (R670 − R628 − R392)/(R670 + R628 + R392)
NDI572,558,602 (R572 − R5508 − R602)/(R572 + R558 + R602)
NDI670,630,392 (R670 − R630 − R392)/(R670 + R630 + R392)
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2.8. Decision Tree (DT)

Decision tree induction is the process of training decision trees using class-labelled
training tuples. A decision tree is a tree structure like a flowchart. The DT algorithm is
composed of several nodes, each of which has a root, a leaf, and a decision. The root node
is the one that starts the tree, and the decision nodes are the ones that are responsible for
deciding what to do next, which means going from one node to another. The decision
nodes are responsible for producing the leaf nodes. While some decision tree algorithms
are limited to producing binary trees (having only two internal nodes), others are able
to produce more complex trees [72]. As a result of their frequent usage in research [73],
maximum depth (Md), maximum leaf nodes (Mln), and minimum sample leaf (S) were
taken into consideration during training. For Md, Ms, and Mln, the parameter values
were (1, 3, 5, 7), (2, 4, 6, 8), and (none, 10, 20, 30), respectively. By concentrating on these
hyperparameters, we adjusted the model. In general, the model was supplied with the
various characteristics at random during the first iteration, the low-level parameters were
eliminated after each iteration, and the excellent parameters were retained with regard
to the highest contribution. Then, all model outcomes were evaluated to choose high-
quality parameters with a low model loss to accurately assess squash properties under
moisture- and potassium-deficit stress. The DT can be easily transformed into regression
rules. Because it does not need domain expertise or parameter setting, building decision
tree regressors is ideal for exploratory knowledge discovery. The DTs used in this model
are capable of handling high-dimensional input with accuracy. The DT models were based
on spectral bands, SRIs and data fusion of both spectral bands, and SRIs were used to
predict the four investigated traits (KUE, Chlm, WUE and SY) of squash.

2.9. Datasets and Software for Data Analysis

About 54 samples were utilized for training and validation; of these, 41 samples
(or 80%) were used to exercise and test the regression model. However, the remaining
10 instances (or 20%) were employed to gauge the model’s performance by contrasting
projected and measured values. Before training, to correct for size disparities across various
features, normalization was converted across individual features. By removing the minimal
spectral data and dividing the difference between the highest and lowest feature values,
feature normalization was calculated. Then, the model was trained and validated using
a leave-one-out cross-validation (LOOCV) method. In each trial, LOOCV utilized the
remaining data for training while excluding one sample for validation. This approach
can lessen over-fitting and provide a more precise evaluation of the model’s predictive
power [73]. Data analysis, model construction, and data preparation were all carried out
using Python 3.7.3 software. Research was conducted on the DT module, which is a part
of the Scikit-learn package, version 0.20.2. This was carried out in order to finish the
regression tasks. The examination of the data was carried out on a machine with an Intel
Core i7–3630QM processor running at 2.4 GHz and 8 gigabytes of RAM.

2.10. Model Evaluation

The root mean square error (RMSE) and the coefficient of determination (R2) are
two statistical metrics that are applied in order to evaluate the efficacy of a regression
model [74,75]. All the parameters that are being described are as follows: the term “Fact”
refers to the actual value that was computed in the laboratory; “Fp” stands for the value
that was predicted or simulated; “N” represents for the total number of data points; and
“Fave” indicates the value that was averaged out over all the data points.

Root mean square error:

RMSE=

√
1
N ∑N

i=1

(
F act − F p

)2 (6)
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Coefficient of determination:

R2 =
∑
(

Fact − Fp
)2

∑(Fact − Fave)
2 (7)

2.11. Statistical Analysis

Combined analysis of variance across the two seasons was performed after perform-
ing the homogeneity test. The analysis of variance (ANOVA) of the split plot design was
performed with irrigation regime (I) as the main-plot treatment in three levels, and potas-
sium fertilizer (K) as a subplot factor in three rates, with three replicates for each level.
Statistical analysis included analysis of variance (degrees of freedom (df), F-values, and
significance level) of the effect of year, irrigation level, potassium level, and their interaction
on SY, Chlm, WUE, KUE and spectral indices of squash. Least-significant differences (LSD)
values were calculated to test the significance of differences between means. The Duncan
test was performed to examine the significant difference of measured characteristics and
SRIs of squash under varied nitrogen levels. Mean values with the same letter did not
differ significantly (p ≤ 0.05). Simple regressions were used to calculate the association
between the SRIs and the assessed attributes. The 0.05, 0.01 and 0.001 probability levels
were used to establish the significance level of the coefficients of determination (R2) for
these relationships. Using the collected spectra, which comprised all wavelengths from
all treatments, principal component analysis (PCA) was used to assess differences and
distinguish the spectral responses of non-stressed and stressed squash plants. The spectra
collected from each plot were averaged, and the overall mean spectrum was examined in
PCA to initially observe differences in the spectral signature acquired from healthy and
varying stressed treatments (moisture and potassium deficiency). The raw data for the
nine different treatments were composed of 135 columns and more than a thousand rows;
therefore, we averaged the data to compress it, given the large size of the raw data. The
different statistical analysis and plotting were performed using SPSS 22 (SPSS Inc., Chicago,
IL, USA) and Minitab v.14 (Minitab Inc., State college, PA, USA).

3. Results and Discussion
3.1. Effects of Irrigation Treatments and Potassium Fertilization

The impacts of various potassium fertilizer rates and irrigation levels on the four
measured parameters (SY, Chlm, WUE, KUE) were quantified using the analysis of variance
(ANOVA) as summarized in Table 4 and Table S1. For example, in both the spring and fall
seasons, both stressors (moisture and potassium fertilization) had a significant impact on
SY of squash (p < 0.05) in Table S1. In both investigated seasons, the interaction between
moisture and potassium demonstrated significant effects on the total SY of squash in Table
S1 and Table 4. The experimental plots served by the combination 1.00 ETc and 250 kg
K2O5 ha−1 produced the greatest squash seed yields of 1093.7 Kg ha−1. Generally, squash
seed yield demonstrated remarkable significant difference among K2O5 fertilization rates
for a given watering regime. Due to the basic role of K in controlling stomata opening,
which controls the transpiration process, high levels of K2O5 may minimize the impact of
water stress [76] since stomatal closure is mainly preceded by a quick release of K. Reduced
squash seed yields obtained from low doses of K showed its critical role in photosynthesis,
as a lack of K slows photosynthesis and so reduces carbohydrate accumulation [77,78].
Another effect of a K deficit in plants is that the stomata do not open perfectly, resulting in
less carbon dioxide and hence lower photosynthesis intensity, which leads to lower yield.
In this context, it can be inferred that determining the right K rate in conjunction with the
optimum irrigation regime for growing squash crops could improve squash water-use
efficiency while reducing total irrigation usage. The outcomes of this research regarding
Applied Irrigation Water (AIW) are similar to those reported by Topcu et al. [79]. Because
of the combination of water stress and K deficiency, the chlorophyll meter of squash plants
was significantly influenced by both rates of moisture level and K fertilization amounts.
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The Chlm decreased in relation to the full application of water and K levels during both
investigated seasons. The greatest chlorophyll content of 42.1 (SPAD values) was noticed
with treatments that received the highest irrigation regime and 250 kg K ha−1 across two
seasons (Table 4). In non-stressed plots, all K fertilization rates enhanced the Chlm. Our
results showed that moisture-induced stress caused serious impairment of growth–related
properties in terms of chlorophyll. Plant chlorophyll content was seen by Anjum et al. [80]
as an indicator of water-induced stress owing to photo-oxidation. As a result of a decline
in chlorophyll content due to water stress, photosynthesis slows dramatically, resulting in
stunted plant development and significantly reduced output. The decrease in chlorophyll
a level is particularly noticeable under deficit irrigation settings. The results reported by
Mafakheri et al. [81] confirmed that chlorophyll concentration decreased dramatically with
increasing water stress. All K fertilisation rates improved the Chlm in unstressed plots.

Table 4. Means and standard deviations of four parameters (potassium-use efficiency (KUE), chloro-
phyll meter (Chlm), water-use efficiency (WUE), and seed yield (SY) under interaction effect of
irrigation regime and potassium fertilization rate across spring and fall seasons.

Season Irrigation Treatment K Fertilization, kg ha−1
Mean150 200 250

SY
1.00 ETc 811.5 ± 18.55 c 979.1 ± 16.77 b 1093.7 ± 24.12 a 961.4 ± 119.4 A

0.75 ETc 466.3 ± 30.99 g 629.4 ± 140.87 e 960.3 ± 19.85 b 685.3 ± 223.5 B

0.50 ETc 518.8 ± 15.99 f 544.6 ± 27.53 f 691.8 ± 96.55 d 585.1 ± 98.8 C

Mean 598.9 ± 158.1 c 717.7 ± 209.9 b 915.3 ± 181.1 a

Chlm
1.00 ETc 32.1 ± 1.90 d 39.4 ± 1.73 b 42.1 ± 3.08 a 37.8 ± 4.59 A

0.75 ETc 29.5 ± 1.69 e 31.9 ± 3.19 d 39.0 ± 2.91 b 33.5 ± 5.00 B

0.50 ETc 28.4 ± 1.22 e 18.9 ± 0.83 f 34.8 ± 4.45 c 27.3 ± 7.39 C

Mean 29.9 ± 6.3 c 30.0 ± 8.9 b 38.6 ± 4.0 a

WUE 1.00 ETc 0.241 ± 0.02 e 0.290 ± 0.03 c 0.325 ± 0.03 b 0.285 ± 0.04 C

0.75 ETc 0.176 ± 0.02 f 0.233 ± 0.03 e 0.362 ± 0.03 a 0.257 ± 0.08 B

0.50 ETc 0.269 ± 0.03 d 0.281 ± 0.02 c 0.354 ± 0.02 a 0.301 ± 0.05 A

Mean 0.228 ± 0.05 c 0.268 ± 0.04 b 0.347± 0.03 a

KUE
1.00 ETc 5.4 ± 0.12 a 4.9 ± 0.08 b 4.4 ± 0.10 c 4.893 ± 0.44 A

0.75 ETc 3.1 ± 0.21 f 3.2 ± 0.70 f 3.8 ± 0.08 d 3.365± 0.54 B

0.50 ETc 3.5 ± 0.11 e 2.7 ± 14 g 2.8 ± 0.39 g 2.982 ± 0.40 C

Mean 4.0 ± 1.05 a 3.6 ± 1.05 c 3.7 ± 0.72 b

Different letters in the same column indicate that means are significantly different (p≤ 0.05) according to Duncan’s
multiple range at 0.05 levels. Uppercase letters refer to the significance between the mean values of irrigation
regime levels and lowercase letters refer to the significance between the mean values of potassium fertilizer levels.

Our findings demonstrated that chlorophyll-related properties associated with growth
were severely compromised by moisture-induced stress. Chlorophyll concentration in
plants was thought to be a sign of water-induced stress brought on by photo-oxidation by
Anjum et al. [80]. Plants that are under water stress have lower chlorophyll concentrations,
which significantly reduces photosynthesis and lowers plant growth and yield. The reduc-
tion in chlorophyll content is more pronounced when irrigation is insufficient. According
to the findings of Mafakheri et al. [81], the chlorophyll content significantly decreased with
increased water stress.

As seen in Table 4, the comparison of means for different treatments demonstrated
that higher potassium fertilization rates produced higher WUE regardless of the watering
regime. At all watering regimes (1.00, 0.75 and 0.50 ETc), the 150 kg potassium rate led to
less WUE. The greatest WUE of 0.362 kg/m3 was recorded with the combination of 250 kg
K2O5 and 0.75 ETc. The significant effect of water stress on KUE is apparent, as shown
in Table 5. When comparing the means of various combinations, the watering regime of
1.00 ETc produced higher KUE across two seasons with 5.41 kg squash seeds/kg K2O5 in
comparison to 0.75 and 0.5 ETc.
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Table 5. Means and standard deviations of spectral reflectance indices under interaction effects of
irrigation regime and potassium fertilization rate across spring and fall seasons.

Treatments NDI780,550 NCI NDI970,670 NWI-1 NWI-3 NWI-4 NDI558,646,708 NDI538,708,648 NDI558,644,708

1.00 ETc, 150K 0.645 ± 0.017 a 0.856 ± 0.010 a 0.859 ± 0.008 a −0.020 ± 0.011 b −0.022 ± 0.012 b,c −0.018 ± 0.007 b −0.337 ± 0.009 f −0.357 ± 0.012 g −0.339 ± 0.010 e

1.00 ETc, 200K 0.601 ± 0.024 b 0.809 ± 0.047 b 0.807 ± 0.055 b −0.022 ± 0.017 b −0.023 ± 0.018 b,c −0.018 ± 0.012 b −0.328 ± 0.006 e −0.347 ± 0.006 f −0.331 ± 0.007 d

1.00 ETc, 250K 0.560 ± 0.044 c 0.809 ± 0.066 b 0.805 ± 0.074 b −0.022 ± 0.016 b −0.024 ± 0.018 c −0.019 ± 0.012 b −0.324 ± 0.009 e −0.346 ± 0.008 f −0.327 ± 0.009 d

0.75 ETc, 150K 0.532 ± 0.025 c 0.812 ± 0.039 b 0.805 ± 0.048 b −0.031 ± 0.020 c −0.03 ± 0.022 d −0.027 ± 0.015 b −0.307 ± 0.005 d −0.329 ± 0.007 e −0.311 ± 0.005 c

0.75 ETc, 200K 0.349 ± 0.069 e 0.735 ± 0.018 c,d 0.720 ± 0.021 c,d −0.022 ± 0.012 b −0.023 ± 0.014 c −0.019 ± 0.007 b −0.293 ± 0.005 b,c −0.318 ± 0.007 d −0.298 ± 0.004 b

0.75 ETc, 250K 0.215 ± 0.045 g 0.606 ± 0.063 e 0.576 ± 0.066 e −0.022 ± 0.013 b −0.024 ± 0.014 c −0.019 ± 0.009 b −0.294 ± 0.012 c −0.316 ± 0.019 c,d −0.300 ± 0.012 b

0.50 ETc, 150K 0.302 ± 0.035 f 0.709 ± 0.059 d 0.690 ± 0.067 d −0.021 ± 0.010 b −0.022 ± 0.010 b,c −0.019 ± 0.006 b −0.287 ± 0.008 b −0.310 ± 0.009 b,c −0.293 ± 0.009 b
0.50 ETc, 200K 0.340 ± 0.138 e 0.747 ± 0.048 c 0.735 ± 0.056 c −0.016 ± 0.010 a −0.018 ± 0.012 a −0.017 ± 0.005 a −0.286 ± 0.013 a −0.299 ± 0.015 a −0.288 ± 0.012 a

0.50 ETc, 250K 0.467 ± 0.047 d 0.811 ± 0.018 b 0.808 ± 0.020 b −0.019 ± 0.010 b −0.020 ± 0.012 a,b −0.017 ± 0.006 b −0.287 ± 0.018 a,b,c −0.303 ± 0.016 a,b −0.291 ± 0.017 a

NDI744,746,738 NDI704,580,712 NDI704,712,582 NDI602,598,600 NDI644,630,652 NDI648,662,624 NDI670,628,392 NDI572,558,602 NDI670,630,392

1.00 ETc, 150K −0.326 ± 0.000 a −0.366 ± 0.005 f −0.363 ± 0.005 f −0.341 ± 0.003 e −0.346 ± 0.003 c −0.365 ± 0.014 b,c −0.417 ± 0.018 ab −0.317 ± 0.001 c,d −0.410 ± 0.016 a,b

1.00 ETc, 200K −0.327 ± 0.001 a −0.361 ± 0.008 e −0.358 ± 0.007 e −0.339 ± 0.001 c −0.344 ± 0.004 c −0.361 ± 0.009 ab −0.410 ± 0.012 a,b −0.319 ± 0.002 d −0.402 ± 0.011 a,b

1.00 ETc, 250K −0.328 ± 0.001 b −0.347 ± 0.018 d −0.343 ± 0.017 d −0.339 ± 0.001 c −0.340 ± 0.003 b −0.361 ± 0.004 b −0.402 ± 0.026 a −0.318 ± 0.002 d −0.395 ± 0.028 a

0.75 ETc, 150K −0.328 ± 0.001 b −0.344 ± 0.004 d −0.341 ± 0.004 d −0.341 ± 0.001 de −0.340 ± 0.002 b −0.365 ± 0.004 b −0.432 ± 0.027 b,c −0.314 ± 0.002 b −0.425 ± 0.032 b,c

0.75 ETc, 200K −0.331 ± 0.000 d −0.316 ± 0.004 b −0.313 ± 0.004 b −0.339 ± 0.001 b,c −0.340 ± 0.003 b −0.357 ± 0.003 b −0.461 ± 0.023 d −0.312 ± 0.001 a,b −0.454 ± 0.028 d

0.75 ETc, 250K −0.333 ± 0.001 f −0.309 ± 0.007 a −0.307 ± 0.007 a −0.336 ± 0.001 a −0.340 ± 0.002 b −0.348 ± 0.012 c −0.417 ± 0.023 b −0.316 ± 0.002 c −0.408 ± 0.044 a,b

0.50 ETc, 150K −0.332 ± 0.000 e −0.308 ± 0.005 a −0.305 ± 0.005 a −0.338 ± 0.001 b −0.339 ± 0.002 b −0.372 ± 0.003 d −0.481 ± 0.022 d −0.311 ± 0.002 a −0.474 ± 0.025 d

0.50 ETc, 200K −0.331 ± 0.001 d −0.319 ± 0.008 b −0.316 ± 0.008 b −0.339 ± 0.002 c −0.339 ± 0.005 ab −0.356 ± 0.015 e −0.475 ± 0.018 d −0.313 ± 0.001 b −0.471 ± 0.022 d

0.50 ETc, 250K −0.330 ± 0.000 c −0.335 ± 0.004 c −0.332 ± 0.003 c −0.340 ± 0.001 c,d −0.335 ± 0.004 a −0.361 ± 0.012 f −0.456 ± 0.027 d −0.314 ± 0.003 b −0.450 ± 0.028 c,d

Different letters in the same column indicate that means are significantly different (p≤ 0.05) according to Duncan’s
multiple range at 0.05 levels.

3.2. Effects of Irrigation Treatments and Potassium Fertilization on Published and Newly Spectral
Reflectance Indices

Irrigation treatments and potassium fertilisation had a general impact on SRIs. Nu-
merous biophysical and biochemical traits of vegetation canopies are significantly altered
by water stress in general. Fortunately, these modifications cause significant shifts in the
canopy’s spectral signatures across the entire spectrum at particular wavelengths [82–84].
The spectral reflectance of the plant canopy was found to be directly and indirectly affected
by water stress and other fertilizers, such as potassium. Changes in leaf and plant proper-
ties, such as internal leaf structure, leaf pigments, and biomass, are connected to the indirect
impacts and have a large impact on the spectral signature in the visible and near-infrared
ranges. Variations in canopy water content cause alterations in spectral reflectance at the
SWIR range and to certain wavelengths in the NIR spectrum region that can enter the leaves
more deeply [85,86]. Considering the information above, in this work, we assessed how
different SRIs, which combine different bands from the spectrum regions of VIS, red-edge,
and NIR, responded to various irrigation schedules and potassium fertilization. According
to our findings, all SRIs except for those with NWI-1, NWI-3, and NWI-4 demonstrated
statistically significant differences among all treatments for squash in (Table 5). Addition-
ally, all SRIs demonstrated statistically significant differences across year, irrigation level,
potassium level, and their interaction in Table S2.

There were significant differences in the new three-band and published SRI values
at various potassium fertilizer and irrigation levels (Table 5, Tables S1a, S2b and S3c),
which may have been caused by wide variations in measured parameter values (Table 4).
Quantitative analyses, for instance, showed that the mean values of the three-band SRIs,
such as NDI780,550, NCI and NDI970,670 in Table 5, showed a substantial change from
−0.3571 to −0.2994, from −0.3393 to −0.2881, and from −0.3266 to −0.3326, respectively.
Additionally, the mean values of the published SRIs, such as NDI538,708,648, NDI558,644,708
and NDI744,746,738 in Table 5 showed a substantial change from 0.215 to 0.6447, from 0.6059
to 0.8563, and from 0.5756 to 0.8589, respectively. SRI readings that gradually rise or
decrease are linked to changes in the metrics measuring. These results also show that the
reflectance of the plant canopy of the light spectrum regions at VIS, red-edge, and NIR was
significantly affected by the irrigation regimes and potassium fertilizer levels. As a result,
using the effective wavelengths selected from these three spectral regions, the resulting
SRIs may provide a means of inferentially assessing the four evaluated parameters.
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3.3. Assessment of the Measured Parameters via Comparison of Previously Published and Newly
Developed Three-Band SRIs

The correlations between these four metrics of squash and the newly constructed
three-band SRIs are shown in Table 6. Most of the published SRIs had weak relationships
with the four investigated parameters with R2 values varied from 0.00 to 0.73. Three-
band SRIs which presented significant relationships with four parameters had R2 values
varying from 0.46 to 0.85, from 0.20 to 0.87, from 0.22 to 0.25, and from 0.21 to 0.80 for
KUE, Chlm, WUE and SY, respectively, throughout the two seasons. According to the
findings, the novel three-band indices derived from VIS, red-edge, and NIR wavelengths
are sensitive estimators of the four traits investigated in the present research. NDI558,646,708,
NDI538,708,64, and NDI558,644,708 showed the highest R2 which varied from 0.71 to 0.85
for KUE. NDI744,746,738, NDI704,580,712, and NDI704,712,582 showed the highest R2 ranging
from 0.52 to 0.87 for Chlm, NDI602,598,600, and NDI644,630,652, and NDI648,662,624 showed
the highest R2 ranging from 0.10 to 0.27 for Chlm; and NDI670,628,392, NDI572,558,602 and
NDI670,630,392 showed the highest R2 varying from 0.53 to 0.80 for SY throughout both
seasons. However, across both seasons, for example, NDI558,646,708 presented the highest
R2 of 0.75 for KUE, NDI744,746,738 presented the highest R2 of 0.65 for Chlm, NDI602,598,600
presented the highest R2 of 0.25 for WUE, and NDI670,628,392 presented the highest R2 of
0.64 for SY of squash.

Table 6. Relationships of linear regression of four parameters (potassium-use efficiency (KUE),
chlorophyll meter (Chlm), water-use efficiency (WUE), and seed yield (SY)) with several SRIs of
squash expressed as determination coefficients.

Spring Fall Both Seasons

SRIs KUE Chlm WUE SY KUE Chlm WUE SY KUE Chlm WUE SY

NDI780,550 0.42 *** 0.54 *** 0.03 0.16 0.73 *** 0.66 *** 0.09 0.08 0.53 0.55 *** 0.06 0.14
NCI 0.13 0.35 ** 0.06 0.02 0.44 *** 0.55 *** 0.10 0.00 0.21 0.42 *** 0.05 0.00

NDI970,670 0.14 0.37 ** 0.06 0.03 0.46 *** 0.54 *** 0.08 0.00 0.23 0.43 *** 0.04 0.00
NWI-1 0.04 0.02 0.14 0.24 0.00 0.10 0.22 * 0.51 *** 0.03 0.00 0.12 0.08
NWI-3 0.02 0.02 0.13 0.20 0.00 0.11 0.22 * 0.59 *** 0.03 0.00 0.11 0.08
NWI-4 0.08 0.01 0.14 0.30 0.01 0.12 0.22 * 0.51 *** 0.04 0.00 0.14 0.07

NDI558,646,708 0.78 *** 0.36 ** 0.03 0.27 * 0.80 *** 0.28 * 0.00 0.58 *** 0.75 *** 0.31 * 0.02 0.36 **
NDI538,708,648 0.71 *** 0.37 ** 0.07 0.19 * 0.85 *** 0.15 0.00 0.70 *** 0.75 *** 0.27 * 0.03 0.33 **
NDI558,644,708 0.77 *** 0.34 ** 0.03 0.25 * 0.80 *** 0.26 * 0.00 0.59 *** 0.75 *** 0.30 * 0.01 0.35 **
NDI744,746,738 0.52 *** 0.57 *** 0.01 0.24 * 0.77 *** 0.77 *** 0.14 0.09 0.61 *** 0.65 *** 0.04 0.13
NDI704,580,712 0.50 *** 0.52 *** 0.00 0.35 ** 0.69 *** 0.86 *** 0.19 * 0.05 0.55 *** 0.64 *** 0.02 0.16
NDI704,712,582 0.51 *** 0.52 *** 0.00 0.36 ** 0.70 *** 0.87 *** 0.18 * 0.05 0.56 *** 0.64 *** 0.02 0.18 *
NDI602,598,600 0.02 0.10 0.26 * 0.11 0.18 0.58 *** 0.23 * 0.02 0.04 0.20 0.25 * 0.01
NDI644,630,652 0.02 0.00 0.27 * 0.21 0.02 0.18 * 0.15 0.16 0.00 0.02 0.24 * 0.11
NDI648,662,624 0.00 0.03 0.22 * 0.08 0.01 0.33 * 0.10 0.17 0.00 0.04 0.19 * 0.01
NDI670,628,392 0.60 *** 0.25 * 0.05 0.53 *** 0.47 *** 0.01 0.02 0.80 *** 0.50 *** 0.09 0.01 0.64 ***
NDI572,558,602 0.54 *** 0.13 0.10 0.61 *** 0.67 *** 0.10 0.06 0.66 *** 0.56 *** 0.09 0.04 0.64 ***
NDI670,630,392 0.60 *** 0.26 * 0.05 0.53 *** 0.46 *** 0.01 0.01 0.79 *** 0.50 *** 0.08 0.01 0.64 ***

*, **, *** Significant at p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 probability levels, respectively.

The information gleaned will be crucial for advancing endeavors to employ specific
spectral devices for carrying out precise characteristic practices. Very little attention has
been given to 3D contour maps created with three-band SRIs to evaluate these parameters
at various potassium fertilizer rates and water regime levels. Because of their sensitiv-
ity to the assessment of complicated development variables, such as genotypes, growth
phase, canopy features, and environment, indices based on wavelengths from a single
band range make it difficult to reliably quantify plant attributes. Nonetheless, indices that
incorporate bands from all three spectral bands are less saturated and less susceptible to
a wide variety of plant characteristics, such as the leaf’s interior structure and metabolic
contents. This may help to explain why three-band SRIs were more accurate than two-band
SRIs in estimating the four parameters. These outcomes support the earlier findings of
Babar et al. [70] and Prasad et al. [69], which showed that crop yield could be predicted
before the plant matured, while hyperspectral data demonstrated the potential to distin-
guish between moisture-related and K-deficiency-related stresses. Utilizing a variety of
spectral indices, Kawamura et al. [87] assessed the soil phosphorus and potassium fer-
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tility status in pastures with legumes. The photochemical reflectance index was closely
correlated with the phosphorus and potassium contents (PRI). Strong correlations between
the potassium content of rice leaves and various vegetation indices were discovered in
a study by Lu et al. [88]. Depending on the soil and crop conditions, there are different
relationships between nutrient content and vegetation indices. The findings of a study
on wheat by Pimstein et al. [89] showed the effectiveness of selected vegetation indices
estimate wheat traits under potassium and phosphorus levels.

3.4. Differentiating Moisture and Potassium Deficiency Spectrally

The PCA was operated using all datasets in the spring and fall seasons to distinguish
between moisture and potassium deficiency stress. Figures 3 and 4 illustrate the score plot
of the PCA for datasets collected at the flowering stage of the squash crop. The figures
demonstrate dissimilarities between non-stressed plants and those suffering from moisture
and potassium deficiency stress. As shown in Figure 3b, the ideal bands were chosen, in
which the first two PC explained 99.97% of the variance and accounted for 97.93% and
2.04% of the total spectral variation at PCI and PC2, respectively. As depicted in Figure 4b,
the most effective bands were picked, accounting for 97.14% and 2.80%, respectively, of the
total spectral variation at PCI and PC2, with 99.94% of the variance being characterized
by the first two PCs. The spectra acquired from plots with high watering regimes were
close to each other and were plotted in one quarter of the score plot. However, the spectral
measurements collected from stressed plants tended to plot in a different quarter of the
score plot, which may be attributed to lower leaf water content and chlorophyll content. As
seen in Figure 3, for example, the arrow on the left side shows an increase in the potassium
rate with the same watering regime (0.75 ETc). The arrow in the right side also demonstrates
the same pattern (increasing potassium fertilization rate with the same watering regime,
1.0 ETc). The dissimilarities shown between non-stressed and stressed treatments may have
been a result of remarkable variations in the biochemical and biophysical properties of
squash plants. These variations could be useful in determining the time of sensitive periods
to stress. The results further demonstrated the PCA loading plots proposed that spectra
over the VIS range seem to be strongly associated with the level of stress, whereas the
variations between the near-infrared spectra make it possible to differentiate both tested
stressors. The results show that utilizing remotely sensed data to monitor plant status
with greater leaved plants, such as squash, will enhance the efficiency of this technique.
PCA score plots revealed that differentiating between moisture and potassium deficiency
stress is possible, particularly when plants are subjected to severe stress. Other studies
revealed that remotely sensed data would be useful for distinguishing sources of stress.
For instance, Elmetwalli and Tyler [39] employed PCA to distinguish between nitrogen
and water deficiency in maize and proved the potential of discriminating both stressors
spectrally. Elmetwalli et al. [37] mentioned that the PCA score plot showed the feasibility
of distinguishing between wheat plants which suffer from water and salinity stress.
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3.5. Performance of Decision Tree Model for Predicting Four Squash Parameters

Although SRIs are a straightforward method for indirectly evaluating plant features,
they only capture the relationships of the spectral reflectance value at a few wavelengths
and ignore the rest of the information included in hyperspectral data. For evaluating
plant attributes in varying environmental circumstances, SRI effectiveness is sometimes
affected by the small number of wavelengths available for analysis [90,91]. This is due
to the fact that SRIs become more sensitive to off-target qualities, such as differences in
vegetation’s physical and biological properties, when a selective wavelength is mixed in
a certain formula. The precise estimate of plant features has been shown to be enhanced
using spectral bands, SRIs, and combinations of spectral bands and SRIs, as well as the
creation of data-driven models, such as DT.

To filter the highest variables, the DT model was used with the 3D-spectral indices
(3D-SRIs), DT-based bands (DT-b), and the aggregate of all spectral characteristics (ASF),
as shown in Table 7. These characteristics were effective for identifying squash crop char-
acteristics. Table 7 demonstrates how the decision tree model was trained to predict the
studied parameters (dependent variables) using the 3D-SRIs, DT-b, and ASF (independent
variables). After that, the projected values were contrasted with the DT model’s reserved
values that were not used. The results of this study’s analysis and comparison of multi-
variate methodologies show that doing so greatly increases predictability. Since validation
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data are not utilized in the building of the regression model, independent validation is
the most trustworthy way for determining the model’s accuracy. The findings showed
that the DT-DT-b-30 was the most accurate prediction model, with a greater correlation
between potassium and the standout features. This model’s approximately 30 spectral
characteristics are extremely important for forecasting KUE. Its outputs with R2 for the
training and validation sets were 0.967 (RMSE = 0.175) and 0.818 (RMSE = 0.284), respec-
tively. For measuring Chlm, the DT-DT-b-20 model fared the best. In the training and
validation datasets, the R2 values were 0.993 (RMSE = 0.522) and 0.692 (RMSE = 2.321),
respectively. The most accurate model (DT-SRIs-3) for identifying WUF had R2 values of
0.576 and 0.447 and RMSE values of 0.039 and 0.035 for the training and validation datasets,
respectively. The DT- SRIs-1 model scored better at forecasting SY than the others. The
model’s R2 performance for the training and validation sets, respectively, was 0.799 (RMSE
= 97.473) and 0.699 (RMSE = 87.656). According to Elsherbiny [92,93], who claim that
the performance exceeded expectations, numerous training phases, searching high-level
characteristics and tweaking model hyperparameters were necessary to update regression
approaches for reliable prediction.

Table 7. Results of a decision tree model based on different features extracted from hyperspectral data.

Variable
Spectral
Features

Optimal
Parameters Training Validation

(Md, Ms, Mln) R2 RMSE R2 RMSE

KUE
a (5, 2, 10) 0.97 *** 0.175 0.82 *** 0.284
b (3, 6, none) 0.84 *** 0.386 0.74 *** 0.372
c (5, 4, none) 0.96 *** 0.201 0.76 *** 0.330

Chlm
a (5, 2, none) 0.99 *** 0.522 0.69 *** 2.321
b (7, 2, 30) 0.91 *** 1.840 0.60 *** 2.781
c (5, 2, none) 0.99 *** 0.555 0.52 *** 2.864

WUE
a (7, 2, 10) 0.87 *** 0.021 0.35 ** 0.037
b (3, 10, none) 0.58 *** 0.039 0.45 ** 0.035
c (3, 10, none) 0.58 *** 0.039 0.41 ** 0.039

Yield
a (10, 8, none) 0.65 *** 129.480 0.19 * 148.946
b (3, 6, none) 0.80 *** 97.473 0.70 *** 87.656
c (3, 10, none) 0.80 *** 98.500 0.69 *** 90.031

Md is max depth, Ms is min samples leaf, and Mln is max leaf nodes. The symbols a, b, and c indicate DT-based
bands, 3D-VIs, and the aggregation of all spectral features, respectively. *, **, and ***, statistically significant at
p ≤ 0.05, p ≤ 0.01, and p ≤ 0.00, respectively.

From the above mentioned results, it can be seen that the model’s prediction accuracy
is affected by the value and number of features. Table S3 shows a variety of choices
for merging features and models that have the greatest influence on the prediction of
quality attributes in squash crops. This table explains that there are unique characteristics
of training models that have the lowest RMSEV value and perform well in predicting.
Depending on the model used, the RMSEV value dropped with these specified features.

4. Conclusions

This investigation tested the potential of spectral reflectance measurements to deter-
mine squash properties and find dissimilarities between non-stressed and stressed squash
plants. Few studies of this kind have produced three-dimensional contour maps employing
SRIs to evaluate these characteristics across varying water regimes and potassium fertilizer
rates. The results demonstrated the sensitivity of the newly constructed three-band SRIs for
estimating the four squash parameters, with wavelengths spanning the visible (VIS), red-
edge, and near-infrared (NIR) domains. The results showed that the newly built three-band
SRIs, covering the visible (VIS), red-edge (RE), and near-infrared (NIR) spectral ranges,
were sensitive enough to estimate the four tested squash parameters. The results further
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demonstrated that the PCA showed the ability to separate moisture induced stress from
potassium deficiency stress at the flowering stage onwards. The DT model’s prediction
accuracy is affected by the value and number of features. The results of the models shows
a variety of choices for merging features and models that have the greatest influence on
the prediction of quality attributes in squash crops. The DT-SRIs-1 model scored better at
forecasting SY than the others. The model’s R2 performance for the training and validation
datasets, respectively, was 0.799 (RMSE = 97.473) and 0.699 (RMSE = 87.656). The overall
results demonstrate that proximal reflectance sensing based on SRIs, as well as a DT model
including spectral bands, SRIs or their combinations, could be used to estimate the four
squash parameters under different levels of water regimes and potassium fertilization rates.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/horticulturae9010079/s1, Table S1. Statistical analysis,
including analysis of variance (degrees of freedom (df), F-values, and significance level) of the effect
of year, irrigation level, potassium level, and their interaction on seed yield; Table S2. Statistical
analysis, including analysis of variance (degrees of freedom (df), F-values, and significance level) of
the effect of year, irrigation level, potassium level, and their interaction on spectral indices of squash;
Table S3. Ranking of the most significant spectral characteristics.
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