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Abstract: Thinning is an important routine for apple growers to manage crop load and improve
fruit quality, which can be accomplished through manual, chemical, or mechanical manipulation of
flowers and fruitlets. Traditionally, blossom thinning relies on human experts’ visual evaluation of the
flower load, a leading indicator of crop load, which can be imprecise and prone to errors. This study
aimed to develop an apple blossom density mapping algorithm utilizing point clouds reconstructed
through unmanned aerial vehicle (UAV)-based red-green-blue (RGB) imagery and photogrammetry.
The algorithm was based on grid average downsampling and white color thresholding, and it was
able to generate top-view blossom density maps of user-defined tree height regions. A preliminary
field experiment was carried out to evaluate the algorithm’s accuracy using manual blossom counts
of apple tree row sections as ground truths, and a coefficient of determination (R2) of 0.85, a root
mean square error (RMSE) of 1307, and a normalized RMSE (NRMSE) of 9.02% were achieved.
The algorithm was utilized to monitor the blooming of the apple tree rows and was demonstrated
to effectively show blossom density variations between different tree rows and dates. The study
results suggested the potential of UAVs as a convenient tool to assist precise blossom thinning in
apple orchards, while future research should further investigate the reliability of photogrammetry
techniques under different image qualities and flight settings as well as the influence of blossom
distribution on algorithm accuracy.

Keywords: bloom; camera; drone; flower; point cloud; RGB; thinning

1. Introduction

Apple (Malus domestica) is one of the most valuable and culturally significant fruits
worldwide [1]. For the crop year 2022/2023, the global apple production was forecast to be
78.8 million tons [2]. In the United States, more than 5000 farms with almost 85,000 acres
of apples are located in the northeastern region, and more than 200,000 tons of apples can
be produced in Pennsylvania per year [3]. Although apple has been a domesticated crop
for thousands of years, challenges still exist in fruit production management. For example,
apple trees tend to overproduce flowers, which can grow into fruits with inadequate sizes
and less marketable values due to insufficient resource allocation. Following the years
with large yields of small-sized fruits, certain apple varieties usually have low or even no
yields in the following years, which is known as the alternate bearing or biennial bearing
phenomenon [4]. In order to achieve stable production of apples with high quality year
after year, human interventions are needed for trees to have a balanced ratio between
canopy photosynthesis and fruit load [5].

Thinning is a crucial crop load management practice for growers to increase fruit size
and quality [6], suppress alternate bearing for consistent yields over the years, and reduce
tree limb breakage. The current fruit tree thinning methods include manual, chemical, and
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mechanical thinning. Manual or hand thinning is a labor-intensive and time-consuming
process, during which fruitlets are manually removed typically after the physiological fruit
drop based on their size and proximity to one another [7]. High demand for manpower
and reduced thinning benefit due to late execution time are the two major drawbacks of
manual thinning [7]. During chemical thinning, chemical substances are sprayed onto
trees at one or more dates to prevent flower pollination or fertilization, or stimulate fruitlet
drop [8]. The efficacy of chemical thinning can be influenced by many factors, such as
cultivar, rootstock, pollen density, weather, thinner chemistry, and application method,
rate, and timing [9], while predictive models, such as the pollen tube growth model [10],
carbohydrate model [11], and fruitlet growth model [12], have been proposed and utilized
to achieve more precise thinner applications. Despite early blossom thinning having the
greatest potential in improving fruit size, quality, and color at harvest and promoting
return blooming [13], the unpredictability of chemical thinning has been an issue for apple
growers for more than 50 years [14]. Mechanical thinning works by physically removing
a portion of flowers or fruitlets using mechanical devices, such as spinning rotors with
wires attached. It has the advantage of having no chemical impact on the environment
and lower thinning time and cost, as well as being less restricted by weather compared to
manual and chemical thinning. Various mechanical thinning devices have been developed
and evaluated in apple orchards in previous studies [15–17], although currently, they are
non-selective and may impart damage to flowers, branches, and leaves.

Tree blooming intensity or the percentage of open blooms often needs to be estimated
for blossom thinning planning, such as the timing of chemical thinning or the strength of
mechanical thinning [16]. Human experts usually estimate this visually, which can be inac-
curate and imprecise, as typically only a limited number of trees are inspected [7]. Among
the many instruments employed in precision agriculture [18,19], unmanned aerial vehicles
(UAVs) are considered an essential future technology [20] and show great potential in rapid,
flexible plant data collection with high spatiotemporal resolution [21–23]. Applications
of UAVs in agricultural studies include vegetation growth and health monitoring [24,25],
yield estimation, pest management, irrigation management, and crop spraying [18]. Along
with machine learning and vegetation index calculation, photogrammetry is a technique
that is commonly employed for processing UAV imagery [26]. Unlike expensive active
sensors, such as LiDARs [27], ToF cameras [28], and ultrasound systems [29], passive pho-
togrammetry algorithms, such as structure from motion (SfM) [30,31] and multi-view stereo
(MVS) [32], can recover 3D structures and create refined 3D models of stationary scenes
from overlapping images taken by inexpensive visual sensors, such as red-green-blue (RGB)
cameras. With the growing research interests in UAV applications in agriculture, advanced
commercial photogrammetry software has become a standard drone mapping tool to assist
researchers in areas such as crop structural parameter estimation [33], multispectral crop
surveying [34], and crop health monitoring [35]. In terms of apple blossom density estima-
tion, the combination of UAV, photogrammetry, and proper data processing algorithms
can potentially not only allow farmers to monitor large-scale orchards conveniently with
precision but also eliminate the need for trained human laborers to evaluate blooming
intensity of trees when foreign labor supply to farms in the US is declining [36].

Several studies can be found in the current literature regarding apple blossom detection
and counting using modern technology for accurate thinning or yield prediction. RGB
cameras [7,37–45] and multispectral cameras [46] have been deployed for identifying apple
flowers. Variations of data collection methods among the studies do exist. Manually
capturing apple blossom images with handheld cameras [38–40,43] ensures high image
quality; however, it is also the most laborious and least efficient method. Ground mobile
units, such as utility vehicles and tractors, were used in many studies [37,39,41,44,45] as the
platform for mounting cameras, artificial lights, and GPS receivers, and side-view images
were taken automatically while the mobile units moved along apple tree rows. Compared
to manual image capturing, ground vehicles offer a higher level of autonomy and efficiency.
Yet, the work involved in developing the specialized carts, mounting structures, and sensor
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control programs, and keeping the platforms moving in a slow, steady manner via driving
or remote control may prevent growers from adopting this method for managing large
orchards. As the most efficient and user-friendly method, UAVs have been applied in
research to capture top-view apple blossom images [42,46,47]. However, some of the
unique challenges during UAV data collection include weather limitations (e.g., wind, rain),
inconsistent image quality due to tree movement, and fewer image details due to high
flight altitudes. Nonetheless, when weather allows, commercial miniature UAVs that are
robust and economical demonstrate much potential in being employed by growers for
orchard management [47–53].

Among the reviewed studies, computer-vision-based image analysis techniques were
commonly utilized for apple blossom identification, from simple but effective color seg-
mentation [42,44,45] to popular convolutional neural network (CNN)-based object detec-
tion [7,37–41,43,47]. However, an attempt to explore point-cloud-based apple blossom
density estimation is missing in the current literature. Three-dimensional point clouds
by nature store more comprehensive information, such as volume, than images, and they
suffer less from issues such as object occlusion, since images used for point cloud recon-
struction are captured from different camera positions. Deep-learning methods require
much manual work for image annotation and high-level understanding of model training
and tuning, which makes research-level CNN algorithms potentially less practical and
desirable for growers than color thresholding techniques, which are simple to understand
and modify.

With the goal of assisting apple growers in the decision making of precise blossom
thinning, the objectives of the current study were to: (1) develop a top-view apple
blossom density mapping algorithm with definable tree height regions, utilizing orchard
point clouds reconstructed with UAV-based RGB images and photogrammetry software;
(2) conduct a preliminary field experiment to evaluate the algorithm’s accuracy in terms
of blossom counts; (3) investigate the algorithm’s utility in apple orchard blossom
density monitoring.

2. The Proposed Mapping Algorithm

Figure 1 shows the overall structure of the proposed algorithm, whose principle can
be summarized as follows. Given a blooming apple orchard point cloud reconstructed by a
photogrammetry software, a rasterized terrain map is first generated from the point cloud.
During the process, ground pixels are distinguished from tree pixels utilizing the tall height
feature of trees compared to ground, interpolated to form a complete map, and smoothed
to remove high frequency noise. Next, an apple blossom point cloud is extracted from the
orchard point cloud based on the white color trait of blossoms. The blossom point cloud
then needs to be processed by a few steps, including height adjustment using the terrain
map to eliminate terrain unevenness, noise removal through height thresholding to delete
off-tree white points, downsampling to unify point cloud density, and region extraction
if the blossom density of a specific tree height section needs to be inspected. Finally,
rasterized blossom containing volume map and blossom count map are derived from the
height-adjusted, noise-removed, downsampled blossom point cloud based on its point
number and geometry information, and a blossom density map is subsequently calculated
as the ratio between blossom count and blossom containing volume. A detailed algorithm
breakdown and explanation can be found in Appendix A. The mapping algorithm was
coded in MATLAB R2021a (Natick, MA, USA).
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Figure 1. Schematic flowchart of the proposed apple orchard blossom density mapping algorithm.

3. Preliminary Field Experiment

As mentioned in Appendix A, the purpose of conducting a field experiment in an
apple orchard was to determine the optimal white color threshold for blossom points, the
ideal blossom grid filter size for downsampling blossom point clouds, and the relationship
between the number of downsampled blossom points and the number of actual blossoms.
However, it is beyond the scope of the study to conduct a thorough field examination of the
blossom density mapping algorithm in terms of its accuracy and reliability against various
factors. Rather, the results of the field experiment serve as a feasibility assessment of the
proposed algorithm.

3.1. Data Collection

The field experiment was conducted in an apple orchard at Russell E. Larson Agri-
cultural Research Center (40.708756◦ N, 77.953668◦ W), which was different from the one
where the sample RGB data were collected. The new orchard was intentionally chosen
to indirectly test the generalizability of the proposed mapping algorithm. The new apple
orchard consisted of eight rows of trees and five cultivars, including Gibson Golden Deli-
cious, Spur Red Delicious, Jonamac, Jonagold, and Ace Spur Red Delicious. The orchard
was roughly 70 m long and 20 m wide.

To calibrate the relationship between downsampled blossom point number and blos-
som count, each of the eight tree rows was divided into three sections, including a 10 m
section, a 20 m section, and a 40 m section, and in total, twenty-four tree row sections were
utilized for ground truthing. Tarp strips were prepared and placed across the orchard to
mark the tree row sections (Figure 2a), which could be easily observed by UAV during data
collection. On 3 May 2022, when most of the apple trees were either at or approaching
peak bloom, manual blossom counts of the 24 tree row sections were collected. During the
blossom counting process, two people were required, and each person only counted one
side of the tree row sections (Figure 2b).
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Figure 2. Illustration of manual apple blossom counting during the field experiment: (a) top view of
the apple orchard showing the tarp strips, which divided each tree row into three sections; (b) blossom
counting of one side of a tree row section.

As the transition of apple flower buds between different growth stages is gradual, it
is difficult to clearly define a set of objective rules to quickly determine whether a flower
bud is at the bloom stage or not, especially when blossom distribution is very dense. To
facilitate efficient blossom counting, the general rule that was adopted during the manual
blossom counting process was to classify a flower bud or a cluster of flower buds as flowers
when they were of a substantial size and white enough to be easily recognized as flowers.
Pinkish blossoms, small, unopened blossoms, and wilted blossoms with shrunken sizes
were not counted during the field experiment (Figure 3).

Figure 3. Examples of apple flowers that were excluded (first row) or included (second row) during
the manual blossom counting: (a) an unopened blossom with pink petals; (b) a half-opened blossom
with pinkish petals; (c) a wilted and shrunken blossom; (d) a half-opened blossom with white petals;
(e) a fully opened white blossom; (f) a wilted blossom of substantial size.

To test the generalizability of the concept of UAV photogrammetry-based blossom
density mapping, different camera and photogrammetry software from those used in
Appendix A.1 were employed for the field experiment. RGB image data were collected
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using a DJI Mavic 2 Zoom, which had a built-in RGB camera with a 4000 × 3000 resolution
and a 2× optical zoom capability. Autonomous UAV flights were conducted again using DJI
GS Pro with a preplanned flight path (Figure 4a). The flight altitude was set at 15 m, and the
UAV speed was set at 1 m/s. Images of the apple orchard were captured every two seconds
with a 40◦ camera pitch and the camera’s full zoom capability, resulting in roughly a 90%
overlap between consecutively collected images. Another commercial photogrammetry
software, DroneDeploy (San Francisco, CA, USA), was used to reconstruct orchard point
clouds (Figure 4b). RGB data of the orchard were collected on 3, 5, 8, 11, and 14 May 2022
to monitor the tree blossom density changes with time.

Figure 4. The apple orchard where the field experiment data collection was conducted: (a) the flight
path of the UAV flight missions; (b) a reconstructed apple orchard point cloud using the set of RGB
images collected on 3 May 2022 that shows the tarp strips.

3.2. Data Processing and Analysis

Each RGB dataset collected was used to reconstruct an orchard point cloud model. For
the orchard point cloud of 3 May 2022, when the apple blossoms were manually counted,
each of the 24 tree row sections was manually cropped out using the open-source software
MeshLab 2020.07 (ISTI-CNR, Pisa, Italy). Since there were two parameters that needed to
be investigated, namely white blossom point color threshold and blossom grid filter size,
various value combinations of the two parameters were studied. A white color threshold
range of 0.01 to 0.2 with a step of 0.01 and a blossom grid filter size range of 0 to 0.23 m3

with a step of 0.013 m3 were defined. In total, there were 420 unique value combinations,
and each combination was used to extract downsampled blossom points from the 24
cropped tree row section point clouds, respectively (Appendix A.3). The relationships
between the extracted downsampled blossom point numbers and the manual blossom
counts were analyzed using linear regression. However, the regressions were forced to
have no intercept, since ideally, zero white blossom point in reconstructed orchard point
clouds should indicate zero blossoms in the orchards. The 420 regressions were evaluated
in terms of the coefficient of determination (R2) and root mean square error (RMSE), and
the optimal combination of white color threshold and blossom grid filter size was selected
based on both metrics.

4. Results and Discussion
4.1. Optimal White Blossom Color Threshold and Blossom Grid Filter Size

Figure 5 shows the R2 and RMSE heatmaps of the 420 regressions, respectively. Strong,
positive linear relationships existed between the downsampled blossom points and the
manual blossom counts, which proves the validity of point-cloud-based apple blossom
density estimation. The largest R2 of 0.85 and the smallest RMSE of 1307 were achieved
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when the white color threshold was 0.04 and the blossom grid filter size was 0.093 m3.
As shown in Figure 5, when the white color threshold ranged from 0.03 to 0.07 and the
blossom grid filter size ranged from 0.013 m3 to 0.183 m3, most value combinations of the
two parameters had relatively high R2s and low RMSEs.

Figure 5. R2 and RMSE heatmaps of the 420 linear relationships between manual blossom counts and
downsampled white blossom point numbers extracted from the 24 cropped tree row section point
clouds using different white color thresholds and blossom grid filter sizes.

The proposed mapping algorithm relied on white color thresholding, an essential
and effective step, to extract blossom points from an orchard point cloud. However,
there are two major sources of errors to this method: non-blossom points and white
color threshold level. White color is not unique to only apple blossoms in orchards.
Highly reflective surfaces, man-made objects, snow, and overexposed pixels can all
appear white in RGB images. While automatic camera settings generally work well in
capturing images with high dynamic ranges, lowering camera exposure can potentially
be beneficial in reducing non-blossom points in a blossom point cloud. Aside from the
number of non-blossom white points contained in an orchard point cloud, the efficacy
of white color thresholding is also dependent on the chosen saturation and intensity
threshold levels. When images are captured under different lighting conditions or at
different times of the day, the same white color threshold might not always result in
optimal blossom point separation. For example, for point clouds that are reconstructed
using images captured at dawn or dusk when brightness is lacking, lower intensity
thresholds are likely to be more effective for blossom point extraction. Potentially, image
preprocessing techniques, such as contrast stretching before point cloud reconstruction,
can help not only achieve more consistent image quality across datasets but also eliminate
the need for establishing optimal white color thresholds for different environmental
lighting conditions. As most apple varieties have pink-colored flower buds during the
first and full pink stages that gradually turn white during the first and full bloom stages,
pink color hue and low saturation thresholding can be another approach to separate
apple blossom points from an orchard point cloud.

The presumption that downsampled blossom points can be used to reliably estimate
blossom counts requires that most apple flowers have a uniform size at the time of data
collection. During a growing season, the petals of apple flowers, which are the most
visible portion of the flowers, transition from being closed (Figure 6a) to being open
(Figure 6b), and to being wilted and detached from the flowers (Figure 6c). The size
of apple flowers during this process can change substantially, which will lead to less
accurate point-cloud-based blossom count estimations, considering that, usually, not all
flower buds on apple trees are at the identical physiological growth stage. Aside from the
developmental stage, apple variety is another factor, which can contribute to inconsistent
blossom size. Calibrating unique relationships between downsampled blossom point
numbers and blossom counts for individual apple varieties at peak bloom has the potential
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to improve blossom count estimation accuracy, which, however, might not be necessary
when growers only have one or a few apple varieties in their orchards.

Figure 6. Field photos of apple blossoms at different developmental stages with different sizes:
(a) small flowers with closed petals; (b) large flowers with fully opened petals; (c) small flowers with
wilted petals.

4.2. Blossom Count Estimation Accuracy

Figure 7 shows the scatter plot between downsampled blossom point number and
manual blossom count when the white color threshold was 0.04 and the blossom grid
filter size was 0.093 m3. As mentioned in Section 4.1, an R2 of 0.85, an RMSE of 1307, and
a normalized RMSE (NRMSE) of 9.02% were achieved. While the R2 verified the strong
positive correlation between downsampled blossom point number and blossom count,
the RMSE indicated that the methodology accuracy can be potentially further improved.
Nonetheless, given the large scale of manual blossom count, the NRMSE suggested the
validity of the proposed mapping algorithm.

Figure 7. The best regression relationship achieved between downsampled blossom point number
and manual blossom count using a 0.04 white color threshold and a 0.09 m × 0.09 m × 0.09 m blossom
grid filter.

There were many factors during the field experiment, which might have influenced
the results in Figure 7. First, ground truth or manual blossom counts might not be very
accurate. Due to the dense distribution of apple flowers, accurately and precisely counting
flowers of eight 70 m long apple tree rows at full bloom stage would be extremely laborious
and time consuming, which was not practical and feasible considering the scope and scale
of the study. During the manual counting, to speed up the counting process, flower clusters
were often counted rather than individual flowers, and each flower cluster was assumed to
contain five flowers, which might not be true for all flower clusters. Additionally, flowers of
apple tree rows essentially cannot be counted by a single person without using destructive
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methods, as flowers growing on one side of a tree row often cannot be seen from the other
side. When multiple people are involved in the counting process, accurately tracking which
flowers are counted is a major challenge. It is very likely that during the field experiment,
many apple flowers were either not counted at all or counted twice by the two people from
two sides of the tree rows.

Second, as discussed in Section 4.1, at any given time during a growing season, it is
not likely that all flowers of apple trees are at the exact developmental stage. For example,
some flowers may already start to wilt, while some are yet to be fully open. The natural,
inevitable varying flower size in the orchard was an important factor, which negatively
affected the accuracy of the proposed methodology. The different apple tree varieties
also had slightly different peak bloom dates, which contributed to the overall flower size
variation in the orchard during data collection.

Third, photogrammetry techniques have limited abilities in reconstructing small
objects. In order to obtain high-quality reconstructed orchard point clouds, ideally, UAVs
need to fly at high altitudes to prevent significant image perspective distortions, so that
more visual similarities between images can be preserved. However, as cameras are located
farther away from apple trees, small apple flowers will no longer appear as prominent
features in images, and often, photogrammetry software would fail to reconstruct fine
details, such as small apple flowers. This explains why for low-resolution cameras, flower
clusters at full bloom stage would be easier to reconstruct than individual flowers at king
bloom stage due to their larger overall white mass. While high UAV flight altitude is
beneficial for large-scale UAV mapping, for this specific application, the UAV flight altitude
was carefully chosen to achieve a balance between image similarity and image detail.
Nevertheless, the failure to reconstruct small blossoms could be one of the factors that
affected the results.

Lastly, as the flowers inside apple tree canopies have a lower chance of being
observed by a UAV, occlusion of flowers can lead to lower blossom count estimation
accuracy. Depending on the apple variety, training system, and growth stage, dense
tree canopies and dense flower distributions can both increase the number of occluded
flowers. During the field experiment, all apple blossoms were counted regardless of their
locations within the tree canopies, while during point cloud reconstruction, perhaps
only a limited number of flowers located inside of the tree canopies were successfully
reconstructed. Such mismatch, especially when multiple apple varieties were involved,
might be partially responsible for the imperfect results in Figure 7. Generally, apple flow-
ers located in upper outer tree canopies are more likely to be successfully reconstructed
than those located in lower inner tree canopies, and deliberately designing UAV flight
paths with appropriate flight altitude, camera pitch angle, and flying speed to maximize
blossom point reconstruction success rate is vital for the proposed blossom count and
density estimation methodology.

4.3. Blossom Density Monitoring Application

As a demonstration, the proposed algorithm was utilized to generate blossom density
maps of the apple orchard during the blooming period using a 0.3 m × 0.3 m × 0.3 m
terrain grid filter (Figure 8). From left to right, the varieties of the eight apple tree rows in
the maps are Gibson Golden Delicious, Spur Red Delicious, Jonamac, Jonagold, Gibson
Golden Delicious, Gibson Golden Delicious, Ace Spur Red Delicious, and Ace Spur Red
Delicious. Substantial blossom density variations within the tree rows, between the tree
rows and varieties, and across the dates can be easily observed in the maps, which indicates
the strong potential of the proposed methodology in helping apple growers monitor the
blossom density of large-scale orchards with ease.
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Figure 8. Blossom density maps of the field experiment apple orchard on multiple dates during the
growing season of 2022 generated with a 0.3 m × 0.3 m × 0.3 m terrain grid filter.

The functions of blossom density maps are three-fold. First, they show the absolute
and relative blossom densities of different apple varieties. For example, relatively speaking,
Jonamac and Gibson Golden Delicious had higher peak blossom densities than Spur Red
Delicious and Ace Spur Red Delicious. During blossom thinning, growers can focus more
on the warm regions with high blossom densities than the cold regions with low blossom
densities in a map to achieve uniform blossom density distribution over the whole orchard.
Second, they capture the peak bloom date of different apple varieties. For example, the peak
bloom date of Jonamac was 5 May, and the peak bloom date of Gibson Golden Delicious
was 8 May. Historical blossom density maps from previous years would allow growers to
better anticipate the peak bloom dates of their apple trees and prepare for blossom thinning
ahead of time. Third, they record the peak bloom duration of different apple varieties.
For example, the peak bloom duration of Jonagold was roughly four days, and the peak
bloom duration of Gibson Golden Delicious was roughly seven days. It might be beneficial
for growers to prioritize the blossom thinning of apple varieties with short peak bloom
durations, as they are more time sensitive.

4.4. Implications and Future Work

The proposed blossom density mapping algorithm can assist apple growers in quickly
identifying tree row regions with undesirably dense flower distributions, and hence, mak-
ing informed, timely blossom thinning decisions. Compared to traditional manual orchard
inspection, the algorithm allows the blossom densities of apple trees to be compared in a
more objective way. Even though the absolute blossom densities estimated by the algorithm
might not be particularly precise, the relative blossom densities between tree rows can
be clearly reflected in the maps, which enables growers to quickly locate orchard regions
requiring thinning operations. The algorithm is also helpful when orchard blossom density
needs to be re-evaluated. For example, after a rainstorm or mechanical blossom thinning, a
UAV flight mission can be conducted over an orchard to assess its current blossom density
to help determine whether further blossom thinning is still necessary.

The primary focus of the current study was to develop a point-cloud-based apple blos-
som density estimation algorithm, based on the presumption that downsampled blossom
point number and actual blossom count are positively correlated. While the preliminary
field experiment confirmed the algorithm’s validity and general utility, to achieve more
accurate blossom density estimations, comprehensive experiments exploring various fac-
tors that can influence the accuracy and repeatability of the proposed methodology are
still needed.

To reconstruct high-quality orchard point clouds, a robust photogrammetry software
is essential. Currently, various commercial and open-source photogrammetry software are
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available. Aside from PIX4Dmapper and DroneDeploy which were tested in the study,
Agisoft Metashape, COLMAP, Meshroom, OpenMVG, and VisualSFM are also some of
the available photogrammetry software [54,55]. It is worth investigating in future studies
which software performs the best in complicated agricultural environments, as the internal
photogrammetry algorithms of the software have likely been customized.

Since all information in a reconstructed point cloud comes from RGB images, image
quality is another vital factor, which impacts reconstructed orchard point cloud quality. As
previously discussed, data collection timing, flight altitude, flight speed, camera resolution,
and camera pitch angle can all affect image quality. Time of day mainly influences image
brightness, and a proper brightness level is necessary for images to achieve good dynamic
ranges. Flight altitude determines the tradeoff between image similarity and image detail.
High flight altitudes would ensure successful reconstruction of coarse orchard point clouds
with fewer blossom details. Low flight altitudes would allow cameras to observe apple
flowers better; yet, reconstructed point cloud quality can suffer when significant perspective
distortions are present between images. Flight speed determines the balance between
image overlap, image blurriness, and flight duration. In general, high image quality and
overlap should be prioritized over short data collection duration. Although it seems
to be apparent that high camera resolution is advantageous for generating high-quality
point clouds, it also takes longer to reconstruct point clouds using high-resolution images.
During photogrammetric flight missions, UAVs usually fly in a grid pattern with 90◦

pitched cameras to acquire images with large frontal and side overlaps. In this case, to
better observe the flowers growing on the sides of the apple tree rows, the flight mission
parameters, including flight altitude, flight path, and camera pitch angle, were specifically
chosen and designed to achieve dense blossom point cloud reconstruction. In future
research, the quality of point clouds reconstructed using images captured at different
times of day can be first examined to determine whether environmental brightness is an
important consideration during data collection. Various image preprocessing techniques
can be explored to improve image quality consistency. The optimal combination of flight
altitude, flight speed, and camera pitch angle should be studied to generate complete,
dense point cloud models of orchards. It would be an interesting research topic to compare
point clouds reconstructed using image sets with various resolutions of the same orchard
and investigate when additional image resolution would no longer help increase blossom
density estimation accuracy.

As mentioned in Section 4.1, considering that different apple varieties may have
different characteristics, such as canopy density and flower size, density, and distribution
during their blooming periods, exploring optimal saturation and intensity thresholds and
blossom grid filter sizes for individual apple varieties might help improve blossom density
estimation accuracy. In the current study, there were insufficient data points to properly
calibrate and validate such relationships for each apple variety. However, the preliminary
analysis returned near perfect linear relationships with approximate R2s of 1 and RMSEs of
0 for Spur Red Delicious, Jonamac, and Jonagold using the limited data.

Since apple blossoms are a leading indicator for crop load, their pink form at first and
full pink stages might be just as useful as their white form at first and full bloom stages.
Although pink flower buds are much smaller and likely harder to reconstruct than white
blossoms, predicting blossom count and density utilizing the number of downsampled
pink points of an apple orchard point cloud is a potential research topic. Consequently, the
impacts of pink color threshold and pink grid filter size on blossom density estimation will
need to be investigated. As another potential extension of the current study, the proposed
blossom density estimation methodology might also be applicable to other fruit trees with
white flowers, such as peach, pear, and citrus, although optimal white color threshold and
blossom grid filter size are likely different than those for apple.
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5. Conclusions

The current study developed an original apple blossom density mapping algorithm
utilizing RGB point cloud models reconstructed by photogrammetry software, and it ex-
plored the functionality of UAV-based sensing and data processing for orchard blossom
management. The algorithm completes a streamlined, user-friendly, cost-effective, and
efficient apple orchard blossom density monitoring workflow, from autonomous orchard
image collection using UAV, photogrammetry-based point cloud reconstruction, to blos-
som density map generation using the developed algorithm. The utility of the proposed
algorithm lies in objective blossom density assessment and visualized blossom thinning
guidance, and the investigated optimal blossom downsampling grid filter size and white
color threshold allowed apple blossom number to be estimated with satisfactory accuracy.
While the preliminary field experiment demonstrated the algorithm’s capability in cap-
turing blossom density variations of different apple varieties at different dates despite its
simplicity, future studies are still needed to further explore the impacts of photogrammetry
software, UAV flight mission design, and image quality on algorithm performance.
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Appendix A Detailed Algorithm Breakdown

Appendix A.1 Sample Data Collection and Point Cloud Generation

For illustration purposes, a set of sample RGB images of a blooming apple orchard
were captured using a DJI Matrice 200 V2 (Shenzhen, China) equipped with a DJI Zenmuse
XT2 on 1 May 2021. The apple orchard was located at Russell E. Larson Agricultural
Research Center, Pennsylvania Furnace, PA, USA (40.707918◦ N, 77.954370◦ W), which
consisted of four tree rows and two apple cultivars, including Jonagold and Daybreak
Fuji. The orchard dimension was roughly 25 m × 15 m. An autonomous UAV flight
was conducted using DJI GS Pro with a preplanned flight path (Figure A1a). The flight
altitude was set at 15 m, and the UAV speed was set at 1 m/s. Images of the apple
orchard were captured every second with a 40◦ camera pitch, resulting in a roughly 90%
overlap between consecutively collected images. The image dataset contained, in total,
274 images with a 4000 × 3000 resolution. PIX4Dmapper (Prilly, Switzerland), a commercial
photogrammetry software, was used to reconstruct orchard point cloud model with the
image dataset (Figure A1b). Each point within the point cloud contains location (easting,
northing, elevation) and color (red, green, blue) information.

Appendix A.2 Terrain Map Generation

As apple orchards might be located in mountainous regions, terrain unevenness or
elevation difference within orchards should be accounted for when the mapping algorithm
needs to allow users to define the desired tree height regions. A terrain map that contains
the elevation information within an orchard can help adjust an orchard point cloud model
into one with perfectly flat ground.
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Appendix A.2.1 Point Cloud Downsampling

A raw point cloud reconstructed by photogrammetry techniques typically contains a
large number of points and can be extremely slow to process using average computers. For
example, the sample apple orchard point cloud model (Figure A1b) consisted of more than
200 million points. Converting point clouds into maps is a process of losing information
or discarding unnecessary information, as image pixel numbers are limited. Therefore, a
downsampling procedure is necessary to improve the efficiency of the mapping algorithm.
A grid-averaging approach is employed in the mapping algorithm, which is essentially
the same as point cloud voxelization, where points within a moving grid filter with a
predefined size are merged into one. Figure A2 shows an example of the sample point
cloud being downsampled by a 1 m × 1 m × 1 m terrain grid filter. The terrain grid filter
size is an important parameter, which determines the spatial resolutions of final terrain
maps as well as final blossom density maps. For instance, a 1 m terrain grid filer size will
lead to a 1 m per pixel spatial resolution in the maps. Generally, a large grid filter size is
recommended for generating a smooth terrain map.

Figure A1. The apple orchard where sample RGB image data were collected: (a) the flight path of the
UAV flight mission; (b) the reconstructed apple orchard point cloud using the sample dataset.

Appendix A.2.2 Height Map Generation

To generate a terrain map, ground surface objects with substantial heights, such as
apple trees and wood posts, need to be identified and removed. The principle of identifying
apple trees in the mapping algorithm rests on locating downsampled “unit regions” with in-
unit maximum point elevation differences exceeding a predefined threshold. For example,
in Figure A2b, each point represents a 1 m × 1 m downsampled unit region, which typically
contains multiple points with identical eastings and northings but different elevations.
Unit regions where apple trees are located generally have larger in-unit point elevation
variations than those only containing ground points, since an apple tree can be as tall
as a few meters, while the height of grasses on the ground is in the magnitude of tens
of centimeters.

Given a downsampled orchard point cloud, a maximum height map, a minimum
height map, and a height difference map are generated. The maximum and minimum
height maps are created by a two-step process. First, “empty” height images or 2D arrays,
whose dimensions are determined by the numbers of unique eastings and northings in the
downsampled point cloud, are initialized. In the height images, the center of each row of
pixels represents a constant northing, and the center of each column of pixels represents
a constant easting. Second, the heights of the highest and lowest points within each unit
region are mapped into the empty height images based on the eastings and northings
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accordingly (Figure A3a,b). The height difference map is calculated by subtracting the
minimum height map from the maximum height map, which contains in-unit maximum
point elevation difference information (Figure A3c). A tree mask was generated by thresh-
olding the height difference map to remove the apple trees, and a 0.3 m threshold was
adopted in the mapping algorithm (Figure A3d). Note the example minimum height map
(Figure A3b) is very close to a terrain map because the apple tree canopies were not dense
and low enough, such that the ground below the tree canopies could not be observed by
the camera during data collection; hence, the ground points below the apple trees could
still be reconstructed. The height difference map is necessary for removing ground surface
objects that fully occlude the ground, such as a crate, which would appear as abnormally
bright pixels in the minimum height map.

Figure A2. A top-view example of the downsampling process for the raw orchard point cloud by a
1 m × 1 m × 1 m terrain grid filter: (a) before downsampling; (b) after downsampling.

Figure A3. Example height maps and tree mask derived from the downsampled orchard point cloud
by a 0.1 m × 0.1 m × 0.1 m terrain grid filter: (a) maximum height map; (b) minimum height map;
(c) height difference map; (d) tree mask.

Appendix A.2.3 Terrain Map Interpolation and Smoothing

The base of a terrain map is the minimum height map (Figure A3b) masked by the
tree mask (Figure A3d). To fill in the empty pixels, whose values are either removed by
the tree mask or never assigned, a customized linear interpolation-based approach is used
in the mapping algorithm. Denoting an empty pixel value as 0, a base terrain map in the
interpolation process is interpolated horizontally and vertically, in total twice (Figure A4).
Regardless of the interpolation direction, given a row or column of pixel values, an empty
pixel or a series of connected empty pixels having non-zero neighbors on both sides are
linearly interpolated (Figure A4). Since certain empty pixels can only be interpolated in one
of the interpolation directions, the final interpolated terrain map is generated by “selectively
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averaging” the horizontally and vertically interpolated terrain maps. For the interpolated
pixels that only exist in the horizontally or vertically interpolated terrain map, their values
are preserved in the final interpolated terrain map. For the interpolated pixels that exist
in both horizontally and vertically interpolated terrain maps, their values from the two
maps are averaged and then used in the final interpolated terrain map (Figure A4). The
overall interpolation process is repeated twice to create a terrain map without disconnected
components and concave regions.

Figure A4. Illustration of the terrain map interpolation process using a randomly generated image.
Yellow regions highlight the empty pixels, which can potentially be interpolated.

An optional final step of terrain map generation is smoothing, which can help reduce
high frequency image noise if present. A standard image averaging filter is used in the
mapping algorithm, while a Gaussian smoothing filter would work equally fine. The
averaging filter has an odd size, which is user definable. When empty pixels are present
within the filter, the filter ignores them and computes the average value of non-empty
pixels. Considering the terrain map is created based on a downsampled point cloud having
only a limited number of unique point elevation values, a smoothing operation is not
essential for the mapping algorithm. Figure A5 shows a few examples of the final terrain
maps created using the sample orchard point cloud downsampled by terrain grid filters
with different sizes. Note a smaller grid filter size leads to more refined terrain maps.

Figure A5. Example smoothed terrain maps of the sample orchard point cloud generated using
different terrain grid filters. The maps were smoothed by a 3.3 m × 3.3 m averaging filter.



Horticulturae 2023, 9, 266 16 of 21

Appendix A.3 Blossom Point Cloud Extraction and Downsampling

To generate a blossom density map, the identification of blossom points from a recon-
structed orchard point cloud is essential. Utilizing the white color feature of apple blossoms,
a color thresholding approach is used in the mapping algorithm to extract blossom point
clouds. RGB values of the raw orchard point cloud (Figure A1b) are first converted into
hue-saturation-intensity (HSI) values, which range from 0 to 1. Since white colors can be
represented by either low-saturation values or high-intensity values, white blossom points
are extracted by applying a threshold as the upper limit for the S channel and 1 minus the
threshold as the lower limit for the I channel (Figure A6a). The optimal threshold level was
explored in the field experiment, as explained in Section 3. As fallen petals on the ground
and highly reflective surfaces also have white colors and will be extracted as part of the
blossom point cloud, a simple height thresholding is utilized to eliminate the noisy points.
Before that, the elevation values of the blossom point cloud need to be first adjusted by
the terrain map, as apple trees can grow on hills with substantial slopes, and an elevation
threshold will simply not work for such scenarios. Based on the easting and northing
information, the terrain map pixel that contains a given blossom point can be located, and
the elevation value of the pixel is then subtracted from the blossom point elevation value to
calculate the point’s above-ground height. After all blossom point elevations are adjusted,
a 0.3 m height threshold is applied to remove the noisy white points (Figure A6b).

Figure A6. Blossom point cloud extraction from the sample orchard point cloud: (a) raw blossom
point cloud extracted using white color thresholding; (b) height-adjusted, noise-removed, downsam-
pled blossom point cloud.

The estimation of apple blossom count or density in the mapping algorithm is based on
the presumption that downsampled blossom point numbers and actual blossom numbers
in orchards are positively correlated. However, depending on object location, point clouds
reconstructed by photogrammetry techniques can have vastly different local point cloud
densities. For example, an apple blossom, which is at the top of a tree canopy and well
observed by many images, may have a very dense reconstructed point cloud, while an
apple blossom, which is hidden inside a tree canopy and can barely be seen in images,
may only have a few points being reconstructed. The purpose of blossom point cloud
downsampling is to unify point cloud density, so that regardless of the reconstructed point
cloud quality, a downsampled white point always represents a certain volume of space,
hence, a certain number of blossoms (Figure A7). The downsampling procedure for the
blossom point cloud is identical to that for the raw reconstructed orchard point cloud
(Figure A2), except for the grid filter size, and the optimal blossom grid filter size was
investigated in the field experiment, as specified in Section 3.
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Appendix A.4 User-Defined Tree Height Region

One of the mapping algorithm’s features is the ability to generate blossom density
maps of a user-defined tree height region, which gives growers the freedom to precisely
manage blossom thinning not only at different locations but also at different tree heights.
This can be helpful when blossom densities at different apple tree heights vary substantially.
After users input the maximum and minimum heights of the desired tree height regions,
two height thresholds are applied to the height-adjusted downsampled blossom point
cloud to remove blossom points outside the desired tree height regions.

Figure A7. Graphic illustration showing densely and sparsely reconstructed point clouds of the same
apple blossom being downsampled to the same number of points.

Appendix A.5 Blossom Density Map Generation

Appendix A.5.1 Blossom Containing Volume Map Generation

Blossom density can be calculated as the ratio between the number of blossoms and
the volume of space containing the blossoms. The number of blossoms in a unit region
can be represented by the number of downsampled blossom points in the unit region, as
mentioned above. The relationships between downsampled blossom point numbers and
actual blossom counts were studied in the field experiment in Section 3. Considering trees
in modern apple orchards are often planted in rows, which can be wall-shaped due to
the adopted training systems, for simplicity, all unit regions belonging to the same apple
tree row are assumed to have the same blossom containing height in the downsampled
orchard point cloud. The blossom containing height range of a tree row is calculated as the
difference between its maximum and minimum blossom point heights (Figure A8), and the
blossom containing volume of a unit region is calculated as squared terrain grid filter size
times the blossom containing height range (e.g., 0.1 m × 0.1 m × 1.5 m = 0.015 m3).

Figure A8. Schematic diagram showing the calculation of blossom containing height range of a
downsampled tree row point cloud from a side view.
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Similar to Appendix A.2.2, a blossom mask is generated by first initializing an empty
image with the same size as the terrain map and changing a pixel’s value from 0 to 1 when
a blossom point is found within the pixel’s unit region (Figure A9a). A morphological
closing is then applied onto the blossom mask to form complete tree row regions containing
blossom points, and the mask is also cleaned up by removing connected pixel components
with small sizes (Figure A9b). When the terrain grid filter size is 0.1 m × 0.1 m × 0.1 m, a
100 connected pixel threshold is used in the mapping algorithm. Note for larger terrain grid
filter sizes, a smaller connected pixel threshold should be used for mask cleaning, as each
pixel represents a larger unit region. For each tree row, or each disconnected component
in the blossom mask after mask cleaning, the maximum and minimum height values of
the blossom points belonging to the tree row are used to calculate the blossom containing
height range. The blossom containing volumes of different tree rows are conveniently
calculated by multiplying their blossom containing height ranges with squared terrain
grid filter size (Figure A9c). Generally, when apple cultivars have similar heights or user-
specified tree height regions are narrow, no apparent difference will exist between blossom
containing volumes of different tree rows in a blossom containing volume map.

Figure A9. The blossom containing volume map generation process using the sample blossom point
cloud downsampled by a 0.1 m × 0.1 m × 0.1 m blossom grid filter: (a) raw blossom mask; (b) closed,
cleaned blossom mask; (c) blossom containing volume map.

Appendix A.5.2 Blossom Count and Density Calculation

Using the same principle as blossom mask generation, a blossom count map is gener-
ated by first initializing an empty image with the same size as the terrain map, and then for
every downsampled blossom point that is found within a pixel’s unit region, increasing
the pixel value by 1. After obtaining the total blossom point count within a pixel, the
count is multiplied by an empirically determined factor to calculate the estimated blossom
count, as mentioned in Appendix A.5.1. The optimal factor value was explored in the
field experiment, as explained in Section 3. The final blossom density map is calculated
as the ratio between the blossom count map and the blossom containing volume map
(Figure A10).
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Figure A10. Example blossom density maps of the sample orchard point cloud at different tree height
regions generated with a 0.1 m × 0.1 m × 0.1 m terrain grid filter.
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