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Abstract: Constantly changing environments often negatively affect yield potential. Phytohormone-
based biostimulants are known for their ability to control plant development and reduce the influences
of negative environmental impacts and facilitate more efficient usage of resources. The aim of this
study was to evaluate the effect of phytohormone-based biostimulants on lettuce (Lactuca sativa L.)
antioxidant and photosynthetic responses and biomass formation. Lettuce was grown in a greenhouse
with supplemental lighting; a 16 h photoperiod was maintained. Ten combinations of kinetin, indole-
3-acetic acid, gibberellic acid, abscisic acid and salicylic acid were applied at 12–13 BBCH. The results
thereof have shown that combining growth and stress phytohormones resulted in higher biomass
formation; additionally, combining two growth or two stress hormones led to antagonistic effects
and reduced photosynthetic rates. Furthermore, the application of gibberellic and salicylic acid had
the most positive effect on lettuce productivity. The perspective offered by this work has shown that
with the manipulation of hormone concentrations, photosynthetic and antioxidant systems can be
controlled, thus enabling control of yield and quality.
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1. Introduction

One of the most urgent problems in the world is a reduction in cultivated areas, which
has resulted in a lack of food. Therefore, it is important to ensure a good, high-quality
harvest. However, constantly changing environmental factors often negatively influence
plant productivity [1]. One of the ways to maintain a stable and high-quality yield is to
use phytohormone-based biostimulants. Phytohormones are known for their ability to
modulate plant developmental processes, such as responses to negative factors, that may
reduce yield potential. Several groups of phytohormones are known to have different effects
on certain parts of plants as well as their growth and development. Cytokinins (CKs), auxins
(AUXs), gibberellic acid (GA), abscisic acid (ABA) and salicylic acid (SA) control plant
development through all periods of ontogenesis [2]. Physiological and molecular processes
are induced by natural plant biostimulatory compounds, resulting in higher yields, better
quality, and better resistance to pathogens and environmental conditions. Biostimulants
based on plant hormones can also participate in the regulation and optimization of plant
growth. Previous studies have shown that with the use of manipulation of exogenous
hormones and their concentrations in crop growth and tillering, bud formation can be
stimulated or inhibited. Liu [3] showed that the exogenous application of auxins can inhibit
the growth of tiller buds in rice, while cytokinins can promote it [3]. Other studies have also
demonstrated that the use of zeatin nucleosides (cytokinins) can promote the sprouting
of tiller buds in maize [4]. Exogenous ABA can also affect buds by increasing the amount
of endogenous ABA in the tiller nodes [5]. The exogenous application of hormones has
been shown to be an effective method of regulating bud growth [6]. Plant biostimulants
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can increase photosynthesis, metabolism and the response of antioxidant systems during
critical growth stages.

Hormones interact with each other either by activating second messengers or through
phosphorylation cascades. Hormone crosstalk and signal transduction create a complex
network that can affect developmental processes and induce different responses to environ-
mental factors. All phytohormones have regulatory roles, thus establishing antagonistic or
synergistic relations with each other. Auxins and cytokinins are known to play antagonistic
roles. Experiments in vitro showed that a low ratio of auxins and CKs will promote shoot
formation while a high ratio of auxins and CKs will promote root formation [7]. Further-
more, CKs and GAs share diverse roles in plant development. During shoot formation,
CKs are the most active; additionally, GAs participate in seed germination. Additionally,
when exogenously applied, these growth regulators can change the contents of endogenous
phytohormones [8]. For example, exogenously applied GAs have changed endogenous
CK oxidase/dehydrogenase (CKX) activity in Pisum sativum [9], and this enzyme has been
suggested to represent an important link between CK and GA crosstalk [10].

Wu et al. [11] have identified the mechanism of antagonistic CK and ABA crosstalk in
Gladiolus hybridus. Corot et al. [12] demonstrated that at high PPFD (photosynthetic photon
flux density) levels, ABA inhibits bud growth; while at lower PPFD levels, CKs and ABA
antagonize each other, which stimulates bud growth.

Another group of stress-related phytohormones is found in SA. The literature has
revealed that CKs have crosstalk with SA in a synergistic way. In damaged plants, CKs are
co-regulated with SA levels [13]. It is believed that CKs up-regulate plant immunity through
SA-dependent defense responses, which, in return, inhibit CK signaling. Mainly, crosstalk
between CKs and SA helps plants to increase their resistance and defense responses against
pathogens [14]. More than these phytohormones are included in stress regulation. For
example, GAs regulate the abiotic stress responses of plants through ABA involvement. The
levels of these two phytohormones regulate decisions between dormancy and germination.
GAs and ABA are known to act in antagonistic ways [15]. Furthermore, an antagonistic
relationship has been described between ABA and auxins. During abiotic stress conditions,
crosstalk between these two phytohormones assists seed vitality, while during water
stress, ABA modulates auxin transport to maintain root growth [16]. Crosstalk between
phytohormones leads to the regulation of the biosynthesis of other phytohormones, which
results in different plant responses.

Phytohormones such as ABA and SA are responsible for the regulation of defense and
of CKs, auxins and GAs for growth-related pathways. In order for plants to survive adverse
conditions, phytohormones need to crosstalk with each other [15]. Often, the response to a
particular factor is achieved not by a single phytohormone but by the interaction between
two or more. Additionally, hormonal crosstalk also participates in the regulation of plant
development, growth and yield formation. Leaves are key plant parts that capture sunlight,
synthesize important metabolites, participate in gas exchange and reactions and regulate
plant growth under heterogenous conditions [17]. The main productive parts of lettuce
are leaves, which, by modulating phytohormone signaling and distribution, lead to very
effective adaptation to environmental variables [18]. Lettuce is a universal plant that can be
grown for models and as a leafy vegetable that is rich in nutrients.

This experiment was performed with the aim to improve yield potential using a mix of
two phytohormones. The chosen concentrations of phytohormones were based on previous
experimental data that have not been published yet.

Advancements in plant physiology have allowed scientists to dive deeper into insights
regarding plant responses. There is information in the literature about exogenous phy-
tohormones, which regulate gene expression and explain gene crosstalk, but there is not
enough information about plant metabolic and physiological responses to the application
of mixtures of these phytohormones. To understand the synergistic effects of these mixtures
on plant antioxidants, further investigation of photosynthetic responses and productivity
has been carried out.
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2. Materials and Methods
2.1. Growth Conditions

Plants were grown in 0.5 L vessels with a TERRAERDEN peat substrate (SIA Com-
paqpeat, Rucava, Latvia) made of upland bog; this moderately fragmented peat contained
nitrogen (140–210 mg/L), phosphorus (160–240 mg/L) and potassium (180–270 mg/L) at
pH 5.5–6.5 and EC ms/cm < 10. The growth took place in a greenhouse from September to
October (lat. 55◦, Lithuania). One vessel contained 5–7 seeds. After germination, vessels
were thinned to up to 5 plants. A 16 h photoperiod of 200 µmol m−2 s−1 of supplemental
light (light spectrum: 70% red, 15% blue and 15% white) (Tunsgram, Budapest, Hungary),
with temperatures of +18–+23 ◦C by day and +10–+15 ◦C at night, was maintained. Lettuce
(Lactuca sativa L. cv. Lobjoits; Green Cos, CN seeds Ltd., Cambridgeshire, UK) was sprayed
with 10 different combinations of phytohormones at BBCH 12–13 (seedling stage, when the
second leaf was unfolded). Treatments included a control of sprayed water; KIN + IAA;
KIN + GA; KIN + ABA; KIN + SA; IAA + GA; IAA + ABA; IAA + SA; GA + ABA; GA + SA;
and ABA + SA; the concentration of each phytohormone was 30 mg L−1, and the amount
of solution applied was based on surface area (50 mL to 0.25 m2; 90 plants). The phytohor-
mones were obtained from Carl Roth (Karlsruhe, Germany), Sigma-Aldrich (Darmstadt,
Germany) and Alfa Aesar (Kandel, Germany). KIN—kinetin; IAA—indole-3-acetic acid;
GA—gibberellic acid (as GA3); ABA—abscisic acid; and SA—salicylic acid. Five days after
application, non-destructive measurements and sample collection were performed.

2.2. Biometric Measurements

Five representative lettuce plants were selected for leaf area measurement (cm2) with
a leaf area meter (AT Delta—T Device, Cambridge, UK). The height of each plant was
measured with a ruler from the ground, accounting for a millimeter of error. The dry masses
of plants were determined by drying them at +70 ◦C for 48 h (Venti cell 222; Medcenter
Einrichtungen, Gräfeling, Germany) to a constant weight.

2.3. Determination of Photosynthetic Parameters

Photosynthetic rates (Pn, µmol CO2 m−2 s−1), transpiration rates (E, mmol H2O m−2 s−1),
stomatal conductances (gs, mol H2O m−2 s−1) and intercellular-to-ambient CO2 concen-
tration (Ci/Ca) were determined from 9:00 to 12:00 a.m. using an LI-6400XT portable
open-flow gas exchange system (Li-COR 6400XT Biosciences, Lincoln, NE, USA). For the
measurements, the third developed leaf from each plant was chosen, and five plants were
measured for one minute each. The reference air (CO2, 400 µmol mol−1), the light intensity
(1000 µmol m−2 s−1) and the flow rate of the gas pump (500 mmol s−1) were set.

2.4. Chlorophyll Fluorescence Imaging Analysis

An Imaging-PAM Fluorometer M-Series MAXI-Version (Walz, Effeltrich, Germany)
was used to measure the dark-adapted leaves of 3 lettuce plants over 25 min. In each
plant, 4–6 areas of interest were selected, from which chlorophyll fluorescence values
were measured. This instrument uses a charge-coupled device (CCD) camera (IMAGE-K,
Allied Vision Technologies, Stadtroda, Germany) to capture Chl fluorescence images as
a function of time and light sources as well as irradiances. Win software (Imaging PAM
MAXI, ImagingWin v2.56zc) and the allocation of absorbed light energy at PSII were
used to determine the effective quantum yield of photochemistry (ΦPSII). The relative
PSII electron transport rate (ETR); the fraction of open PSII reaction centers; and the non-
photochemical quenching (NPQ), which reflects the heat dissipation of excitation energy,
were also calculated [19,20].

2.5. Antioxidant Activity and Total Phenolic Content

Extracts were prepared by grinding 0.03 g (dry weight) of plant leaves and diluting
them with 3 mL of 80% methanol. Each of the three biological replicates consisted of at
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least five conjugated plants and was repeated in three analytical replicates. The antioxidant
properties of the lettuce leaves were evaluated as follows.

The ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical cation
was obtained by incubating 7 mM of ABTS stock solution with 2.45 mM of potassium
persulfate (K2S2O8; final concentration) and allowing the mixture to stand in the dark at
room temperature for 12–16 h before use [21]. Thereafter, 20 µL of the prepared sample was
mixed with 280 µL of the ABTS stock solution (diluted 1:7), and absorbance was measured
after 11 min (plateau phase) at 734 nm (Spectrostar Nano, BMG Labtech microplate reader,
Ortenberg, Germany). The ABTS scavenging activity of each lettuce leaf extract was
calculated as the difference between the initial absorbance and that after reacting for 10 min.
A calibration curve was determined using Trolox (6-hydroxy-2,5,7,8-tetramethychroman-2-
carboxylic acid; 97% purity; Sigma-Aldrich, Burlington, MA, USA) as an external standard,
with a range of concentrations from 0.1 to 0.8 mM (R2 = 0.99). This was expressed as the
ABTS (in µmol) scavenged per 1 g of dry weight (µmol g−1 DW).

For the DPPH (2-diphenyl-1-picrylhydrazyl) assay, a stable 126.8 µM DPPH (100%
purity; Sigma-Aldrich, Burlington, MA, USA) solution was prepared in methanol [22].
Subsequently, 280 µL of the DPPH solution was transferred to a test tube and mixed with
20 µL of the lettuce leaf extract. The absorbance was scanned at 515 nm (Spectrostar Nano,
BMG Labtech microplate reader, Germany) during the reaction for 16 min. The free radical
scavenging capacity was expressed as the µmol of DPPH radicals scavenged per 1 g of
dry weight (µmol g−1 DW). A calibration curve was determined using Trolox (6-hydroxy-
2,5,7,8-tetramethychroman-2-carboxylic acid; 97% purity; Sigma-Aldrich, Burlington, MA,
USA) as an external standard, with a range of concentrations from 0.1 to 0.6 mM (R2 = 0.99).

The FRAP method is based on reducing ferric ions (Fe3+) to ferrous ions (Fe2+). A
fresh working solution was prepared by mixing a solution of 300 mM of acetate buffer
(pH 3.6) and 10 mM of TPTZ (2,4,6-tripyridyl-s-triazine) with 40 mM of HCl and 20 mM of
FeCl3 × 6H2O at 10:1:1 (v/v/v) [23]. A 20 µL amount of each sample was mixed with 280 µL
of the working solution and incubated in the dark for 30 min. Readings of the colored
product (ferrous tripyridyl–triazine complex) were then taken at 593 nm with a Spectrostar
Nano BMG Labtech microplate reader (Germany). A calibration curve was determined
using Fe2(SO4)3 (Iron (III) sulfate; 97% purity; Sigma-Aldrich, Burlington, MA, USA) as
an external standard, with a range of concentrations from 0.005 to 0.5 mM (R2 = 0.99).
Antioxidant power is expressed as Fe2+ antioxidant capacity (Fe2+ µmol g−1 DW).

The total content of the phenolic compounds was determined as gallic acid equivalents.
A 20 µL aliquot of the sample extract was mixed with 20 µL of 10% (w/v) Folin–Ciocalteu
reagent and 160 µL of 1 M Na2CO3 solution [24]. After incubation for 20 min in the dark,
absorbance was measured at 765 nm (Spectrostar Nano, BMG Labtech microplate reader,
Germany). The total phenolic compound quantity in mg g−1 of dry weight was calculated
from the calibration curve of the gallic acid (0.01–0.1 mg mL−1; R2 = 0.99).

2.6. Statistical Analysis

Statistical analysis was performed using Microsoft Excel 2016 and Addinsoft XLSTAT
2022.1 statistical and data analysis (Long Island, NY, USA). The data are presented as
the means of five replicates (n = 5) linked to the sampling points. One-way analysis of
variance (ANOVA) followed by Duncan’s significant difference test (p < 0.05) for multiple
comparisons was used to evaluate differences between means of measurement. Multivariate
principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were
performed to determine the statistical relations between the phytohormone applications
used in this experiment according to the antioxidant and photosynthesis systems’ responses
and biometrical parameters.

3. Results

KIN + ABA increased the photosynthetic rate by up to 28% compared to the control
(Figure 1a). Furthermore, GA + ABA increased the stomatal conductance by up to 42.2%
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compared to the control (Figure 1b). Most treatments had no significant effects compared
to the control; however, KIN + SA had significant negative effects on the photosynthetic
indices. It decreased the photosynthetic rate by up to 38%, the stomatal conductance by
up to 2.8 times, the intercellular CO2 by up to 9% and the transpiration by up to 2.2 times
compared to the control (Figure 1).

Horticulturae 2023, 9, x FOR PEER REVIEW 5 of 12 
 

 

used in this experiment according to the antioxidant and photosynthesis systems’ re-
sponses and biometrical parameters. 

3. Results 
KIN + ABA increased the photosynthetic rate by up to 28% compared to the control 

(Figure 1a). Furthermore, GA + ABA increased the stomatal conductance by up to 42.2% 
compared to the control (Figure 1b). Most treatments had no significant effects compared 
to the control; however, KIN + SA had significant negative effects on the photosynthetic 
indices. It decreased the photosynthetic rate by up to 38%, the stomatal conductance by 
up to 2.8 times, the intercellular CO2 by up to 9% and the transpiration by up to 2.2 times 
compared to the control (Figure 1). 

  

  
Figure 1. Effects of phytohormones on photosynthetic rate Pn (a); stomatal conductance, gs (b); in-
tercellular CO2 (c); and transpiration, E (d), of lettuce leaves. Values are means ± SEs of five repli-
cates, and * shows significant differences based on Duncan’s comparison test (p ≤ 0.05). Control—
sprayed water, KIN—kinetin, IAA—indole-3-acetic acid, GA—gibberellic acid, ABA—abscisic acid, 
SA—salicylic acid. 

The maximum quantum yield of the PSII photochemistry of the dark reactions 
(Fv/Fm) was negatively affected by KIN + GA (decreased by up to 4.2%) and KIN + ABA 

*

*

0

2

4

6

8

10

12

14

16

Co
nt

ro
l

KI
N+

IA
A

KI
N+

GA
KI

N+
AB

A
KI

N+
SA

IA
A+

GA
IA

A+
AB

A
IA

A+
SA

GA
+A

BA
GA

+S
A

AB
A+

SA

P n
(µ

m
ol

 C
O 2 

m
−2

 s−1
 )

(a)

*

*

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
nt

ro
l

KI
N+

IA
A

KI
N+

GA
KI

N+
AB

A
KI

N+
SA

IA
A+

GA
IA

A+
AB

A
IA

A+
SA

GA
+A

BA
GA

+S
A

AB
A+

SA

g s
(m

ol
 H

2O
 m

−2
s−1

)

(b)

*

0
50

100
150
200
250
300
350
400

Co
nt

ro
l

KI
N+

IA
A

KI
N+

GA
KI

N+
AB

A
KI

N+
SA

IA
A+

GA
IA

A+
AB

A
IA

A+
SA

GA
+A

BA
GA

+S
A

AB
A+

SA

Ci
/C

a

(c)

*

0.0

1.0

2.0

3.0

4.0

5.0

Co
nt

ro
l

KI
N+

IA
A

KI
N+

GA
KI

N+
AB

A
KI

N+
SA

IA
A+

GA
IA

A+
AB

A
IA

A+
SA

GA
+A

BA
GA

+S
A

AB
A+

SA

E 
(m

m
ol

 H
2O

 ·m
−2

 · s
−1

)

(d)

Figure 1. Effects of phytohormones on photosynthetic rate Pn (a); stomatal conductance, gs (b);
intercellular CO2 (c); and transpiration, E (d), of lettuce leaves. Values are means ± SEs
of five replicates, and * shows significant differences based on Duncan’s comparison test
(p ≤ 0.05). Control—sprayed water, KIN—kinetin, IAA—indole-3-acetic acid, GA—gibberellic acid,
ABA—abscisic acid, SA—salicylic acid.

The maximum quantum yield of the PSII photochemistry of the dark reactions (Fv/Fm)
was negatively affected by KIN + GA (decreased by up to 4.2%) and KIN + ABA (decreased
by up to 4.1%). KIN + GA also increased the Y(II) by up to 3–8% compared with the control.
ABA + SA decreased the Fv/Fm by up to 5.7% (Figure 2a) and significantly decreased the
Y(II) by up to 6% compared with the control (Figure 2b). With KIN + GA, KIN + ABA
and KIN + SA, the same trends were determined for the ETR and Y(II); these treatments
increased the ETR by up to 7.7%; 5.5% and 7.7% and the Y(II) by up to 8.2%, 6.1% and 8.2%,
respectively (Figure 2c). IAA, together with KIN, GA and ABA, significantly decreased
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the PS II-regulated heat emission. The NPQ significantly decreased by up to 1.5–3.5 times
compared to the control, except for with the ABA + SA treatment (Figure 2d).
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Figure 2. Effects of phytohormones on maximum photochemical efficiency of photosystem
II(Fv/FM) (a), photochemical quantum yield of photosystem II (Y(II)) (b), electron transport rate
(ETR) (c) and non-photochemical quenching (NPQ) (d) of lettuce leaves. Values are means ± SEs
of five replicates, and * shows significant differences based on the Duncan comparison test
(p ≤ 0.05). Control—sprayed water; KIN—kinetin; IAA—indole-3-acetic acid; GA—gibberellic
acid; ABA—abscisic acid; and SA—salicylic acid.

GA + SA decreased the TPC by up to 7.7% compared to the control (Figure 3a).
Treatment with phytohormone-based biostimulants had no significant effect on the radical
scavenging activity of DPPH or ABTS. Furthermore, GA + SA, ABA + SA and IAA + GA
significantly reduced the FRAP antioxidant activity by up to 11.4–18.1% compared to
the control.

ABA + SA decreased the lettuce height by up to 19.6% compared to the control but
did not have a significant impact on the leaf area or leaf numbers (Table 1). Furthermore,
GA + SA increased the leaf area by up to 16.3% compared to the control. However, IAA
together with GA or ABA significantly decreased the leaf area by up to 31.2–31.8% com-
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pared to the control. GA + ABA and GA + SA significantly increased the fresh weight of the
plant; however, no combinations showed significant effects on the dry weight compared to
the control.
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Figure 3. Effects of phytohormones on total phenol content (TPC) (a) and DPPH, ABTS (b) and
FRAP (c) radical scavenging activity in lettuce leaves, in dry weight. Values are means ± SEs
of five replicates, and * shows significant differences based on the Duncan comparison test
(p ≤ 0.05). Control—sprayed water, KIN—kinetin, IAA—indole-3-acetic acid, GA—gibberellic acid,
ABA—abscisic acid, and SA—salicylic acid.

Table 1. Effects of phytohormones on lettuce height, number of leaves and total and average leaf
areas. Values are means ± SEs of five replicates, and * shows significant differences based on the
Duncan comparison test (p ≤ 0.05). Control—sprayed water, KIN—kinetin, IAA—indole-3-acetic
acid, GA—gibberellic acid, ABA—abscisic acid, and SA—salicylic acid.

Lettuce Height,
cm Number of Leaves Total Leaf Area,

cm2
Plant Fresh Weight,

g
Plant Dry Weight,

g

Control 12.1 ± 0.1 4.3 ± 0.6 68.0 ± 7.0 2.21 ± 0.1 0.15 ± 0.01
KIN + IAA 11.0 ± 0.9 4.7 ± 0.6 73.0 ± 7.8 2.59 ± 0.5 0.16 ± 0.03
KIN + GA 10.7 * ± 0.5 4.3 ± 0.6 58.9 ± 9.1 1.92 ± 0.2 0.14 ± 0.02
KIN + ABA 11.3 ± 1.0 4.0 ± 0.0 57.9 ± 4.6 2.20 ± 0.4 0.12 ± 0.02
KIN + SA 12.0 ± 0.7 4.3 ± 0.6 67.5 ± 5.5 2.24 ± 0.1 0.15 ± 0.03
IAA + GA 11.3 ± 0.3 4.0 ± 0.0 54.1 * ± 3.0 1.85 ± 0.2 0.12 ± 0.02
IAA + ABA 11.0 ± 0.4 4.0 ± 0.0 50.3 * ± 3.8 1.86 ± 0.3 0.12 ± 0.04
IAA + SA 11.4 ± 0.7 5.3 * ± 0.6 77.1 ± 2.4 2.63 ± 0.1 0.19 ± 0.03
GA + ABA 12.7 ± 0.3 4.0 ± 0.0 77.5 ± 5.4 2.83 * ± 0.4 0.16 ± 0.04
GA + SA 12.7 ± 1.1 5.0 ± 0.0 79.1 * ± 2.9 2.83 * ± 0.2 0.17 ± 0.02
ABA + SA 9.7 * ± 0.1 5.0 ± 0.0 75.7 ± 2.8 2.46 ± 0.3 0.18 ± 0.01
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A biplot analysis of the correlations between the measured parameters showed the
relationships between the individual photosynthesis and antioxidant system response
parameters of lettuce under different phytohormone treatments. F1 explained 35% of
the total variability, mainly affecting the photosynthetic parameters of the photochemical
quantum yield of photosystem II and the electron transport rate (ETR) as well as the
antioxidant parameters of the TPC, DPPH and FRAP; furthermore, F2 explained 25.89% of
the total variability, affecting stomatal conductance, transpiration and non-photochemical
quenching (NPQ) (Figure 4a,c).
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measured parameters) (c) of phytohormones on different parameters in lettuce leaves.

According to the agglomerative hierarchical clustering results, all treatments came
down to two main clusters (Figure 4b). Each cluster’s group showed similar phytohormone
effects and plant system responses to its use. The main group, together with the control,
included ABA, IAA and GA in a mix with SA, as well as KIN + IAA and GA + ABA. In the
second group, SA, GA and ABA were in a mix with KIN and ABA, and GA was in a mix
with IAA (Figure 4b).

4. Discussion

To this date, most studies have focused on plant responses to single exogenous phy-
tohormone treatment. The positive effect of GAs has already been observed in other
experiments. It is known that treatments with GAs influence stem elongation, cell di-
vision [25], leaf expansion, induction of flowering and flower and seed formation [26].
However, ABA is considered a stress-related hormone that plays a role in water movement
from root to leaf [16]. It is a key signaling molecule and important as a biomarker of oxida-
tive stress. The results of this experiment have indicated that treatment with GA + ABA
will significantly increase the fresh weight of a plant, although there is information that
suggests that ABA and GA interaction is antagonistic in germination processes [27]. How-
ever, besides increased plant fresh weight, no synergistic relationship between GAs and
ABA was observed after the germination processes. Furthermore, various plant hormones
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communicate with SA, which is considered a defense hormone that plays roles in both
local and systemic defenses in plants [28]. Alonso-Ramirez [29] found a synergic effect
between endogenous SA and GAs in Arabidopsis at early development stages, while Xie [30]
showed their antagonistic effect in barley. As discussed, biomass formation is one of the
most important factors for leafy vegetables such as lettuce. In this experiment, GA + SA
treatment significantly increased the plant’s total leaf area compared to the control. We
also recorded a positive outcome regarding plant productivity with GA and SA crosstalk,
as did other authors [30]. Javed [31] found that exogenous GA application significantly
influences gas exchange and chlorophyll content. Our findings show that combinations of
GA with other hormones have no meaningful impacts on photosynthetic rates (Figure 1a).
In addition, compared with the control, the GA + ABA application significantly increased
the stomatal conductance (Figure 1b).

Auxins play a vital role in plant development. They not only participate in cell elon-
gation, division and differentiation but also are related to signal transduction and flower
development [32]. Recent studies have shown that IAA application at early development
stages promotes bolting and flowering [32] and have revealed that a combination of GA
and IAA will increase plant height compared to control plants or treatment with GA alone,
stating that a mixture of those two groups will have a synergistic effect [32]. However,
combining IAA with growth-promoting or stress-related phytohormones has not signifi-
cantly influenced plant development, although IAA + GA has significantly reduced FRAP
antioxidant activity. Auxins and CK play antagonistic roles, and it is well known that a low
ratio of auxins and CK will promote shoot formation while a high ratio will promote root
formation in vitro [7]. Our experiment revealed that an equal ratio of these phytohormones
would not affect plant development significantly.

CKs comprise one of the most important groups of phytohormones and are involved
in almost all development stages of plants [33]. For example, they have an important
role in plant pathogenesis, and the exogenous application of CKs increases resistance to
diseases [34]. Salicylic acid, however, participates in the respiration and transpiration
processes and in plant responses to biotic and abiotic stress [35]. Duraid [36] found that
KINs increased antioxidant enzyme activity in spinach under salt stress. SA has been found
to trigger a chain of pathways by interacting with other phytohormones, such as abscisic
acid, and to participate in stress mitigation [37,38]. Furthermore, synergistic crosstalk
between CKs and SA has been observed. CKs have been found to up-regulate plant
immunity through an SA-dependent response that inhibits CK signaling [14]. However,
our results showed that KIN + SA reduced lettuce photosynthesis, as significant decreases
in the photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate
were observed (Figure 1). CKX enzyme activity has been found to be an important link
between CK and GA crosstalk [10]. These two phytohormones share a diverse role in
plant development, and, when exogenously applied, can change the content of endogenous
phytohormones. The combination of KIN and GA significantly increased the photochemical
quantum yield of photosystem II and the electron transport rate. We think that significant
increases in these photochemical parameters may be attributed to KIN and its role in
photomorphogenic development [39].

Thiruvengadam [40] found that phenol content significantly increased after exoge-
nous SA and ABA treatments on Chinese cabbage. Our study revealed that in contrast to
GA + SA, GA + KIN significantly increased the total phenolic content (Figure 3a). There is
information in the literature [28,40] that suggests that ABA and SA increase plant antioxi-
dant activity; help to maintain the water budget; regulate stomatal conductance, osmotic
adjustment and leaf senescence; and distribute photoassimilates in Chinese cabbage [40].
In opposition to these results, ABA + SA significantly reduced the antioxidant activity of
lettuce (Figure 3b).

Excessive light dissipates as heat through non-photochemical quenching [41]. Our
findings show that IAA + KIN, IAA + ABA and ABA + GA shared a similar NPQ effect,
which we think may be attributed to how the main role of light use efficiency is assigned to
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auxin (IAA) and combinations with KIN or ABA share parallel effects, even though their
mechanisms of action differ. The same tendencies were observed with GA treatments in
combination with KIN or ABA. GA and IAA are known to be characterized by similar
functions in plants [42]; thus, it might be stated that these two groups of phytohormones, in
combination with KIN or ABA, influence the same response of non-photochemical quench-
ing. ABA is known to play a key role in abiotic stress signaling, while SA participates in
biotic stress reactions, and it is believed that these phytohormones have crosstalk with each
other [43]. In general, our findings show that NPQ levels were significantly reduced with
all treatments except for GA + SA, which showed no significance compared to the control.
However, a significant increase in the NPQ was found with the ABA + SA treatment, which
indicates that light was not used in an efficient way in that circumstance (Figure 2d). As
discussed previously, treatments with ABA and SA have no positive impact on plant an-
tioxidant activity, and during this experiment, these two phytohormones neither increased
nor decreased the biomass formation of the lettuce.

The correlations between the measured parameters (Figure 4) show 60.89% total
variability. F1 explained 35%, mainly affecting the photochemical quantum yield of photo-
system II, the electron transport rate (ETR), the TPC, the DPPH and the FRAP; furthermore,
F2 explained 25.89% of the total variability, affecting the stomatal conductance, the transpi-
ration and the non-photochemical quenching (NPQ). For example, the GA + SA treatment
significantly reduced (7.7%) the total phenol content and significantly increased the total
leaf area and the fresh weight of the plant. We think that the reduced antioxidant activity
of the GA + SA application resulted in the plants experiencing less stress, which enabled
the lettuce to increase its yield parameters.

The use of exogenous phytohormones increases every year, and since their use in
small dosages gives such results, which cannot be repeated with other methods, there is a
possibility that phytohormones experience crosstalk at different levels. For example, the
GA and SA treatment significantly decreased plant antioxidant activity and increased plant
biomass formation in the long run. In order to achieve stable results, attention should be
drawn to this treatment. However, there is not enough information about the impacts
of phytohormone combinations on plant physiological and antioxidant responses. To
understand their effectiveness, further research must be carried out.

5. Conclusions

Plant development depends on phytohormones and their interaction with each other.
It is very important to understand the positive and negative relations of phytohormones.
In our experiment, we found that combining growth-promoting and stress-related phyto-
hormones can give positive outcomes. Significant differences were found with a GA + SA
treatment, with which antioxidant activity was increased, improving biomass (total leaf
and fresh weight) formation. However, other applications suppressed photosynthetic,
photochemical and antioxidant responses, resulting in reduced productivity of the lettuce.
This work’s perspective shows that as the concentrations and selection of application time
are adjusted, yield is likely to increase. Photosynthetic and antioxidant systems can be
controlled with the manipulation of hormone concentrations, allowing control of yield and
its quality.
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