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I.; Tepić Horecki, A.; Žunić, D.;
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Abstract: Onions, essential in various salads and cooked dishes, are sought after by producers for
high yields, while consumers value their quality, particularly the presence of antioxidant compounds.
This study investigates the impact of production methods and biostimulants on the biomass yield
and quality of onions. The two-year experiment was conducted in Vojvodina, Serbia, and compared
directly seeded (DS) and from-set (FS) onions with four biostimulant treatments: control (C), seaweed
extracts (T1), humic and fulvic acids (T2), and Trichoderma sp. (T3). DS onions yielded significantly
more biomass, while FS onions had higher dry matter content. DS onions treated with T1 showed
a significant increase in phenols (↑ 5.30%), while T2 and T3 led to declines (↓ 8.66% and ↓ 7.55%,
respectively). All biostimulants reduced phenol content in FS onions. T1 and T2 significantly
increased the flavonoid concentration in DS onions, with no significant changes in FS onions. T1
enhanced antioxidant properties in DS onions and reduced them in FS onions. Additionally, T2 and
T3 decreased antioxidant activity in both DS and FS onions, as evidenced by DPPH, FRAP, and ABTS
tests. These findings guide onion production, advocating for the fresh consumption of DS onions
with higher biomass and industrial processing suitability for FS onions, emphasizing the potential of
bio-based products.

Keywords: biostimulants; onion; bulbs; antioxidant; biomass

1. Introduction

The onion (Allium cepa) is an essential ingredient in many raw or cooked dishes. The
annual per capita consumption of onions worldwide amounts to approximately 11.4 kg [1].
Compared to other vegetables, onions contain a high level of minerals, vitamins, and bioac-
tive compounds, such as chlorophyll, phenols, flavonoids, and various other compounds
with antioxidant properties [2–5]. Notably, among the most prevalent individual phenolic
compounds in onions are vanillic acid, ferulic acid, peonidin, and isoeugenol [2].

Regarding onions intended for fresh consumption, directly seeded (DS) is often pre-
ferred as a production method due to its cost-effectiveness. DS onion also results in higher
yields, allowing for a more significant number of plants per unit area. On the other hand,
onions intended for processing are typically produced from sets (FS) due to their higher
dry matter content.

From the perspective of onion producers (farmers), achieving the highest possible
yield of first-class bulbs is essential. Conversely, from the standpoint of onion consumers,
it is desirable for the produce to be of the highest quality and to contain a significant
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amount of bioactive compounds [2,3,5]. With these considerations in mind, there is a need
to enhance onion production to enable farmers to achieve optimal yields while ensuring
that consumers can enjoy high-quality onions, whether fresh or processed, daily.

The average onion yield worldwide stands at 18.4 t/ha, while in Serbia, it is 8.9 t/ha [6].
Low yields in our country are often the result of unfavorable ecological conditions and
the inadequate implementation of agronomic practices. To address these challenges and
enhance onion yields, one approach involves the utilization of various biostimulants. By
influencing various physiological processes, biostimulants can provide numerous benefits
to the growth and development of plants [7–9]. They are particularly valuable when
plants face stress, as they enhance tolerance to different types of stress that can occur in
open-field production [10,11]. However, under stress conditions, plants may reduce yields
but increase the synthesis of secondary metabolites, such as various phenolic compounds
(e.g., phenolic acids, flavonoids, and catechins) with potent antioxidant properties, as part
of their adaptation to challenging environments [12].

In recent years, scientists from various parts of the world have been working to un-
cover the effects of biostimulants on the yield and quality of vegetables. In a study involving
peppers (Capsicum annuum) and tomatoes (Solanum lycopersicum), a biostimulant derived
from seaweed extracts (SWE) significantly increased biomass [13]. However, in research
conducted by Francke et al. [14], biostimulants with SWE did not significantly affect shallots
(Allium cepa Aggregatum group). Concerning quality, in previous experiments with beans
(Phaseolus vulgaris) and carrots (Daucus carota) SWE-based biostimulants significantly in-
creased the content of antioxidant compounds such as flavonoids and anthocyanins [15,16].
In the case of lettuce (Lactuca sativa), there was an increase in phenol content in the pres-
ence of arbuscular mycorrhiza (Glomus mossae) [17]. In a study on tomato, a yeast-based
biostimulant, reduced phenol content compared to untreated plants [18].

Furthermore, humic and fulvic acid-based biostimulants are commonly utilized in
vegetable production [19]. Research involving potatoes (Solanum tuberosum) and lettuce
revealed that humic compounds had a noteworthy impact on increasing yields in treated
plants [20,21]. Additionally, microorganism-based biostimulants, such as those derived
from Trichoderma sp. (e.g., T. virens strain GV41 or T. harzianum strain T22), are widely used
as they can colonize the root systems of most cultivated plants [22,23]. In the context of
onion production, the application of Trichoderma sp. increased protein content, whereas in
tomato, it reduced phenol content [24,25].

Despite the significance of onions in people’s daily diets, there has been a notable
scarcity of research exploring the impact of production methods and the application of
biostimulants on onion yield and quality. Existing studies investigating the effects of
biostimulants [3–5] have primarily focused on onion production from seedlings, with
limited research on onions grown from direct seeding or sets. This research addresses a
critical need for practical applicability and aims to enhance onion production for fresh
consumption and for processing.

In light of this challenge, the objective of our study was to comprehensively assess
the influence of biostimulants on biomass yield and the content of bioactive compounds in
onions, under two production methods.

2. Materials and Methods
2.1. Experimental Design and Agroecological Conditions

The field experiments were conducted during 2021 and 2022 on the territory of the
Autonomous Province (AP) of Vojvodina, Republic of Serbia. Weather conditions during
the experiments are depicted in Figure 1. The field experiment was set up in three replicates
with randomized treatments, where the first factor represented the production method:
1. directly seeded (DS) onion, and 2. From-set (FS) onion. The second factor consisted
of biostimulants: 1. control without biostimulants (C); 2. Agasi® by Agafert S.R.L. (Bari,
Italy), based on SWE (T1); 3. HumiBlack® by DRN Kimya (Antalya, Turkey), based on



Horticulturae 2023, 9, 1345 3 of 17

humic and fulvic acids (T2); and 4. Tifi® by Italpollina S.P.A. (Rivoli, Italy), formulated
with Trichoderma sp. (T3).
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Figure 1. Weather conditions in the AP, Vojvodina, during onion production in 2021 (a) and 2022 (b).
The solid red line represents air temperatures, while the dashed red line shows the multi-year
(1990–2020) average temperature. Blue bars represent precipitation, and purple bars indicate the
multi-year (1990–2020) average precipitation.

The highest average temperatures in 2021 and 2022 were recorded in July, reaching
24.5 ◦C and 24.3 ◦C, respectively, which exceeded the multi-year average (1990–2020) by
3.4 ◦C and 3.2 ◦C. In terms of precipitation, the most significant rainfall in 2021 and 2022
also occurred in July, at 80.6 and 95.4 mm, respectively. This marked an increase of 25.3 and
40.1 mm compared to the multi-year average (1990–2020). The monitoring of meteorological
parameters was conducted using the automated meteorological station Vantage Pro2TM by
Davis Instruments (Hayward, CA, USA) [26] located near the field experiments.

2.2. Agrotechnical Practices

The applied agronomic practices have been described in detail by Vojnović et al. [27].
In summary, during the autumn, 64 kg/ha of nitrogen (N), phosphorus (P), and potassium
(K) were applied using mineral fertilizers. Subsequently, plowing was carried out to a depth
of 27 cm. In early spring, harrowing was performed. Seven days before sowing, nitrogen
fertilizer was applied at 86 kg/ha, followed by soil preparation for sowing and planting.

The hybrid Elenka F1 by Cora Seeds® (Cesena, Italy) was used for the DS. This hybrid
has bronze-colored dry outer scales, and its bulbs are suitable for long-term storage. The
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Stuttgarter Riesen® cultivar (imported from The Netherlands) with golden-colored dry
outer scales was used for the FS onion.

The quality indicators of the seeds used in the experiment in 2021 and 2022 are
presented in Table 1. Germination energy was assessed after 6 days, and total germination
after 12 days, following the guidelines of the regulation on the quality of agricultural
plant seeds [28]. The used seeds were treated with a fungicide based on fludioxonil by the
seed producer.

Table 1. Seed quality indicators of seeds used in the experiment with directly seeded onions.

Seed Quality Indicators
(%) Year 2021 Year 2022

Germination energy 90.00 93.00

Total germination 98.00 100.00

The quality indicators of onion sets in 2021 and 2022 are given in Table 2. The classifi-
cation of sets was conducted following Ilin [29], wherein sets belonging to the first class are
divided into five classes according to diameter. A randomly selected sample of 1 kg of bulbs
was used to classify onion sets. This classification is of utmost importance, as practical
observations have shown that larger-diameter bulbs have the tendency to initiate early
flowering and develop flower stalks, which is not the desired outcome in the production of
marketable, consumable bulbs.

Table 2. Sets quality indicators used in the experiment where onion is production from sets.

Diameter of Sets
(cm)

Year 2021 Year 2022

Bulbs (No) Weight (g) Bulbs (No) Weight (g)

1st 0.60–0.80 0.00 0.00 4.50 6.30

2nd 0.81–1.20 7.00 9.40 22.00 32.90

3rd 1.21–1.80 199.00 404.43 159.00 431.00

4th 1.81–2.20 119.00 442.23 113.00 398.25

5th 2.21–2.70 26.00 143.94 25.00 131.55

Total 351.00 1000.00 323.5 1000.00

Irrigation for the onions was carried out using a drip irrigation method. Irrigation
timing was chosen according to measurements of soil moisture, following the method
described in the study involving potatoes [30]. Soil moisture sensors (SKU-6440 by Davis
Instruments, Hayward, CA, USA) were connected to a Vantage Pro2TM meteorological
station near the plots for monitoring and control.

Biostimulants were applied through drip irrigation, according to the manufacturer’s
recommendations. T1 was applied at a rate of 10 L/ha, T2 at 50 L/ha, and T3 at 3 kg/ha [27].
During the onion’s growth cycle, herbicides based on bromoxynil (Xinca®, 0.6 L/ha) and
fluoxypyr (Bonaca®, 0.25 L/ha) were used. Applied fungicides were based on metalaxyl m
+ mancozeb (Ridomil®, 2.5 kg/ha) and boscalid + pyraclostrobin (Signum®, 0.75 kg/ha),
whereas insecticide treatments included formetanate hydrochloride (Dikarzol®, 1 kg/ha)
and imidacloprid (Lobo®, 0.12 L/ha).

The biomass of produced onion was measured in the field by harvesting all plants
after removing the edge effect. Subsequently, after separating the bulbs from the green
leaves, random samples of fifteen bulbs were taken for measuring bioactive compounds,
following the method described in the vegetable quality assessment guidelines [31].
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2.3. Methods for Measuring Bioactive Compounds
2.3.1. Preparation of Extracts

Sample preparation for analysis is detailed in Vojnović et al. [27]. In brief, 10 g of
ground bulbs were placed in a 50 mL Erlenmeyer flask, and approximately 25 mL of 95%
methanol was added as the extraction agent. The mixture was shaken for 24 h in the dark.
After 24 h, the samples were quantitatively transferred to 50 mL measuring flasks, which
were filled to the nominal volume with the extraction agent. The flask contents were filtered
into plastic vials and stored in the fridge until analysis. Methanol extracts were utilized in
determining the content of total phenols, total flavonoids, and antioxidant status.

2.3.2. Dry Matter Content

The dry matter (DM) content was measured using the thermogravimetric method
after drying the samples to a constant mass [31].

2.3.3. Total Phenol Content

The phenol content was measured using the Folin–Ciocalteu method [32] with gallic
acid serving as the standard equivalent. The absorbance of the solution, exhibiting a blue
coloration as a result of the reaction, was measured at a wavelength of 750 nm with a
UV/VIS spectrophotometer (LLG-uniSPEC 2 Spectrophotometer by Lab Logistics Group
GmbH from Meckenheim, Germany).

2.3.4. Total Flavonoid Content

The flavonoids were assessed according to Harbone [33], using the colorimetric alu-
minum chloride assay, with absorbance values measured at 510 nm.

2.3.5. DPPH Assay

We employed a slightly modified version of the DPPH (2,2-diphenyl-1-picrylhydrazyl)
free radical scavenging assay to assess the antioxidant activity of methanol extracts from
onions. This methodology is primarily detailed in the study conducted by
Brand-Williams et al. [34]. The determination of the Trolox equivalent antioxidant ca-
pacity using the DPPH assay was conducted using the following equations [35]:

cekv (
mg
mL

) =
A− n

k

DPPH (
mg
g

) =
cekv

c

where cekv is the concentration of the Trolox equivalent calculated from the Trolox calibration
curve, A is the absorbance from the tested sample, n is the intercept of the calibration curve,
k is the slope of the calibration curve, and c is the concentration of the sample solution.

2.3.6. FRAP Assay

The purpose of the Ferric Reducing Antioxidant Power (FRAP) assay was to evalu-
ate the reducing power of onion extracts against positively charged trivalent ferric ions
(Fe3+) [36]. The freshly prepared FRAP reagent comprised 10 mM TPTZ (2,4,6-tris(2-
pyridyl)-s-triazine) in 40 mM HCl, a 20 mM iron (III)-chloride (FeCl3) aqueous solution,
and a 300 mM acetate buffer at pH 3.6. Subsequently, the absorbance values of the reaction
mixture at 593 nm were determined spectrophotometrically after a 10 min incubation in
the dark at 37 ◦C [36]. FRAP was calculated the same way as it is described for the DPPH
assay in Section 2.3.5.

2.3.7. ABTS Assay

The antioxidant activity assay using 2,2′-azino-bis-(-3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) was conducted following a modified methodology out-
lined by Re et al. [37]. The preparation of the ABTS reagent involved the reaction of a
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7 mM aqueous ABTS solution with a 2.45 mM aqueous potassium persulfate solution
in the dark for 16 h at room temperature. The reaction mixture, obtained by combining
2.9 mL of the ABTS reagent with 0.1 mL of diluted extracts, was incubated for 300 min
at room temperature in the dark. After incubation, absorbance values were recorded at a
wavelength of 734 nm [37]. ABTS was calculated in the same way as it is described for the
DPPH assay in Section 2.3.5.

Depending on the antioxidant test, the results of measuring DPPH (mg Trolox (TC)/100 g
DM), FRAP (mg Fe2+/100 g DM), and ABTS (mg TC/100 g DM) are interpreted in a way in
which higher test results indicate higher antioxidant activity.

Sample preparation for the analyses was conducted in the Vegetable Science Labora-
tory at the Faculty of Agriculture Novi Sad, while bioactive compounds were determined
in the Laboratory for Quality Analysis of Fruits and Vegetables at the Faculty of Technology,
Novi Sad.

2.4. Statistical Data Analysis

To determine the effect of cultivation methods and biostimulants on biomass yield and
the quality of onion, the research results were analyzed using a factorial analysis of variance
(ANOVA). The significance of mean differences was determined by the LSD test at p < 0.05.
Before analyzing the variance, data normality was confirmed using the Kruskal–Wallis
test. Due to the extensive dataset, the biomass yield is presented as a two-year average.
The yearly effect for bioactive compounds is displayed individually in graphs, while the
influence of biostimulants and production methods is presented as a two-year average in
tables. The relationship between phenols and antioxidant activity was established through
regression analysis. Statistical analyses were performed using Statistica 14 [38] software
(TIBCO) and Excel 2007 [39].

3. Results
3.1. Biomass (t/ha)

On average, in 2021 and 2022, production methods and biostimulants significantly
influenced the biomass yield of onion (Figure 2).
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Figure 2. The effect of production methods (P) and biostimulants (B) on the onion biomass average
in 2021 and 2022. Green bars represent the main effect of the P, while orange bars represent the
interaction between P and B. Small different letters indicate differences between interactions, whereas
capital letters represent the effect of production method, denoting the significance of the differences
at p < 0.05 according to the LSD test. The lines on the bars represent the standard error of the mean.
DS—Directly seeded onion; FS—from-set onion. C—control (without B); T1—B based on SWE; T2—B
based on humic and fulvic acids; T3—B based on Trichoderma sp.
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Depending on the production method, a significantly higher biomass yield of onion
was observed in DS (82.15 t/ha) compared to FS (53.32 t/ha). In DS treatments, the
highest biomass was recorded in DS × T1 (86.16 t/ha), while the lowest was in DS × C
(72.43 t/ha), with a difference of 18.95% which is statistically significant. However, there
was no difference between DS × T1, DS × T2, and DS × T1. For the FS treatment, the
highest yield was in FS × C (55.45 t/ha), while the lowest was in FS × T1 (48.87 t/ha),
with a difference of 6.58%. However, there was no significant difference between FS × C,
FS × T1, FS × T2, and FS × T3.

3.2. Dry Matter (%)

The cultivation method significantly influenced the dry matter content (Figure 3).
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During both years of the study (2021 and 2022), onion FS had a significantly higher
dry matter content than onion DS. The dry matter content in onion bulbs depended on the
production methods and applied biostimulants (Table 3).

Table 3. The effect of production methods and biostimulants on the average dry matter content in
onion in 2021 and 2022.

Biostimulant (B)
Production Method (P)

Average (B)
DS FS

C 9.66 ± 0.01
f

15.49 ± 0.08
c

12.57 ± 1.30
C

T1 10.02 ± 0.06
d

15.78 ± 0.05
b

12.90 ± 1.28
B

T2 9.84 ± 0.01
e

15.77 ± 0.04
b

12.81 ± 1.32
B

T3 9.92 ± 0.05
de

17.06 ± 0.02
a

13.49 ± 1.59
A

Average (P) 9.86 ±0.04
B

16.03 ± 0.64
A 12.94 ± 0.64

Small different letters indicate differences between interactions, whereas capital letters represent the main effects,
denoting the significance of the differences at p < 0.05 according to the LSD test. The number after the ± sign
represents the standard error of the mean. DS—Directly seeded onion; FS—from-set onion. C—Control (without
B); T1—B based on SWE; T2—B based on humic and fulvic acids; T3—B based on Trichoderma sp.
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For the whole experiment, the average dry matter content was 12.94%. When com-
paring production methods, a significantly higher dry matter level was observed in FS
(16.03%) compared to DS (9.86%). Biostimulants significantly increased the dry matter
content in the bulbs. On average, for biostimulants, the highest dry matter content was
measured in T3 (13.49%), while the lowest was in the control (12.57%), with both being
statistically significant.

On plots with DS onion, the highest dry matter content was found in DS× T1 (10.02%)
and lowest in DS × C (9.66%), with their significant difference. In the case of FS onion, the
highest dry matter content was measured in bulbs treated with FS × T3 (17.06%) and the
lowest in FS × C (15.49%), with their difference being significant.

3.3. Phenol Content (mg/100 g DM)

The cultivation method significantly influences the phenolic content in onion bulbs
(Figure 4).
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Over 2021 and 2022, DS onions (999.12 and 764.96 mg/100 g DM) exhibited a statisti-
cally significantly higher phenolic content than FS onions (764.96 and 433.99 mg/100 g DM)
(Figure 4). The production method and biostimulants significantly influenced the phenolic
content in onions (Table 4).

The average phenolic content in this experiment was 678.13 mg/100 g DM. On average,
for the production method, DS onions (882.04 mg/100 g DM) showed significantly higher
phenolic content than FS onions (474.23 mg/100 g DM).

On average, for the biostimulants, the highest phenolic content was found in the
control (721.58 mg/100 g DM), while the lowest was in T2 (640.58 mg/100 g DM), and their
difference of 11.22% is significant.

For DS onion, the highest phenolic content was observed in DS × T1 (954.92 mg/100 g
DM), while the lowest was measured in DS× T2 (828.19 mg/100 g DM), and their difference
is significant of 15.30%.

In the case of FS onions, the highest phenolic content was recorded in FS × C
(536.36 mg/100 g DM), while the lowest was in FS × T1 (441.75 mg/100 g DM), with
their difference of 17.63% being significant.
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Table 4. The effect of production methods and biostimulants on the average phenol content in onion
in 2021 and 2022.

Biostimulant (B)
Production Method (P)

Average (B)
DS FS

C 906.80 ± 1.70
b

536.36± 1.12
e

721.58 ± 82.83
A

T1 954.92 ± 2.06
a

441.75± 0.71
h

698.33 ± 114.75
B

T2 828.19 ± 2.63
d

452.97 ± 1.99
g

640.58 ± 83.91
D

T3 838.25± 2.38
c

465.83 ± 1.65
f

652.04 ± 83.28
C

Average (P) 882.04 ± 15.65
A

474.23 ± 11.13
B 678.13 ± 43.54

Small different letters indicate differences between interactions, whereas capital letters represent the main effects,
denoting the significance of the differences at p < 0.05 according to the LSD test. The number after the ± sign
represents the standard error of the mean. DS—Directly seeded onion; FS—from-set onion. C—Control (without
B); T1—B based on SWE; T2—B based on humic and fulvic acids; T3—B based on Trichoderma sp.

3.4. Flavonoid Content (mg/100 g DM)

The production method significantly influenced the flavonoid content in onion bulbs
(Figure 5).
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Depending on the year, the flavonoid content was significantly higher in DS onion,
as confirmed during the 2021 and 2022 field experiments. On average, for both years,
the production method and biostimulants significantly influenced the flavonoid levels in
onions (Table 5).
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Table 5. The effect of production methods and biostimulants on the average flavonoid content of
onion in 2021 and 2022.

Biostimulant (B)
Production Method (P)

Average (B)
DS FS

C 262.78 ± 3.86
c

160.72 ± 1.83
ef

211.75 ± 22.90
C

T1 355.04 ± 2.92
a

162.96 ± 0.70
ef

259.00 ± 42.97
A

T2 314.33 ± 5.98
b

169.03 ± 0.82
e

241.68 ± 32.60
B

T3 246.55 ± 5.16
d

157.04 ± 2.98
f

201.80 ± 20.19
D

Average (P) 294.68 ± 13.08
A

162.44 ± 1.52
B 228.56 ± 15.21

Small different letters indicate differences between interactions, whereas capital letters represent the main effects,
denoting the significance of the differences at p < 0.05 according to the LSD test. The number after the ± sign
represents the standard error of the mean. DS—Directly seeded onion; FS—from-set onion. C—Control (without
B); T1—B based on SWE; T2—B based on humic and fulvic acids; T3—B based on Trichoderma sp.

The overall average flavonoid content was 228.56 mg/100 g DM. A significantly higher
flavonoid content was observed in DS onions (294.68 mg/100 g DM) compared to FS onions
(162.44 mg/100 g DM). Among all the biostimulants, the highest flavonoid content was
measured in T1 (259.00 mg/100 g DM), while the lowest was in T3 (201.8 mg/100 g DM),
and their difference is significant. In plots growing DS onion, the highest flavonoid content
was measured in DS × T1 (355.04 mg/100 g DM), and the lowest was measured in DS × C
(262.78 mg/100 g DM), with their difference of 35.10% being statistically significant. FS
onions exhibited the highest flavonoid content in FS ×T2 (169.03 mg/100 g DM), while the
lowest was recorded in FS ×T3 (157.04 mg/100 g DM), and their difference is significant.

3.5. Antioxidant Indicators

The cultivation method significantly influenced the antioxidant activity in onions
(Figure 6).
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During both years of the experiment (2021 and 2022), antioxidant activity measure-
ments using the DPPH, FRAP, and ABTS tests revealed that bulbs from DS onion have
significantly higher levels of antioxidants than FS onions. The production method and
biostimulants significantly affected the antioxidant activity of onions (Table 6).

Table 6. The effect of production methods and biostimulants on the average antioxidant status
(DPPH, FRAP, and ABTS assay) of onion in 2021 and 2022.

Production Method Biostimulant DPPH FRAP ABTS

DS

C 491.11 ± 1.90
b

391.44 ± 0.34
b

1311.28 ± 1.60
b

T1 562.50 ± 1.88
a

489.80 ± 1.52
a

1572.30 ± 1.46
a

T2 426.91 ± 2.31
c

341.75 ± 1.74
d

1265.56 ± 2.58
d

T3 420.28 ± 1.50
d

347.26 ± 0.41
c

1285.79 ± 0.19
c

FS

C 231.26 ± 1.65
e

166.67 ± 0.80
e

439.89 ± 1.00
e

T1 184.84 ± 1.23
g

113.57 ± 0.21
g

363.87 ± 0.69
h

T2 179.46 ± 2.00
h

106.39 ± 0.43
h

369.21 ± 1.72
g

T3 212.49 ± 0.18
f

146.23 ± 0.81
f

418.41 ± 1.44
f

Small different letters indicate differences between interactions, denoting the significance of the differences at
p < 0.05 according to the LSD test. The number after the ± sign represents the standard error of the mean.
DS—Directly seeded onion; FS—from-set onion. C—Control (without B); T1—B based on SWE; T2—B based on
humic and fulvic acids; T3—B based on Trichoderma sp.

For DS onions, the highest antioxidant activity measured by the DPPH, FRAP, and
ABTS tests was observed in the DS × T1 treatment, while the lowest was in DS × T3 for the
DPPH test and in DS× T1 for the FRAP and ABTS tests. For FS onions, it is evident that the
biostimulants significantly reduced the antioxidant activity of the onions. In the case of the
DPPH test, the most substantial reduction in antioxidant activity, compared to the control
(231.26 mg/100 g DM), was observed in the FS × T2 treatment (179.46 mg/100 g DM),
amounting to 22.39%. Similarly, in the FRAP test, the FS × T2 treatment (106.39 mg/100 g
DM) reduced the activity by 36.16% compared to the control (166.67 mg/100 g DM).
Regarding the ABTS test, the most substantial reduction in antioxidant activity compared to
the control (439.89 mg/100 g DM) was induced by the FS×T1 treatment (363.87 mg/100 g
DM), representing a 17.28% decrease.

The effect of biostimulants significantly influenced the antioxidant activity of onions
(Table 7).

All three antioxidant tests revealed the highest activity in onions treated with biostim-
ulant T1. Conversely, the lowest antioxidant content was observed in the plots treated with
T2, as confirmed by the DPPH, FRAP, and ABTS tests.

By observing the graphs, a clear positive correlation between phenol content and the
antioxidant activity of onions can be noticed. In all three antioxidant tests (DPPH, FRAP,
and ABTS), a linear regression curve was obtained concerning phenol content, indicating
that an increase in phenol content leads to a corresponding increase in the antioxidant
activity of the bulbs (Figure 7).
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Table 7. The effect of biostimulants on the average antioxidant status of onion in 2021 and 2022.

Biostimulant DPPH FRAP ABTS

C 361.19 ± 58.11
A

279.06 ± 50.26
B

875.59 ± 194.85
B

T1 373.67 ± 84.45
A

301.68 ± 84.12
A

968.09 ± 270.21
A

T2 303.18 ± 55.34
D

224.07 ± 52.63
D

817.38 ± 200.43
D

T3 316.39 ± 46.46
C

246.75 ± 44.95
C

852.10 ± 193.95
C

Different letters indicate the significance of the difference at p < 0.05 according to the LSD test. The number after
the ± sign represents the standard error of the mean. C—Control (without B); T1—B based on SWE; T2—B based
on humic and fulvic acids; T3—B based on Trichoderma sp.
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4. Discussion

The biomass of onion comprises the mass of roots, bulbs, pseudostems, and green
leaves. Based on biomass yield, it is possible to obtain a clearer picture of the impact of
biostimulants on onion growth, as this eliminates their effect on the allocation of assimilates
to the underground or aboveground parts of the plant. Depending on the production
method, significantly higher biomass of onion was observed when it was directly seeded
(DS) than when it was produced from sets (FS). This can be explained by a higher number
of plants per unit area when using DS, as plant density is the most critical factor for yield,
with one plant yielding one bulb.

In the case of DS onion, the biostimulant T1 significantly increased biomass yield.
Similar effects of biostimulants, based on SWE, were observed by Ali et al. [13] on pepper
and tomato. They have also found that those biostimulants affected the expression of genes
responsible for synthesis of auxins, gibberellins, and cytokinins. This is in line with the
research of Mógor et al. [40], who managed to increase the red beet (Beta vulgaris) yield by
using a similar biostimulant.
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On the DS × T2 plots, there was a significant increase in biomass yield compared to
DS × C. Similarly, an increase in yield on plots where T2 was applied was observed in
potatoes and lettuce [20,21]. The biostimulatory effect of T2 can be explained by its ability
to enhance the activity of proton pumps on the plasma membrane and tonoplast of plant
cells [41]. Also, a significant increase in biomass yield compared to DS× C was observed in
plants treated with DS × T3. The positive impact of Trichoderma sp. on yield enhancement
has been noted in lettuce and tomatoes [42,43]. According to Fiorentino et al. [44], the
stimulatory effect of Trichoderma sp. primarily relies on these fungi’s release of auxins,
peptides, and various organic compounds that promote plant productivity.

The absence of any significant impact of biostimulants on biomass in FS onions
compared to the control can be attributed to the relatively shorter vegetative period of FS
onions. For example, in the case of Trichoderma sp., the shorter vegetative period of FS
onion may have limited the development of symbiotic relationships between the onion
root and fungi, thus reducing the efficacy of biostimulants. Indeed, FS onions in both years
were harvested earlier (18 and 20 days earlier in 2021 and 2022, respectively) compared to
DS onions.

The dry matter content is one of the most critical indicators of the quality of onions,
influencing their storage duration and processing methods. Our research showed that FS
onions had significantly higher dry matter content than onions from DS. This difference in
dry matter content in favor of FS onions is one of the reasons why producers often choose
to use sets to produce onions intended for industrial processing.

The biostimulant T1 significantly increased the dry matter content compared to the
control. Given that 80% of the dry matter of onions is sugars [5], the increase in dry matter
due to the T1 treatment can be explained by the potential of SWE to enhance photosynthesis.
Indeed, it was found that SWE enhance the expression of genes encoding enzymes involved
in carbon fixation during the Calvin cycle, thus contributing to an increase in starch content,
as suggested by Jannin et al. [45]. Mzibra et al. [46] observed an increase in the dry matter
content in the roots and stems of tomatoes treated with SWE. In the case of humic and
fulvic acids, Hafez and Geries [47] reported a significant increase in the dry matter content
of onion bulbs through their application, which is consistent with our research findings.

The phenolic content in onions significantly affects the taste and biological value of
the bulbs. A significantly higher phenolic content was measured in DS bulbs than FS bulbs,
which can also be attributed to genotype characteristics. Under stress, plants synthesize
more secondary metabolites, such as phenols [12]. Interestingly, the main effects of all
biostimulants significantly reduced the phenolic content compared to the control. This
reduction can be attributed to the biostimulants’ capacity to alleviate the impact of abiotic
stress resulting from environmental conditions.

The increase in phenolic content in the bulbs treated with DS × T1 and FS × T1 can
be explained by the fact that the biostimulant based on SWE enhances the synthesis of the
enzyme phenylalanine ammonia-lyase, which catalyzes the conversion of l-phenylalanine
into trans-cinnamic acid in the biosynthesis of phenols [48,49]. A significantly increased
phenolic content was noted in onions treated with SWE by Abbas et al. [5], as was reported
in lettuce by Rasouli et al. [17].

In this study, the application of T2 significantly reduced the phenolic content in onions,
while in the case of peppers, there was a significant increase in phenolic content [50,51].
This suggests that the concentration of phenolics is a result of complex interactions of
factors that affect plant growth and may also vary with respect to plant species and plant
parts (e.g., onion bulb and pepper fruit).

The application of biostimulant T3 significantly reduced the phenolic content in DS
and FS onion bulbs. This result aligns with the findings of Vukelić et al. [25], who reported
that applying Trichoderma sp. significantly reduced the phenolic content in tomatoes.
Furthermore, the same authors emphasize that the effect of Trichoderma sp. fungi varies
depending on the cultivars, as demonstrated in the case of tomatoes.
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Onions are known for their high flavonoid content compared to other vegetable
species. The beneficial effect of flavonoids is mainly attributed to their ability to scavenge
free radicals, demonstrating their antioxidant properties [52]. In this study, DS onions had
significantly higher flavonoid content than FS onions, as observed during the research
conducted in both 2021 and 2022. According to Sharma [53], the flavonoid content in onions
is often a characteristics of the cultivar, and this observation is consistent with our research.

On average, bulbs treated with T1 had significantly higher flavonoid content than
the control. This aligns with the findings of Jithesh et al. [54], who reported that treat-
ment with SWE in Arabidopsis sp. increased the expression of genes responsible for the
enzymes involved in the phenylpropanoid pathway during flavonoid synthesis. Synthe-
sized flavonoids play a crucial role in contributing to the defense against stresses such
as pathogens, wounding, and UV light damage [54]. The favorable impact of SWE has
been observed in carrots and beans [15,16]. Bulbs treated with T2 had significantly higher
flavonoid content than the control. Similarly, treatments with humic acids significantly
increased flavonoid content in peppers and yarrow (Achillea millefolium) [51,55]. This can
be explained by the fact that humic substances can enhance the synthesis of phenyl and
tyrosine ammonia-lyase enzymes, which play a role in flavonoid biosynthesis [56]. Accord-
ing to Schiavon [56], many synthesized compounds of the phenylpropanoid pathway are
attributed to co-purified fungal elicitors and/or other signaling molecules. On average,
biostimulant T3 reduced the flavonoid content in DS and FS onions. This can be attributed
to the limited root surface area where Trichoderma sp. establishes symbiosis [57].

Consuming onions can have numerous health benefits, primarily due to their high
antioxidant content [58]. Antioxidants play a crucial role in the human body by neutralizing
free radicals that can damage cells. In this study, DS onions had significantly higher levels
of antioxidants than those from FS, as indicated by the three antioxidant tests (DPPH,
FRAP, and ABTS assay). On average, for both production methods, bulbs treated with
T1 showed significantly higher levels of antioxidants than control. This can be related to
the increased flavonoid content in the T1 plot, as flavonoids possess potent antioxidant
properties, as suggested by Pietta [52]. This finding is also in line with Vojnović et al. [27],
who revealed a connection between flavonoids and the antioxidant activity of onions.
The observed decline in antioxidant activity, as measured by the DPPH, FRAP, and ABTS
tests in FS onions, can be attributed to the overall reduction in phenolic content across all
biostimulant-treated bulbs. This decrease is significant because total phenols are known for
their potent antioxidant properties, contributing to the overall antioxidant capacity of the
plant. The relationship between phenolic content and the results of the antioxidant tests
(DPPH, FRAP, and ABTS) is visually demonstrated in Figure 7, highlighting the apparent
correlation between phenols and antioxidant performance.

5. Conclusions

The application of biostimulants T1, T2, and T3 significantly increased the biomass
of DS onions, while it had no significant impact on FS onions. Furthermore, DS onions
consistently displayed higher levels of phenols, flavonoids, and total antioxidants compared
to FS onions. Notably, only the application of the T1 biostimulant led to a significant
increase in phenol content and antioxidant activity in DS onions, as evidenced by DPPH,
FRAP, and ABTS assays. In the case of FS onions, all applied biostimulants resulted in
a significant decrease in antioxidant activity. To maximize the benefits of DS onions, we
strongly recommend the use of biostimulant T1, while for FS onions, the application of
biostimulants is discouraged due to their limited impact on biomass and antioxidant status.
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