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Abstract: The leaf is a primary part of a plant, and examining the leaf area is crucial in understanding
growth and plant physiology. Accurately estimating leaf area is key to this understanding. This
study proposed a methodology for the non-destructive estimation of leaf area in pennywort plants
using image processing and an artificial neural network (ANN) model. The image processing method
involved a series of steps, including grayscale conversion, histogram equalization, binary masking,
and region filling, achieving an accuracy of around 96.6%. The ANN model, trained with 70% of a
dataset, exhibited high correlations of 97.1% in training and 96.6% in testing phases, with leaf length
and width significantly impacting the model output. A comparative analysis revealed the superior
performance of the ANN model over the image processing method, demonstrating higher R2 values
(>0.99) and lower errors. Furthermore, it showed the impact of diverse LED light combinations and
nutrient levels (electrical conductivity, EC) on pennywort plant growth, indicating that the R70:B30
LED light ratio with nutrient level 2 (2.0 dS·m−1) fostered the most favorable growth for pennywort
plants. The non-destructive nature, simplicity, and speed of the ANN model in estimating leaf area
based on easily obtainable measurements of length and width render it an accessible and accurate
tool for plant growth assessment in controlled environments. This approach offers opportunities for
future studies, tracking changes in leaf areas under varied growth conditions without harming the
plant, thus enhancing precision in research.

Keywords: controlled environment; plant phenotyping; artificial lighting; leaf morphology; imaging
sensors; machine learning

1. Introduction

Pennywort (Centella asiatica L.) is an herbaceous, perennial plant that belongs to the
family Apiaceae. It is used as a cooking vegetable and in drinks, but mostly as a medicinal
herb owing to its health benefits, which include secondary metabolites, antioxidants,
anti-bacterial, anti-fungal, and anti-inflammatory properties, wound healing, and memory-
improving properties [1]. It is generally recognized as a “Brain Food” in most countries
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as it stimulates nerves and brain cells significantly [2]. Pennywort is one of the most
important herbs for healing wounds, treating varicose skin disorders (i.e., leprosy, lupus,
different ulcers, eczema, and psoriasis), diarrhea, fever, amenorrhea, and diseases of the
female genitourinary tract [3–6]. Its potential as a natural antioxidant and its ability
to defend against age-related alterations in the brain’s antioxidant defense system has
increased dramatically in recent years [7]. It is also one of the important medicinal plants
in international pharmaceutical trade markets.

The demand and trading value of pennywort plants mainly depend on the quality of
their leaves, which, in turn, is closely tied to the conditions in which they are cultivated.
This includes factors such as the cultivation method, ambient environmental variables,
light conditions, water supply and nutrient levels, and the aggregate of cultivation facilities
(i.e., greenhouse or plant factories). Although pennywort plants can be grown in open
fields easily, the growth rate (quantity) and nutrient level (quality) cannot be confirmed,
because these two parameters are directly affected by the climatic conditions [8]. In recent
years, controlled environment agriculture (CEA) facilities, such as greenhouses and plant
factories, have significantly enhanced crop quality and quantity. The CEA creates fully
controlled environments for plant growth, providing everything the plants need, including
water, temperature, humidity, light, and CO2 with low labor-intensiveness, and year-round
crop production regardless of geographical location and weather conditions [9–12]. Soilless
cultivation practices (i.e., aeroponics, deep-flow, NFT) with a proper nutrient supply system
can enhance the crop growth and nutritional profile significantly compared to soil-based
cultivation [13–15]. Moreover, recycling-type hydroponic techniques and the ion-specific
sensor-based nutrient management of the hydroponic solution save a notable amount of
water nutrients, lower the cultivation costs, and minimize environmental hazards due to
excessive discharged nutrient solutions [16–19]. The overall target of the CEA facilities (i.e.,
plant factories) is to provide optimal growing conditions for crops for maximum growth
and quality.

Plant growth analysis and growth prediction are required to determine the factor/s
affecting the appropriate growth rate and expected yield. These approaches help farmers
to decide what, when, and how to grow, and help with the timely management of crop
growing. Growth prediction is also an important task for regional- and national-level
decision-makers for target fixing and decision-making for food security [20–23]. There
are several techniques to predict the growth rate and yield of crops. Usually, farmers
predict the growth rate and yield based on the visual appearance of plants. In this case,
the leaf area (LA) plays a vital role. Farmers collect leaf samples and measure the LA
using a ruler, scanner, or LA meter, which are direct but destructive, laborious, erroneous,
and time-consuming processes [24]. On the other hand, image-based LA detection is an
indirect, rapid, cost-effective, and non-destructive method [25]. Image-based methods offer
quantitative data, enhancing objectivity and accuracy compared to visual scoring, reducing
the risk of human error and subjectivity [26]. Additionally, these methods can be scaled
up to accommodate larger datasets and more complex analyses [27]. In this process, RGB
images of the targeted plant are captured, and the leaf region is segmented using contour
extraction techniques [28,29] or threshold-based segmentation [30], or color ratios of pixels
to distinguish leaves and background, facilitating leaf pixel count comparison [26]. Recently,
image analysis has been performed using artificial intelligence (AI) techniques, such as
artificial neural networks [31], machine learning [32,33], and deep learning techniques [34,35].

Plant growth significantly depends on light conditions and nutrient availability, es-
pecially when grown in a plant factory [36]. Light influences plant growth, and with
variations in intensity and quality impact the development [37,38]. Low light increases
height and specific leaf area but decreases leaf number, thickness, and yield as well and
high light intensity can lead to inefficient energy use in photosynthetic apparatus, partic-
ularly photosystem II [38]. Blue light promotes the development of vegetative leaves as
well as the contents of antioxidant compounds and the total glucosinolates accumulation,
while red light wavelengths encourage budding and flowering. Alongside blue light,
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red light wavebands are considered one of the most important for photosynthesis and
biomass growth [39–41]. A plant-specific balanced combination of red and blue light for
optimal results is always essential. Moreover, nutrient uptake is generally influenced by
light conditions. Nutrient availability is also crucial for plant growth, and deficiencies can
diminish both growth and yield. Analyzing plant growth under controlled conditions and
considering factors like fertilizer and water supply is vital for early intervention [42]. In
addition, the direct estimation of plant growth rate using leaf area and predicting the yield
is a destructive and ineffective method, which also hampers the continuous growth and
monitoring of the targeted plant. Image-based growth analysis can be an alternative for
the accurate determination and prediction of plant growth. To date, very few studies have
been conducted where image-based LA estimation and prediction techniques are applied
for pennywort plants, especially when grown in a plant factory under different light and
nutrient conditions. The objective of this study was to predict the pennywort plant’s leaf
area using the image processing technique and artificial neural network (ANN) model
which was grown in a plant factory under different LED and EC conditions.

2. Materials and Methods
2.1. Plant Factory Preparation and Operation

A plant factory is an enclosed crop-growing system that is used to cultivate high-value
crops and medicinal plants throughout the year by maintaining the optimum ambient
environmental parameters artificially. Figure 1a shows the layout of the plant factory
used in this study. There were four shelves, and each shelf contained three layers of
cultivation beds, as shown in Figure 1b. A total of three shelves were prepared for this
study. One shelf was fabricated using fluorescent lights and a deep flow technique (DFT)-
type hydroponic system (Figure 1c). Another two shelves were fabricated using LED lights
and a nutrient film technique (NFT)-type hydroponic system. Three different combinations
of red and blue LEDs (i.e., Red90:Blue10, Red70:Blue30, and Red50:Blue50) and EC (i.e.,
1.0, 2.0, and 3.0 dS·m−1) were implemented as treatments during this study, while other
environmental variables (i.e., temperature, relative humidity, and CO2), light conditions (i.e.,
photoperiod, light intensity) and the pH of the nutrient solution were kept constant. The
overall cultivation condition is summarized in Table 1. These targeted LED combinations
and EC levels were selected based on the findings in [43–46] and [47–51], respectively. A
wireless sensor network (XBee-Pro, Digi, Hopkins, MN, USA) was used to monitor the
ambient environmental parameters and control the relevant actuators, as detailed by [52].
The nutrient solution tanks were kept at the bottom of the shelves. Each plant bed had
three NFT pipes and a total of 18 planting positions. The target nutrient solution was
supplied for 30 min with 15 min of intervals for the DFT system and 15 min with 15 min of
intervals for the NFT system. Commercial nutrient solutions A and B (MB cell, Kisan Bio
Co., Ltd., Seocho-gu, Seoul, Republic of Korea) were used, and the target nutrient level was
monitored and managed manually once a day using EC and pH sensors.

2.2. Pennywort Seedling Preparation and Transplantation

The pennywort seedlings (variety: Asiatic pennywort) were germinated using tissue
culture following the protocol [53,54] and then grown in a greenhouse for one month in the
perlite soil mixture pots. After that, the seedlings were separated from the cultivation pots,
cleaned, and moved to the DFT system under fluorescent lights to adapt to the hydroponic
system and ambient environment of the plant factory as Shown in Figure 2. After two
weeks of adaption, healthy and sustained seedlings were transplanted into the NFT system
under the light and EC treatments.
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Figure 1. Prepared plant factory: layout of the whole plant factory (a), layout of each cultivation
shelf (b), cultivation shelf for pennywort seedling adaption with hydroponic system and ambient
environment (c), and cultivation shelves for experiment with different LED combinations (d).

Table 1. A summary of overall cultivation conditions maintained in the plant factory during penny-
wort plant cultivation.

Parameter Set Value Sensor Used Specification

Temperature (◦C) 25 ± 1
ETH-01DV, ECONARAE,
Seoul, Republic of Korea

Temp. meas. range: −40~80 ◦C
Humi. meas. range: 0–100%

Temp. accuracy: ±0.5
Hum. accuracy: ±2%
Compatible: 3.0~5 VHumidity (%) 65 ± 5

CO2 (ppm) 600 ± 100 SH-300-DS, SOHA TECH Co.,
Ltd., Seoul, Republic of Korea

Measurement: 0 to 2000 ppm
Accuracy: ± 70 ppm

Compatible: 4.5~5.25 V
LED type (R:B) 90:10, 70:30, 50:50 - -

Light intensity
(µmol m−2s−1) 150 ± 10 GY-30, ROHM Co., Ltd.,

Kyoto, Japan

Range: 1~65,535 lx
Accuracy: ±20%

Compatible: 3.3 and 5 V

Photoperiod (h) 18/6 MaxiRex 5QT,
Legrand, Republic of Korea -

Cultivation system DFT and NFT - -

EC (dS m−1) 1, 2, 3 ± 0.3 EC-BTA, Vernier, OR, USA Range: 2–2000 dS m−1

Temperature range: 0~80 ◦C

pH 6.50 ± 0.5 pH-BTA, Vernier, OR, USA Range: 0~14
Temperature range: 5–80 ◦C

2.3. Experimental Design and Sample Collection

Three different red–blue LED combinations (R90:B10, R70:B30, and R50:B50) and three
levels of EC (1, 2, and 3 dS m−1), and a total of nine treatments, were carried out in this
study. After one week of transplantation, pennywort plant sampling was started and
continued until the fourth week of the growth period of plants, as shown in Figure 3.
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R90:B10 LED combination (b), and plant sample collection under R50:B50 LED combination (c).

The study involved the comprehensive collection of physical data from a total of
162 plants, which encompassed measurements related to leaf length, width, and leaf area.
The fresh weight of each plant was also collected to check the growth status of the plant.
Three pennywort plants from each bed were randomly selected and collected, resulting
in a total of 27 plants (3 samples from each treatment × 9 treatments) being sampled each
week. Measurements of leaf length, width, number of runners, dead leaves, fresh leaves,
aerial plant height, root length, fresh weight, and dry weight were conducted using a ruler
and digital balance. Simultaneously, phytochemical analysis was performed. To minimize
the degradation of quality during transportation, each pennywort sample collected from
the NFT system was stored in an individual plastic container, as illustrated in Figure 3c.
Following the collection of physical data from each plant, the samples were frozen and
dried for functional component analysis. To ensure the robustness and inclusivity of the
dataset, leaves were chosen at random, encompassing a wide range of sizes and shapes.
The essential parameters of interest in this data collection were leaf length (L) and leaf
width (W). Leaf length can be defined as the longest extension from the leaf apex to the
base, and leaf width corresponds to the longest extension of any two points on the blade
edge perpendicular to the leaf length axis, which is the axes connecting the leaf apex and
base. These parameters were measured meticulously using a measuring scale. Typically,
leaf area (LA) can be simply calculated by multiplying the product of leaf length (L) and
width (W) by a constant [55]. As the pennywort leaves are circular shaped, the leaf area
was computed based on the equation, A = πr2. The modified LA calculating equation used
in this study is shown in Equation (1). Subsequently, the measured leaf area was computed
using Equation (1):

Leaf area (LA) = 3.14 × Leaf length (L)
2

× Leaf width (W)

2
(1)
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2.4. Leaf Image Acquisition

A plant monitoring and acquisition procedure was established utilizing an Intel
RealSense D435i camera (Intel Corporation, Santa Clara, CA, USA), as shown in Figure 4a.
This procedure was designed to capture high-resolution images of plant leaves within a
controlled environment. The hardware setup involved connecting the Intel RealSense D435i
camera to a Raspberry Pi 4B board, with the visual output displayed on a Raspberry Pi
monitor. This configuration facilitated remote monitoring and image acquisition, allowing
users to access the system remotely. To enable remote access and ensure seamless operation
with the Raspberry Pi’s graphical user interface (GUI), the system incorporated the use of
a VNC (virtual network computing) viewer. The VNC viewer allowed users to interact
with the Raspberry Pi’s interface, making it possible to monitor and acquire plant images
remotely, as shown in Figure 4b. The specifications of the camera and microcontroller are
shown in Table 2.
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4B (b), and plant images with the reference object in the plant factory (c).

Table 2. Specification of the microcontroller and the camera used in this study.

Parameters Specifications Parameters Specifications

Sensor Name RealSense D435i Name Raspberry Pi 4B board
Company Intel Company Raspberry Pi

Sensor Global Shutter CPU Quad-core Cortex-A72, 64-bit, 1.8 GHz
Resolution 2.0 MP RAM 8 GB LPDDR4-3200

Frame Resolution 1280 × 720 pixel Connection Standard 40-pin GPIO header
Frame Rate 30 fps Operating system Linux based

Control Automatic Power supply 5 V DC
Connection USB-C 3.1 Operating temperature 0◦ to 50 ◦C

Manufacturer Raspberry Pi Foundation, UK

Within the controlled environment of the plant factory, the plants were carefully culti-
vated. Image acquisition was executed with precision by positioning the Intel RealSense
camera directly above the plant bed, capturing plant images from a top-down perspective,
with the camera angle perpendicular to the plant surface. To maintain accuracy and scale
in the images, a square white paper sheet measuring 5.1 cm by 5.1 cm was included in the
frame during image acquisition. This white paper sheet served as a reference object, aiding
in size and scale calibration, as depicted in Figure 4c. Plant images were systematically
captured every day, ensuring the continuous monitoring of plant growth and health. The
Intel RealSense SDK, a software development kit specifically designed for RealSense cam-
eras, was employed to control and manage the camera for image capture. The resulting
plant images were of high quality, with dimensions measuring 1280 × 780 pixels. Over
three weeks, a total of 2916 plant images were collected, and all the image data were stored
in PNG format on a microSD memory card that was connected to the Raspberry Pi board.
This method of data storage allowed for efficient data management and easy retrieval for
further analysis and research in the plant factory environment.
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2.5. Leaf Area (LA) Estimation from Images

Figure 5 shows the flowchart of the steps involved in the leaf area (LA) measurement
using an image processing method. The steps followed were from the article by [24]. First,
the RGB plant leaf images were acquired from the camera. To minimize the noise, these
images were color-transformed from RGB images to grayscale images. The conversion of
the grayscale image was achieved by eliminating the hue and saturation while keeping
the image luminance. This conversion turns RGB values into gray values through the
formation of a weighted total of the components R, G, and B, as in Equation (2) [56,57]:

Ggray = 0.3R + 0.59G + 0.11 (2)
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Figure 5. (a) The architecture features a 2-4-1 multi-layer perceptron (MLP), where two input neurons
(length and width) transmit a pair of features to a hidden layer containing four neurons; (b) the final
computations and output generation (leaf area) are handled by a single output neuron.

Then, histogram equalization was applied to the images to boost the contrast of the
region of interest (ROI) by changing the intensity distribution of the histogram. A binary
masking was then applied from a grayscale image by classifying each pixel as belonging
to the region of interest from the background. The binary mask can be expressed as
Equation (3) [58]:

Imax(x, y) =
{

1
0

if f
λgray
w (x, y) > T

if f
λgray
w (x, y) ≤ T

(3)

where T is the threshold value and x and y are the value point coordinates. All the gray
levels greater than T are labeled as white considering a value of 1, and those less than or
equal to T are black considering a value of 0. Then, the masked images were segmented,
and the leaf regions were filled using a region-filling technique. The number of pixels in a
leaf area was calculated, and, finally, the leaf area was calculated based on the pixel size,
calculated from the reference object area. MATLAB R2020B (The MathWorks, Inc., Natick,
MA, USA) was used to program the image processing system.

The pixel number statistic was used to compute the area of the leaf. Let AL and AS
indicate the leaf area and the area of the reference object, respectively. Let PL represent the
pixel number of the leaf in the image. PS represents the pixel number within the object in
the image. Thus, Equation (4) for calculating the image estimated area of each leaf is as
follows [13]:

AL =
PL

PS
× AS (4)
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where AL is the leaf area in the image, AS is the reference object area, PS is the counted
number of pixels for the reference object, and PL is the counted number of pixels obtained
from the leaf area.

2.6. ANN Model

Artificial neural networks (ANNs) serve as data processing tools that mimic the
learning process of biological neural networks [59]. They draw inspiration from the hu-
man nervous system, which efficiently performs various perceptual and recognition tasks
through parallel interconnected nodes [60,61]. Multilayer feed-forward neural networks,
often called multi-layer perceptrons (MLPs), consist of multiple layers of artificial nodes.
These networks facilitate the one-way flow of information from inputs to outputs and
include regular input signals, an output layer, and hidden layers with varying numbers of
nodes positioned between the input and output layers. The MLP architecture used in this
study is shown in Figure 5. The input layer receives control parameters, while the neurons
in the hidden and output layers process weighted signals from their respective previous
layers, ultimately producing an output using an activation function. Training often employs
the stochastic gradient descent algorithm, with gradient computation facilitated by the
backpropagation technique. The settings for the proposed algorithm are shown in Table 3.
In our study, two inputs were entered at the same time on the ANN because the problem
requires the network to handle multiple inputs simultaneously. This is a common practice
in neural networks to process multiple inputs together, as it allows the network to learn
and process complex relationships between the inputs more effectively.

Table 3. ANN parameters to predict pennywort leaf area.

Parameters Value

Number of neurons in the input layer 2
Number of hidden layers 1
Number of hidden layers 4
Number of output layers 1

Learning rate 0.01
Maximum number epoch 100

Loss function Mean absolute error (MAE)
Activation function Rectified linear unit (ReLu)

For the training, testing, and validation of the proposed method, the leaf length,
width, and area data were prepared from the actual measurement, which was explained
in Section 2.3. Similarly, data from the image processing method were also used in this
process. Three main model scenarios were explored in this study:

1. The model was trained with both L and W to predict LA from the actual measured data.
2. The model was trained with both L and W to predict LA from the image-extracted data.
3. The model was trained with both L and W to predict LA from both actual and image-

extracted data.

To assess the reliability of the method described in this study, measurements of the
actual leaf areas were performed, each of which was independently measured three times
by three different individuals. Then, the root-mean-square error (RMSE) and mean absolute
error (MAE) were calculated for the leaf area based on the manual measurements and the
values obtained through the proposed method, as defined in Equations (5) and (6). Subse-
quently, the average of the manual measurements was used as a benchmark to compare
the accuracy of the proposed method, following the formula provided in Equation (7). To
identify any disparities between the calculated and measured values, a scatter plot was
generated depicting the calculated values against the measured values, with a reference
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line at y = x. For this study, the data analysis was carried out using Microsoft Excel 2013
(Microsoft Inc., Redmond, WA, USA).

the RMSE =

√
∑n

i=1(xi − yi)

n − 1
(5)

MAE =

√
∑n

i=1

∣∣∣∣xi − yi
n

∣∣∣∣ (6)

Accuracy =

(
1 −

∣∣∣∣xi − yi
n

∣∣∣∣)× 100 (7)

3. Results and Discussion
3.1. Leaf Area Estimation Using Image Processing

Figure 6 shows the image processing steps utilizing the proposed algorithm. The
processing steps began with RGB images (Figure 6a), which were converted into grayscale
images. These grayscale images (Figure 6b) underwent enhancement through histogram
equalization (Figure 6c,g) to enhance the image quality. Subsequently, binary masking
was applied (Figure 6d) to the grayscale images, categorizing each pixel as part of the
region of interest or the background. Afterward, the masked images were segmented, and
the leaf region was filled using a region-filling technique (Figure 6e). Finally, grayscale
value-based contour detection was used to partition images into distinct regions based on
brightness and texture, aiding in the identification of overlapped leaves. (Figure 6f). This
process allowed us to calculate the total number of pixels within the leaf region, thereby
determining the overall leaf pixel area. By referencing the actual pixel size, estimated from
known objects within the images, we calculated the leaf area for each leaf. However, in
cases of very high overlap conditions, the contour may overlap the image leaves area,
which can provide less efficacious leaf area data. This can lead to potential underestimation
of individual leaf areas and reduced accuracy in leaf area estimation.
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of image (c).

In Figure 7, the validation results illustrate the coefficient of determination (R2) for both
the actual and measured leaf areas across all samples. The pennywort plant leaves exhibit
a better R2 value of 0.98, indicating a high constancy in reflecting the true measured leaf
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area. Our proposed method showed a similar coefficient of determination for estimating
leaf area from the images as those reported in [24], and compared to different previous
studies [29,30], our proposed method showed a higher coefficient of determination for
estimating leaf area from the images. The average accuracy of our proposed method was
found to be around 96.6%. While certain studies [25] have reported higher accuracy levels
than this study, it is crucial to note that the conditions in this study were more complex
than those in the comparative studies. Additionally, the methodology exhibited remarkable
performance under diverse lighting conditions.
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3.2. Leaf Area Estimation Using ANN Model

The means, standard deviations, and the minimum and maximum values of the input
and output data used for model building are shown in Table 4. The initial step in modeling
the pennywort leaf area involved applying the ANN method. To construct and validate the
model, the complete dataset of 1320 samples was randomly partitioned into two segments:
70% for training (924 leaves) and 30% for testing (396 leaves).

Table 4. Descriptive statistics were used in this study.

Parameter Max Min Mean and Standard Deviation

Leaf length (L), mm 35.71 10.0 5.4 ± 0.12
Leaf width (D), mm 60.45 18.0 11.43 ± 0.26
Leaf area (LA), mm2 1591.74 141.3 297.197 ± 6.82

The ANN underwent training for 100 epochs, with an iteration of 1000 and a batch
size of 32, encompassing the entire dataset. The training and validation loss of 100 epochs is
shown in Figure 8. A summary of the ANN and the results of the trained and tested ANN
model are presented in Table 5. The R2 and MAPE values range between 96.4 to 97.1% and
6.33 to 6.59, respectively. From the results, it was observed that there is a 97.1% correlation
in the training phase and a 96.6% correlation in the testing phase between the actual and
estimated leaf areas (Table 5). These results also showed the good generalization capacity
of the network [62]. As the MAPE values were less than 10%, this estimation model was
ascertained to have a high degree of accuracy [63]. A sensitivity analysis was conducted
to assess the individual contributions of each input variable to the output variable. The
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findings revealed that leaf length accounted for 59.89% of the network’s output, while
leaf width contributed 82.774% to the network’s overall output. Figure 9 illustrates the
proportional impact of the two inputs on the ANN model.
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Table 5. Results of ANN model.

Values Training Data Testing Data

RMSE 3.26 4.53
MAPE 6.33 6.59
MAE 1.33 1.59

R2 0.97 0.96
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Further analysis, specifically classifying groups based on leaf size, demonstrated that
the ANN consistently performed better than the image processing method in terms of
accuracy. The statistical significance was substantiated by a p-value of 0.029, obtained
from Welch’s test for mean differences (one-way ANOVA), indicating a significantly higher
accuracy in individual leaf area estimation compared to the image processing method.
Refer to Table 6 for a detailed presentation of these findings.
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Table 6. Statistical (one-way ANOVA) difference in leaf area between measured and estimated values
using image processing and ANN.

Leaf Area Mean p-Value

Measured
Image processing −116.84 0.019

ANN −94.14 0.029

In the comparative analysis, the ANN model demonstrated clear superiority over
the image processing method. Assessing based on established criteria, the ANN model
consistently showcased higher R2 values (>0.99) and lower errors (RMSE: ≤4.91), con-
trasting with the image processing method, which yielded an R2 of 0.98 and higher errors
(RMSE: ≤6.68). These findings distinctly indicate the superior accuracy of the ANN model
over the image processing method, as shown in Figure 10. Studies [64,65] utilized ANNs
with architectures like 2-50-1 and 2-3-1, achieving accuracy rates of 99.99% and high corre-
lation (>0.98) for estimating leaf area in various plant species, including wheat, triticale,
durum, and sesame. Another study [66] compared methods like ANN, adaptive neuro-
fuzzy inference system, and regression, reporting accuracy ranges of 97–99% for cereals.
Additionally, the study [67] assessed basic ANN, ANFIS, and regression methods, affirming
the potential of ANNs in precise leaf area estimation based on leaf characteristics. The
proposed study showed similar approaches with higher correlation and accuracy. This
approach demonstrates the potential of ANN in predicting leaf area based on leaf charac-
teristics. Given their capacity to capture non-linear relationships between input and output
values, ANN models performed better than image processing models in explaining greater
variability and demonstrating a higher accuracy in estimating leaf area.
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value, and (b) a comparison of the predicted leaf area using ANN and image-extracted value.

Furthermore, ANN models play an important role in interpreting the intricate rela-
tionship between leaf area development and diverse environmental conditions. The actual
leaf area observed about leaf length and width, exhibited irregularities. These irregular-
ities could be linked to diverse morphotypes among pennyworth plants, complicating
measurements and leading to both underestimations and overestimations. Conversely,
the utilization of the ANN model offered a more consistent estimation of leaf area, pro-
viding a more regular and reliable assessment despite the variations inherent in the plant
morphologies [63]. Implementing ANN and image processing for field-based leaf area
prediction requires a standardized, diverse dataset. Choose a suitable ANN architecture for
real-world applications and deploy the trained model on field devices like smartphones or
web applications for effective real-time predictions. Continuous monitoring and updates
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ensure optimal performance across various plant species and shapes, facilitating informed
plant growth management decisions.

3.3. Effect of Light and Nutrients on Leaf Area

Figure 11 shows the varying leaf area across the growth period under different LED
light combinations and three EC conditions. The R70:B30 LED light ratio with nutrient
level 2 (2.0 dS·m−1) facilitated the most favorable growth for pennywort plants. In different
weeks, the growth status can be forecasted based on the leaf area estimation and monitoring.
Different light combinations and EC affected the plant growth and development.
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There is limited study on the effect of the combination of red and blue LED light with
EC on leaf area in pennywort plants. However, studies on other plant species shed light
on the effects of red and blue LED light on leaf characteristics. For instance, Nair et al.
(2021) [68] highlighted that an increased ratio of blue to red light positively influenced the
growth and leaf biomass of large-leaf pennywort (Hydrocotyle bonariensis). Additionally,
research by Zheng and Van Labeke (2017) [69] demonstrated that blue light influenced the
leaf thickness of medicinal plants like dicot (Ficus benjamina) and dicot (Sinningia speciosa)
varieties. In various plant species such as peppers, cucumbers, and lettuce, the addition of
blue light to the light spectrum has been observed to augment leaf area compared to growth
under red or other light spectra [70]. Studies on lettuce [71], revealed that specific light
combinations, such as high-energy blue and low-energy far-red light, influenced the number
and expansion of individual leaves. Moreover, in tomato plantlets, research [72] indicated
that different combinations of red and blue LED light affected growth characteristics and
pigment content. Optimal ratios of red to blue light, however, varied based on plant species
and growth conditions. This variability underscores the need for further investigation to
determine the ideal red-to-blue LED light ratios for different plant species and diverse
growth conditions.

This study presented a first approach for the non-destructive estimation of leaf area
in pennywort plants cultivated under varying light and nutrient conditions within a
controlled plant factory using an artificial neural network model. The estimated leaf area
values derived from the ANN closely align with the actual measurements, indicating a
high level of accuracy and reliability in the model’s predictions. One of the strengths of
the proposed ANN prediction model is its simplicity and speed. It relies solely on easily
obtainable leaf length and width measurements, eliminating the necessity for expensive or
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specialized instruments. This streamlined approach facilitates swift and straightforward
data collection, making it highly accessible for all researchers.

Furthermore, the non-destructive nature of this method is a significant advantage.
It allows for repeated measurements on the same leaves over time without causing any
harm to the plant, enabling longitudinal studies and the tracking of changes in leaf area
under varying growth conditions. This capability enhances the feasibility and precision
of research in controlled environments, offering a valuable tool for ongoing and detailed
plant growth assessments.

4. Conclusions

This study aimed to develop and compare a leaf area prediction model for pennywort
plants in a controlled environment. It evaluated both an image processing technique and
an ANN model using measured data. The image processing method demonstrated a
solid correlation (R2 of 0.98) with the measured data, while the ANN model performed
better, showing robust accuracy in predicting leaf area. The ANN displayed significant
performance, achieving 97.1% correlation in training and 96.6% in testing. The sensitivity
analysis emphasized the significant impact of leaf length (59.89%) and leaf width (82.774%)
on the output of the ANN model. Moreover, the ANN consistently surpassed the image
processing method in terms of accuracy, validated by a higher p-value of 0.029. Monitoring
the leaf area under different LED light combinations and three EC conditions revealed that
the R70:B30 LED light ratio with nutrient level 2 (2.0 dS·m−1) fostered the most favorable
growth for the pennywort plants. Acknowledging the high accuracy and reliability of the
ANN model, the study identified limitations in addressing irregularities stemming from
diverse plant morphologies. Future studies could refine the ANN model to accommodate
these variations, ensuring even more precise predictions. Additionally, considering the
impact of environmental conditions, further research into determining optimal red-to-blue
LED light ratios for different plant species and varied growth conditions could significantly
advance our understanding of environmental influences on leaf area.
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