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Abstract: The drip emitter is a fundamental component of the drip irrigation system, and
its performance directly influences the efficiency of water–fertilizer–gas (WFG) coupling
irrigation. However, the precise mechanism through which WFG coupling affects emitter
clogging and system uniformity remains unclear. To address this, this study conducted a
hydraulic performance test of the drip irrigation system based on micro-nano aerated drip
irrigation technology. The clogging patterns of emitters and system uniformity were com-
pared and analyzed under non-aerated drip irrigation and WFG coupling drip irrigation
conditions. The results indicate that WFG coupling significantly alters the micromorpho-
logical structure and microbial diversity of clogged emitters. This change reduces clogging
and can delay the clogging process of different types of emitters, thereby extending their
service life by up to 29%. Additionally, it effectively improves the uniformity of the drip
irrigation system. These findings highlight the potential of WFG coupling as an effective
strategy to mitigate emitter clogging and optimize drip irrigation system performance.

Keywords: water–fertilizer–gas coupling; drip irrigation; emitter clogging; microbial
diversity; soil hypoxia

1. Introduction
As technology advances and the needs of irrigated agriculture evolve, modern agricul-

tural water use is shifting from a reliance on single water-saving techniques to an integrated
approach. This approach encompasses a variety of agricultural technologies and the holistic
management of multiple factors, including water, fertilizer, and air. WFG coupling drip
irrigation represents a novel approach to water conservation in agricultural applications.
This method aims to provide optimal conditions for crop growth, modulating the rhizo-
sphere soil environment, thereby enhancing the synergistic effects of water, fertilizer, gas,
and soil throughout the crop growth process [1]. Research indicates that this method could
not only enhance the dissolved oxygen content in irrigation water, ameliorate water quality,
and improve soil permeability [2] but also enhances the fertilizer use efficiency [3] and
facilitates water and yield conservation in crops [4,5]. Additionally, it removes suspended
particles from irrigation water, reduces surface chemical precipitation, and alters the mi-
crobial diversity of clogging materials [6], demonstrating clear technical advantages and
promising application prospects.

Emitters, which are integral to the drip irrigation system, are associated with the
system’s overall performance. To facilitate energy dissipation, the internal flow channels of
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emitters are typically relatively constricted, with a range of 0.5 to 1.2 mm [7]. Emitters of
drip irrigation systems become clogged with suspended particles, chemical precipitates,
and microbial byproducts, resulting in non-uniformity in the irrigation process and ad-
versely affecting the overall efficiency and service life of the entire system [8]. Emitter
clogging primarily manifests in three forms—physical, chemical, and biological—with the
biological form often initiating the others [7,8]. To address this, numerous scholars have
conducted extensive research in areas such as configuring filtration equipment, the chlori-
nation and acidification of irrigation water, and improving the structure of emitters [9,10],
achieving certain results. However, the chlorination and acidification of irrigation water
can have impacts on the ecological environment, and the improvement of emitter structures
cannot avoid the relatively narrow flow channels required within the emitters. Therefore,
there is an urgent need to seek green, efficient, and feasible anti-clogging technologies and
methods for emitters. The schematic diagram of the emitter structure and actual photos of
clogging are shown in Figure 1.
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Micro-nanobubbles, with diameters ranging from 200 nm to 50 µm, possess character-
istics such as strong oxidizing properties, high stability, and strong adsorption capacity [11].
When introduced into the drip irrigation system for aeration, they can delay emitter clog-
ging [12], providing a new perspective for addressing this issue. Under WFG coupling,
the introduction of gas into the drip irrigation system causes disturbances in water flow
and generates two-phase gas–liquid flow, which significantly alters the viscosity of the
water [13]. Additionally, the addition of fertilizer to the drip irrigation system changes
water quality parameters and the concentration of suspended particles, which affects both
the emitter clogging and entire system’s operation [14]. Consequently, under WFG cou-
pling, the simultaneous presence of micro-bubbles and fertilizers makes the operation of
the drip irrigation system and the mechanism of emitter clogging more complex. Against
the backdrop of global climate change and resource scarcity [15], in-depth research on the
performance of emitters under WFG coupling is of significant importance for improving
irrigation efficiency, reducing resource waste, and protecting the environment. Therefore,
based on micro-nanobubble aeration technology, this study thoroughly investigates the
performance of emitters under water–fertilizer–gas coupling and its impacts on drip irriga-
tion systems. It focuses on analyzing the clogging patterns of emitters, system uniformity,
and characteristics of clogging materials, and explores the potential of micro-nanobubble
aeration in preventing emitter clogging, thereby providing a theoretical basis for enhancing
the performance of water–fertilizer–gas coupled drip irrigation systems.

2. Materials and Methods
2.1. The Selection of Emitters

For this study, five common emitters (A–E) were chosen from the market. To avoid
the influence of the emitters’ quality on the experimental results, the flow–pressure rela-
tionship and coefficient of variation of all the emitters were tested according to the ISO
standard before the experiments [16]. The flow–pressure relationship of the emitters is
described below:

qe = KPm (1)

The symbols in this formula are defined as follows:
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qe: emitter discharge rate, L/h;
P: working pressure, MPa;
K: discharge coefficient;
m: behavior index.

The coefficient of variation Cv (%) for the emitters can be expressed by

Cv =
100Sq

q
(2)

The symbols in this formula are defined as follows:

Sq: The standard deviation of the emitter discharge rate, L/h;
q: The average of the emitter discharge rate, L/h.

The structures and performance metrics (0.1 ± 0.01 MPa) of the five test emitters are
detailed in Table 1. An analysis of the data explains that emitters B and D exhibit specific
pressure-compensating capabilities. Additionally, the flow regime exponents for emitters
A, C, and E fall within the range of 0.46 to 0.48. In accordance with the quality grading
criteria for emitters, as stipulated in the performance of all tested emitters, they are deemed
to be of “excellent” quality [16].

2.2. Test Equipment

The experiment was conducted at the center of Water Saving Irrigation Equipment
Testing, Institute of Agricultural-water saving, Chinese Academy of Agricultural Sciences,
Xinxiang, China. To ensure the accuracy of the experimental results, an intelligent variable-
frequency, constant-temperature, and constant-pressure water tank (Hebei Kedao Testing
Machine Technology Co., Ltd., Xingtai, China) was used as the experimental power water
source; U-PVC pipes were used as the experimental pipeline system; a turbine flowmeter
(China National Instrument Co., Ltd., Beijing, China, accuracy 1.0, range 3–30 m3/h) was
employed to monitor the experimental irrigation flow rate; a differential pressure fertilizer
tank of 30 L (Shandong Toyota Water-saving Equipment Co., Ltd., Laiwu, China) was used
for the fertilization of the drip irrigation system; to prevent impurities in the water and
undissolved fertilizer particles from entering the pipeline system, a mesh filter (AZUD,
120 mesh, Murcia, Spain) was installed on the main pipeline after the fertilizer tank to avoid
unrelated factors affecting the blockage of the experimental emitters; a micro-nanobubble
generator (Yunnan Xia Zhi Chun Environmental Technology Co., Ltd., Kunming, China)
was selected as the gas injection device. During the experiment, both the gas injection
device and the fertilization device were connected to the main pipeline. When conducting
the WFG coupling experiment, the gas injection device was opened for gas treatment, and
when conducting the non-gas fertilization drip irrigation experiment, the gas injection
device was closed; each emitter type used 5 drip irrigation tapes (each was 100 m long,
with a spacing of 0.5 m between adjacent tapes) laid out in the north–south direction as
the experimental pipeline network. Before the experiment, according to the principle of
uniform sampling, 19 sampling points were set on each drip irrigation tape, with a total
of 95 sampling points for each emitter type, and the experiment was repeated three times;
the analysis was conducted by taking the average values. The schematic diagram of the
water–fertilizer–gas coupling emitter performance test device is shown in Figure 2.
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Table 1. Structure and performance index of test emitters.

Number Type
of Emitters

Rated Flow
Rate (L/h) Spacing (m) Connection

Method
Compensate

Function
Runner Size (mm) Filter Area

(mm2)
Flow

Coefficient K
Behavior
Index m

Coefficient
of Variation

Cv (%)Width Depth Length

A ARIES 16250 1.9 0.3
interior

embedded
patches

Non-pressure-
compensated 0.76 1.03 65 54 0.693 0.46 3.25

B DRIPNET
PC 16009 2.0 0.3

interior
embedded

patches

pressure-
compensated 1.02 0.88 8 42 1.969 0.01 3.16

C ARIES 16250 1.0 0.3
interior

embedded
patches

Non-pressure-
compensated 0.6 0.74 65 49 0.347 0.48 1.74

D DRIPNET
PC 16, 150 FL 1.0 0.4

interior
embedded

patches

pressure-
compensated 0.76 0.73 8 42 1.003 0.01 3.13

E PC EXTRA
DDC1620050 2.0 0.5 column Non-pressure-

compensated NA NA NA NA 0.218 0.46 2.20
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To ensure the accuracy and applicability of the experimental results, all experiments
utilized groundwater from the experimental site, and water quality parameters were
monitored during the experiments, as shown in Table 2; the gas source for the experiment
was air; to avoid the impact of chlorine elements in the fertilizer on the blockage of the
emitters, potassium sulfate (K2SO4, potassium content ≥99%, Tianjin Fengchuan, China)
was selected as the fertilizer for the WFG coupling experiment. During the experiment, a
conductivity meter (SX-650, Shanghai Sanxin, China) was used to monitor the conductivity
of the solution during the experiment.

Table 2. Tested water quality parameters.

Nitrogen Phosphorus COD TDS Calcium Magnesium Iron Carbonate Sodium
Ion pH Salinity Sulfate

mg/L mg/L mg/L g/L mg/L mg/L mg/L mg/L mg/L S/cm mg/L

6.3 0.36 <15 2.69 96.39 95.4 0.074 26.96 109.50 7.26 2.66 87.31

2.3. Experimental Methods
2.3.1. Experimental Design

The objective of this experiment was to investigate how WFG coupling affects the
performance of various irrigation emitters. Two experimental groups were established: one
with WFG coupling, and the other as a control group (conventional drip irrigation without
aeration treatment). Considering the application scenarios of crop irrigation, the working
pressure of the drip irrigation system for each emitter and the pressure differential at the
fertilizer tank’s inlet and outlet were set at 0.1 MPa. The fertilizer amount was set at 1 kg,
and the gas addition rate was 3 L/min. To monitor the clogging process in each emitter,
the flow rates were measured after three-day intervals. Prior to each flow measurement,
each emitter’s drip irrigation system was allowed to operate stably at the rated pressure for
30 min. Subsequently, measuring cups were positioned directly below each measurement
point, and readings were taken after every five-second interval. The measuring cups were
then removed in the reverse order of placement, and the volume of water in the measuring



Horticulturae 2025, 11, 333 6 of 23

cups was measured using a measuring cylinder. Each flow measurement was repeated
three times, and the average value was taken for data analysis.

2.3.2. Fertilization and Irrigation Time

The concentration of the fertilizer solution and its electrical conductivity (EC) were
calibrated on a daily basis using a quadratic regression method [17]. In order to establish
a mapping relationship between fertilizer concentration and EC, which was then used
to calculate the fertilizer content, the time required for the pressure difference fertilizer
tank to complete a fertilization process was measured prior to the commencement of the
experiment. The EC of the experimental water source was initially measured, after which
a 30 L solution of K2SO4 was prepared. The solution was stirred to dissolve and evenly
mix the solute, and the EC was measured as the initial experimental condition. Then, the
experiment was conducted, and samples were taken at the sampling port of the fertilizer
tank at 0.5 min intervals, and the EC was measured, respectively. The fertilization process
was considered to have ended when the EC of the sample was the same as or very close to
that of the pure water. The experimental results demonstrated that the fertilization time
of the fertilizer tank for different emitters did not exceed 8.5 min. The experiment was
conducted for a total of 330 h, spanning 10 h per day (8:00 to 18:00). The system working
pressure was maintained at 0.1 MPa.

2.3.3. Emitter Uniformity Analysis
Discharge Ratio Variation

The degree of clogging of each emitter type under the WFG coupling was calculated
by the discharge ratio variation, Dra (%):

Dra = 100 × ∑n
i=1 qi

nqnew
(3)

The symbols in this formula are defined as follows:

qi: the i-th emitter discharge rate in blockage test, L/h;
qnew: the average emitter discharge rate before the test, L/h;
n: the count of emitters under test.

The average flow rate ratio of the emitters indicates the degree of reduction in the
average flow rate; the smaller the value, the greater the degree of flow rate reduction and
the more severe the blockage of the emitters. Typically, a ratio of 75% or less is defined as
the occurrence of a blockage in the drip emitters. The average flow rate ratio was used to
represent different degrees of blockage in the emitters. When the average flow rate ratio
is 95% or greater, it is defined as unblocked; from 75% to less than 95%, it is defined as
slightly blocked; from 50% to less than 75%, it is defined as blocked; from 20% to less than
50%, it is defined as severely blocked; and below 20%, it is completely blocked [18].

Christiansen Uniformity Coefficient and Statistical Uniformity Coefficient

The Christiansen uniformity coefficient (Cu) and the statistical uniformity coefficient
(Us) were used to evaluate the uniformity of the drip irrigation system for each emitter type.

(1) The Christiansen uniformity coefficient:

Cu = 100 ×
(

1 − ∑N
i=1|xi − x|
∑N

i=1 xi

)
(4)

In the formula, Cu: Christiansen uniformity coefficient, (%); xi: observation value
of water output for the i-th emitter, (mL); x: the average of the sample; N: count of
measurement points.
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(2) Statistical uniformity:

Us = 100 × (1 − s/x) (5)

In the formula, Us: the statistical uniformity coefficient (%); s: the standard deviation
of the observed values for the sample.

Sample Collection of Emitters

At the end of the clogging experiment, one clogged emitter was selected as a test
sample from the same region of the front, middle, and back of three transversal lines
corresponding to five types of emitters in the drip irrigation system. The samples were
analyzed for the micromorphological structure of the clogging material and microbial
diversity. Each sample selected from the drip line was considered a replicate, and three
replicates were performed for each type of emitter under different test conditions. The
samples were grouped according to the aerated and fertilized (AF) and unaerated and
fertilized (NAF) drip irrigation test groups and according to the type of emitter (A–E).
For example, AFA-1 indicates the first test sample of emitter A in the aeration test group.
During sampling, the emitter samples were cut with sterile scissors, immediately placed in
sterile bags, sealed, and stored in dry ice and a −80 ◦C refrigerator.

2.3.4. Micromorphological Structure and Microbial Diversity Analysis of Emitter
Clogging Material

(1) A scanning electron microscope (Oxford, UK) was used to observe the clogging
material of the emitters and to analyze the effect of aeration and fertilization on the micro-
morphological structure of different emitter clogging materials. First, the selected clogged
emitters were classified and the clogging material from each emitter was extracted using
the same method. The clogging materials from the front, middle, and rear emitters of each
drip line were mixed as one observation object. After fixing the extracted clogging material
with glutaraldehyde solution (2.5% mass fraction, electron microscopy specific, Qiao brand)
for 24 h, it was washed with sterile ultrapure water. The clogging material was dehydrated
with ethanol in a gradient, followed by CO2 critical point drying. After drying, the clogging
material was sputtered with gold and observed with a scanning electron microscope to
analyze the micromorphological structure of the clogging material from each emitter. When
observed with a scanning electron microscope, several parts of the clogging material were
captured; three photos were taken each time to accurately analyze the micromorphological
structure of the clogging material from each emitter.

(2) The Illumina MiSeq high-throughput sequencing platform was used to analyze
the microbial diversity of the emitter plug material. The clogging material was extracted
synchronously with the sampling of the micromorphological structure of the emitter clog-
ging material. The genomic DNA of the microorganisms in the clogging material was
extracted using a DNA extraction kit, and the extracted DNA was detected using agarose
gel electrophoresis and NanoDrop-2000. To facilitate the study of the diversity of the mi-
crobial community and species composition in the emitter clogging material, the effective
sequences of DNA were clustered, and the vSEARCH software (2.0.3) [19] was used to
classify sequences into multiple OTUs (Operational Taxonomic Units) based on sequence
similarity. The QIIME software (2 2020.2) package was used to select representative se-
quences from each OTU, and all representative sequences were compared with the database
to obtain the results of the microbial diversity analysis of the emitter clogging material [20].
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3. Results and Analysis
3.1. Emitter Clogging Process

Figure 3 shows the changes in the average discharge ratio variation (Dra) of each
emitter in the aerated and fertilized drip irrigation test group and the unaerated drip
irrigation-fertilized test group over the experimental period. As illustrated in Figure 3, the
trend of change in Dra for each emitter in both the aerated and fertilized drip irrigation test
group and the unaerated drip irrigation-fertilized test group is similar: at the beginning of
the experiment, the Dra of each emitter was greater than 95%, with no emitters experiencing
clogging, and the decline in Dra was slight. As the Dra dropped below 95%, the emitters
in both drip irrigation systems began to experience slight clogging. As the irrigation time
increased, the Dra curves of each emitter gradually declined, with different rates.
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Under the same conditions, the clogging process of each emitter shows significant
differences. Among them, the clogging process of the in-line pressure-compensating emitter
A is the slowest, while the cylindrical emitter E has a relatively faster clogging process. As
shown in Figure 3, the Dra curve of emitter A declines gently, and even in the later stages
of the experiment, the corresponding drip irrigation system only shows slight clogging,
whereas the Dra curve of emitter E declines very rapidly, and the corresponding drip
irrigation system shows complete clogging in the middle of the experiment.

3.2. Regression Analysis of Emitter Dra

To quantitatively analyze the statistical relationship between the average flow rate
ratio (Dra) of different emitters and the duration of the experiment (T), a linear regression
analysis was conducted on the relevant factors using the data analysis software SPSS 22.0,
resulting in regression equations for each type of emitter under both the aerated fertilizer
drip irrigation and non-aerated drip irrigation fertilization test groups.

The regression equations for the non-aerated drip irrigation fertilization test group for
each emitter are as follows:

Dra NAFA = −0.000803T + 1.0401 (R2 = 0.7739, p < 0.001);
Dra NAFB = −0.002977T + 1.1827 (R2 = 0.9545, p < 0.001);
Dra NAFC = −0.002623T + 1.1737 (R2 = 0.9134, p < 0.001);
Dra NAFD = −0.00402T + 1.181 (R2 = 0.9743, p < 0.001);
Dra NAFE = −0.003863T + 0.9933 (R2 = 0.8825, p < 0.001).
The regression equations for the WFG coupling test group for each emitter are

as follows:
Dra AFA = −0.000713T + 1.0594 (R2 = 0.7196, p < 0.001);
Dra AFB = −0.002853T + 1.1967 (R2 = 0.9299, p < 0.001);
Dra AFC = −0.002643T + 1.192 (R2 = 0.8956, p < 0.001);
Dra AFD = −0.004063T + 1.2408 (R2 = 0.9537, p < 0.001);
Dra AFE = −0.004T + 1.0748 (R2 = 0.9396, p < 0.001).
In the regression analysis, the coefficient of determination, R2, for each experimental

group is greater than 0.7, indicating that the regression equations have a good fit to the data.
From the regression equations, when Dra = 75%, the experimental durations for each

emitter in both the non-aerated drip irrigation fertilization test group and the aerated
fertilizer drip irrigation test group are presented in Table 3.

Table 3. Working time of each emitter when Dra = 75%.

Number of Emitters NAF/h AF/h Increase in the Proportion Under
Water–Fertilizer–Gas Coupling

A 361 434 20%
B 145 157 8%
C 162 167 3%
D 107 121 13%
E 63 81 29%

As shown in Table 3, the use of WFG coupling can effectively mitigate emitter clogging
and significantly extend the lifespan of all emitters, with a maximum potential increase of
29% in the service life of the irrigation devices.

3.3. Emitter Clogging Patterns

In order to further elucidate the dynamic patterns of emitter clogging under WFG
coupling and non-aerated drip irrigation and fertigation conditions, a study was conducted
to examine the dynamic changes in the clogging of emitters at different positions along the
drip tape in the drip irrigation system. A heatmap of the dynamic changes in the average
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flow ratio of emitters at different positions along the drip tape under each treatment
was created, as illustrated in Figure 4. The horizontal axis of the figure represents the
experimental running time, the vertical axis represents the position number of the emitter
along the drip tape direction, and the color of the heatmap indicates the size of the emitter’s
Dra. As presented in Figure 4, the degree of blockage for all of the emitters gradually
intensifies with the progress of the experiment, showing different patterns of clogging
change. The time until blockage for the emitters in all the WFG coupling trial groups is
later than that for the same type of emitter in the non-aerated drip irrigation and fertigation
trial group. Furthermore, the number of blocked emitters is significantly less within the
same time frame. A comparison of the positions of the blocked emitters on the drip tape at
each time point reveals that the distribution of blocked emitters in the WFG coupling trial
group is more uniform along the measured drip tape.
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3.4. Pattern of Change in Emitter Uniformity Coefficient

The Christiansen uniformity coefficient (Cu) and the statistical uniformity coefficient
(Us) of the emitters in both the WFG coupling trial group and the non-aerated drip irrigation
and fertigation trial group were subjected to analysis in order to study the impact of WGF
coupling on the uniformity of the drip irrigation systems of various emitters. Figure 5
illustrates the variation curves of the Cu and the Us of each emitter over the course of the
experiment. As shown in Figure 5, the trajectory of alteration in the Cu and the Us of the
drip irrigation systems of each emitter with respect to the experimental time exhibits a
parallelism with the process of alteration in the Dra. In both trial groups, the uniformity
coefficients (Cu and Us) of each emitter type exhibited a decline with the progression
of the experimental period. Among the emitter types within a given trial group, the
pattern of change in the uniformity coefficient varied, with the overall rate of decline being
A < C < B < D < E. In comparison to the column emitters, all of the interior embedded
patches emitters demonstrated superior uniformity within the drip irrigation system. For
in-line flap emitters, the non-pressure-compensated emitters exhibited enhanced uniformity,
and the emitter flow rate had a minimal impact on the uniformity of the drip irrigation
system. For a given emitter type, both Us and Cu were higher in the WFG coupling trial
group than in the non-aerated drip irrigation and fertigation trial group. This suggests that
the integration of water, fertilizer, and gas within the drip irrigation system is advantageous
for maintaining optimal uniformity and extending the system’s operational lifespan.
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Figure 6 illustrates the relationship between the Cu, the Us, and the Dra of the drip
irrigation systems of each emitter under the WFG coupling trial group and the non-aerated
drip irrigation and fertigation trial group. As shown in Figure 6, under different experi-
mental conditions, there is a good linear relationship between Dra, Cu, and Us for each
emitter. Under the same conditions of Dra in the drip irrigation system, the impact of WFG
coupling on Cu and Us show significant differences. Overall, the Cu and Us of the WFG
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coupling trial group are superior to those of the non-aerated drip irrigation and fertigation
trial group. As Dra decreases, the positive impact of WFG coupling on Cu and Us becomes
more pronounced, indicating that WFG coupling can reduce the sensitivity of Cu and Us to
changes in Dra for each emitter drip irrigation system. It also suggests that WFG coupling
can not only delay emitter clogging but also make the degree of clogging more uniform
among emitters, thereby mitigating the impact of partial emitter clogging on the uniformity
of the drip irrigation system.
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Figure 6. The relationship between the uniformity coefficients and Dra. (a) The relationship be-
tween Us (statistical uniformity coefficient) and Dra. (b) The relationship between Cu (Christiansen
uniformity coefficient) and Dra.

3.5. Microscopic Morphology and Microbial Diversity of Emitter Clogging Materials
3.5.1. Microscopic Morphology of Clogging Materials

The formation of emitter clogging materials is the result of the combined effects of
physical, chemical, and biological factors. The microscopic morphology of these materials
directly reflects the impact of these different factors on the clogging outcomes. To eluci-
date the mechanism by which WFG coupling affects emitter clogging, an analysis of the
microscopic morphology of the clogging materials from the emitters in the drip irrigation
systems corresponding to both the WFG coupling trial group and the non-aerated drip
irrigation and fertigation trial group was conducted using a scanning electron microscope.
The microscopic morphology of the clogging materials from each emitter is provided in
Figure 7 (×5000).
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(b) Emitter B. (c) Emitter C. (d) Emitter D. (e) Emitter E.

The emitter clogging materials are irregularly shaped and sized cylindrical crystals,
which are clustered, tightly packed, and exhibit agglomeration phenomena, as demon-
strated in Figure 8. Furthermore, the surfaces of these clogging materials are coated with
varying degrees of adhesive and lump-like substances. A comparison of the microscopic
morphological structures of the clogging materials from the emitters in both the WFG
coupling trial group and the non-aerated drip irrigation and fertigation trial group reveals
that emitter A has relatively smooth and flat surfaces with fewer surface adherents in
both treatment conditions. In contrast, emitter E demonstrates pronounced adhesion and
agglomeration in all treatment conditions, with the degree of adhesion and agglomeration
on the surface of the clogging materials following the order A < C < B < D < E, which aligns
with the pattern of Dra changes observed for each emitter. A comparison of the microscopic
morphological structures of the same type of emitter in the WFG coupling trial group and
the non-aerated drip irrigation and fertigation trial group reveals that the thickness and
density of the clogging materials under WFG coupling are lower, with less adhesion and
accumulation of organic matter. In the non-aerated drip irrigation and fertigation trial
group, the clogging materials of the emitters are relatively thicker and denser, which is
consistent with the hypothesis that the co-application of water and fertilizer can slow down
the rate of decrease in emitter Dra. Additionally, it is evident that emitters A and E, which
exhibit the most pronounced alterations in Dra, also demonstrate substantial discrepancies
in the microscopic morphological composition of their clogging materials subsequent to
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WFG co-application. These discrepancies are accompanied by discernible enhancements in
surface adhesion and agglomeration, which align with the conclusion that WFG coupling
effectively prolongs the clogging time of emitters A and E.
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3.5.2. Analysis of Microbial Abundance in Clogging Materials

After the experiment concluded, a microbial diversity analysis was conducted on
the clogging materials from the drip irrigation systems corresponding to each emitter.
The average data from three clogging materials corresponding to each emitter were used
as one sample for comparative analysis. There were five samples from both the WFG
co-application trial group and the non-aerated drip irrigation and fertigation trial group.
After quality control, the number of Operational Taxonomic Units (OTUs) in each sample
ranged from 750 to 1300.

Firstly, we conducted an analysis of the OTUs, and the OTU results for each sample
are as follows (Figure 8).

The numbers in the Core represent the total number of shared Operational Taxonomic
Units (OTUs) among the samples (i.e., Core OTUs), and the numbers on the petals represent
the count of OTUs in each sample minus the shared OTUs. The OTU results from each
sample indicated that, in both the WFG coupling trial group and the non-aerated drip
irrigation and fertigation trial group, the number of shared OTUs among the emitter
samples is significantly less than the number of unique OTUs in each sample. That is,
the common microbial count is less than 50% of the total microbial count in each sample,
indicating a large variation in microbial species within the clogging materials of the emitters.

The OTU distribution among the emitters shows that in the non-aerated drip irrigation
and fertigation trial group, the total number of OTUs for emitter C is slightly higher than
in the WFG co-application trial group. In contrast, the total number of OTUs for emitters
A/B/D/E in the non-aerated drip irrigation and fertigation trial group is less than that in
the corresponding emitters in the WFG coupling trial group. The total number of OTUs for
emitter A in the WFG coupling trial group increased 63% due to the aeration, suggesting
that WFG coupling can increase the microbial count in the main emitter clogging materials.
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3.5.3. Analysis of Microbial Community Structure in Clogging Materials

In a microbial community, a variety of groups engage in interactions with one another
and coexist in a regular pattern, exhibiting distinct nutritional and metabolic characteristics.
An analysis of the microbial community structure can facilitate a more profound compre-
hension of the microbial diversity present in emitter clogging materials. To further elucidate
the impact of WFG coupling on the microbial diversity of emitter clogging materials, we
conducted an analysis of the microbial community structure of the clogging materials from
the emitters in the drip irrigation systems corresponding to both trial groups. During
the analysis, the number of microbial communities present in the clogging materials of
each emitter corresponding to the drip irrigation system was determined. The top 30
microbial communities in terms of quantity were then subjected to further analysis and the
remaining unique microbial communities were represented as ’other’. Figure 9 illustrates
the relative abundance of microbial communities in the clogging materials of the emitters
corresponding to the drip irrigation systems for both the WFG coupling trial group and the
non-aerated drip irrigation trial group.
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Figure 9 presents a notable disparity in the distribution of microbial communities
within the clogging materials of each emitter. In conjunction with the pattern of Dra changes
observed in each emitter, no discernible microbial community has been identified as a
primary driver of emitter clogging. The relative abundance of microbes in the clogging
materials within the emitters under both WFG coupling and non-aerated drip irrigation



Horticulturae 2025, 11, 333 18 of 23

conditions demonstrates notable differences, indicating that microbial activity in the clog-
ging materials also undergoes a complex process during the clogging of emitters. An
examination of the distribution patterns of microbial communities in the clogging mate-
rials within the emitters in both the WFG coupling trial group and the non-aerated drip
irrigation trial group reveals that under WFG coupling, a notable decrease was observed in
the populations of Betaproteobacteriales, Chitinophagales, and Myxococcales, while those
of Cytophagales, Babeliales, and Gemmatimonadales exhibited a significant increase.

4. Discussion
4.1. Emitter Clogging Patterns Under Water–Fertilizer–Gas Coupling

Emitter clogging represents a critical determinant of the overall performance of drip
irrigation systems, exerting a pronounced influence on their service life [21]. The experimen-
tal results indicated that in both the WFG co-application trial group and the non-aerated
drip irrigation and fertigation trial group, the Dra of the drip irrigation systems correspond-
ing to each emitter gradually decreased with increasing experimental time. This finding
is consistent with the results reported by Feng [22] and Li [23]. This phenomenon occurs
due to the accumulation of clogging materials within the emitters over time, which directly
reduces the emitter performance [24,25]. Among the five types of emitters in both trial
groups, the rate of decrease in Dra is in the following order of emitters: A < C < B < D < E.
When the emitter structure is analogous, the anti-clogging performance is positively corre-
lated with the filtration area. Consequently, the larger the filtration area, the more optimal
the anti-clogging performance. The clogging process of an emitter can be defined as the
gradual deposition of clogging materials within the internal flow channels. The larger the
filtration area, the longer it takes for clogging materials to deposit and cause blockages
under the same water pressure [26]. High-flow emitters (A) have superior anti-clogging
performance compared to low-flow emitters (C), which is consistent with the findings of
Zheng Jian [27] and Zheng Jie [28]. In-line flap emitters demonstrate superior long-term
performance compared to traditional cylindrical emitters, exhibiting an enhanced capacity
to prevent internal clogging. This is attributed to their ability to effectively prevent the
entry of particulate matter under drip fertigation conditions [29]. Pressure-compensated
emitters are capable of maintaining a more stable flow output in the face of varying water
pressure. However, in situations where water, fertilizer, and gas are in circulation, the
intricate internal structure of these emitters may elevate the probability of clogging, as
particulate matter is more prone to deposition within the tortuous flow channels [30]. In
contrast, the non-pressure-compensated emitters demonstrated superior reliability under
WFG coupling conditions, attributed to their streamlined design that effectively mitigates
the accumulation of particulate matter. A comparison of the clogging processes and pat-
terns of the same emitters in both trial groups revealed that the clogging time in the former
was longer than in the latter. Notably, emitters A and E exhibited a more than 20% increase
in clogging time under WFG coupling, suggesting that all emitters demonstrate enhanced
anti-clogging capabilities under this configuration. Notably, this happens because when
micro- and nanobubbles enter the drip irrigation system under WFG coupling, they are
capable of altering the hydraulic characteristics within the system. This results in a reduc-
tion in the transport resistance of the wall to impurities in the water, thereby effectively
improving the transport efficiency of impurities, which in turn slows down sedimenta-
tion [31]. For emitters of the same structure, the anti-clogging performance under the
water–fertilizer–gas (WFG) coupling condition is superior to that of the non-aerated drip
irrigation and fertigation trial group.
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4.2. Uniformity of Drip Irrigation Systems Under Water–Fertilizer–Gas Coupling

The Christiansen uniformity coefficient ( Cu) and the statistical uniformity coefficient
(Us) of the drip irrigation systems corresponding to each emitter in both the WFG coupling
and the non-aerated drip irrigation trial group demonstrate a comparable trend to the
Dra, exhibiting a gradual decline over the experimental period. In both experimental
treatments, the Cu and Us of the drip irrigation systems for each emitter follow the order
A < C < B < D < E, which is consistent with the performance of the emitters’ anti-clogging
properties. An analysis of the Cu and Us for the same emitter’s corresponding drip
irrigation system under the two experimental treatments indicated that each emitter exhibits
superior system uniformity in the WFG coupling trial group. The distribution pattern
of clogged emitters also indicated that, in contrast to the non-aerated drip irrigation and
fertigation trial group, where clogged emitters are primarily distributed in the front section
of the drip tape, the distribution of clogged emitters along the drip tape is more uniform in
the WFG coupling trial group. This occurs because, in the non-aerated drip irrigation and
fertigation trial group, the clogging materials in the drip irrigation systems settle first in the
front section due to the effect of gravity. Concurrently, under the non-aerated drip irrigation
and fertigation treatment, oxygen and nutrients are predominantly concentrated in the
front section of the drip tape, resulting in heightened microbial activity in this region. This
is accompanied by the formation of a greater quantity of biofilm and clogging materials
in the front section, which ultimately leads to the premature clogging of emitters situated
at the forefront of the drip irrigation system [15]. Additionally, in the WFG coupling
trial group, the introduction of micro- and nanobubbles, which adsorb surface-active
substances, enhances the mobility of clogging materials through the drag force between
the gas and liquid phases, aggregating at the tail of the bubbles [32]. The formation,
contraction, and disappearance of micro- and nanobubbles facilitate the weakening of the
hydrogen bonding network of water, thereby accelerating the mobility of water molecules
and forming a “barrier” between the emitter flow channels and impurities in the water. This
barrier prevents contact between impurities and emitter flow channels, and it slows down
the deposition of clogging materials inside the emitters [33]. Concurrently, micro- and
nanobubbles can generate a robust long-range hydrophobic force throughout the bridging
process, augmenting the adhesion of clogging materials to the bubbles [34], reducing
the probability of their detachment, and facilitating the transport of impurities and other
materials that readily form clogging in emitters by water flow. This results in an enhanced
uniformity of the drip irrigation system. Furthermore, in a WFG coupling system, the
large specific surface area and long transmission distance of micro- and nanobubbles
facilitate the uniform distribution of oxygen and nutrients throughout the drip irrigation
system [35,36]. This results in more uniform microbial activity across the drip tape, which
in turn reduces the local accumulation of organic matter and the subsequent distribution of
clogging materials along the drip tape. It can thus be concluded that the drip irrigation
systems of each emitter under WFG coupling exhibit enhanced uniformity.

4.3. Micromorphology and Microbial Diversity of Clogging Materials Under
Water–Fertilizer–Gas Coupling

The micromorphology of the clogging materials indicates that all emitter clogging
substances exhibit aggregation phenomena, with surfaces adhering to varying degrees
of sticky and lump-like substances. The adhesion and aggregation on the surface of the
clogging materials serve to exacerbate the clogging of the emitters [37]. In comparison to
the non-aerated drip irrigation and fertilization experimental group, the surfaces of the clog-
ging materials in the drip irrigation system emitters under WFG coupling are observed to
be relatively smooth and flat, with less surface adhesion. This indicates that WFG coupling
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can significantly alter the surface characteristics of emitter clogging materials, including
biofilms, precipitates, and organic matter. This is due to the fact that WFG coupling is
capable of effectively increasing the dissolved oxygen content in water [38], promoting
the oxidation of organic matter, and causing the clogging materials to loosen [39]. This
results in a change to the micromorphological structure of the emitter clogging material
surface, rendering it more susceptible to flushing away by water flow or mechanical re-
moval, thereby alleviating emitter clogging. The WFG coupling can also result in a notable
alteration of the microbial community structure within water sources. This phenomenon
has been observed to facilitate the proliferation of aerobic bacteria while simultaneously
inhibiting the reproduction of anaerobic bacteria [40]. The analysis of microbial diversity in
the internal clogging materials of the emitters in the drip irrigation systems reveals that
under WFG coupling, the Betaproteobacteriales, Chitinophagales, and Myxococcales are
significantly reduced, while the Cytophagales, Babeliales, and Gemmatimonadales have
significantly increased. This may be due to the fact that Cytophagales, Babeliales, and
Gemmatimonadales are primarily adapted to aerobic environments [41,42] and exhibit
higher aerobic activity [43]. Additionally, fertilization increases the organic matter and
nutrients in the water, which are more conducive to the growth of diverse microbial groups,
particularly aerobic bacteria [44]. This, in turn, increases the number of microorganisms.
Concomitantly, alterations in the microbial community of the emitter’s internal clogging
materials also influence the micromorphology of the clogging materials and their anti-
clogging capabilities. Betaproteo bacteriales has been observed to promote the growth of
biofilms [45], while Myxococcales has been shown to secrete polysaccharide mucus, pro-
ducing extracellular polymeric substances (EPS), which further accelerates the formation
of biofilms [46]. There is no research indicating that Chitinophagales is more prone to
forming biofilms or producing EPS as part of the microbial community. However, they
may engage in biofilm formation with other microorganisms, potentially increasing the
likelihood of emitter clogging. Cytophagales, Babeliales, and Gemmatimonadales exhibit
elevated metabolic activity in aerobic environments and demonstrate effective organic mat-
ter degradation capabilities [47]. In particular, Babeliales, as intracellular parasites, exhibit
robust cell decomposition abilities [48], which can diminish the organic content of clogging
materials and the formation of EPS. Concurrently, under aerobic conditions, EPS undergoes
accelerated degradation [49], consequently reducing the viscosity and thickness of the
biofilm. Consequently, in the context of WFG coupling, the micromorphology of the emitter
clogging materials is relatively smooth and flat, exhibiting a reduction in surface adherents,
an increase in microbial numbers, and an enhancement in anti-clogging performance.

Currently, the efficient anti-clogging methods for drip emitters mainly rely on the
addition of chlorine or acid, which not only affect the lifespan of the drip irrigation system
but also have adverse impacts on soil ecology and crop growth. This study investigates
the clogging processes, system uniformity, micromorphology of clogging materials, and
microbial diversity of drip irrigation systems with different emitters under water–fertilizer–
gas (WFG) coupling and non-aerated drip irrigation and fertilization treatments. The results
show that compared to conventional drip irrigation systems, WFG coupling drip irrigation
can alter the micromorphological structure of clogging materials and microbial diversity,
effectively enhancing the anti-clogging performance of the drip irrigation system. This
approach is characterized by being green, safe, and efficient, and can meet the irrigation
needs of different crops, offering broad application prospects.

5. Conclusions
This study aimed to investigate the effects and mechanisms of water–fertilizer–gas

(WFG) coupling on the clogging characteristics of different emitter structures and the
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uniformity of drip irrigation systems under controlled experimental conditions. The results
demonstrated that WFG coupling can significantly enhance the anti-clogging performance
of emitters and improve the uniformity of the drip irrigation system. Specifically, the
interior embedded non-pressure-compensated emitters exhibited a superior anti-clogging
performance under WFG coupling conditions. Additionally, WFG coupling was found to al-
ter the microbial diversity of emitter clogging materials and affect their micromorphological
structure, thereby improving the overall anti-clogging performance of the emitters.

These findings provide valuable insights into the optimization of drip irrigation
systems and offer a theoretical basis for the application of WFG coupling technology. The
utilization of interior embedded non-pressure-compensated emitters in WFG coupling drip
irrigation systems can effectively mitigate emitter clogging and extend the operational
lifespan of these systems.

However, it is important to acknowledge that emitter clogging is a complex and dy-
namic process influenced by multiple factors, including the irrigation water source, system
configuration, and crop type. While the controlled experimental conditions allowed for
precise measurement and analysis, they may not fully reflect the complexities of real-world
applications, such as variations in water quality, drip irrigation system configurations, and
crop irrigation regimes. Future research should focus on exploring the long-term ecological
and economic impacts of WFG coupling drip irrigation technology in specific agricultural
settings. A comprehensive and in-depth investigation of WFG coupling drip irrigation
technology will further validate its practical applicability and promote its widespread
adoption in agricultural production.
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