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Abstract: An important top-down predator, the northern pike (Esox lucius), faces harsh environ-
mental conditions in the northern boreal ecoregion. They are often managed for recreational
fishing and, more recently, to create environmental offsets; strategies aimed at balancing ecologi-
cal impacts by enhancing or restoring habitats. Our study examines northern pike populations
in two remote boreal lakes in northern Alberta: Steepbank and Wappau. The lakes differ in
size, vegetation cover, and trophic status, providing a natural experiment for investigating
northern pike growth, condition, diet, and population density. Over three years (2018–2020),
northern pike were sampled using gill nets. Population metrics, including growth, condition,
and stomach contents, were compared between the lakes. Steepbank, a smaller, oligotrophic lake
with low vegetation cover, showed lower prey fish densities compared to the larger, eutrophic
Wappau, but it did not differ in northern pike catch per unit effort. Growth rates and body
condition varied significantly between the lakes, with the northern pike in Wappau exhibiting
faster growth and a better condition in the older age groups, while the younger northern pike
in Steepbank had higher relative weights. A diet analysis revealed significant differences in
prey consumption: Steepbank northern pike displayed higher rates of conspecific predation and
invertebrate consumption, particularly in the younger age classes. These findings highlight how
lake characteristics and prey availability shape northern pike population dynamics, offering
valuable insights for lake management approaches in northern Alberta.

Keywords: environmental management; habitat enhancement; lake ecosystem; northern
boreal; fish ecology

1. Introduction
Freshwater species are in decline globally, with one in three species being listed as threat-

ened [1–5]. These declines are attributed to various anthropogenic and environmental stressors,
ranging from eutrophication to loss of genetic diversity and competition with non-native
species [2,3,6,7]. Individual stressors can interact with each other creating feedback loops and
background processes, like climate change, can enhance stressors further [3,8]. Habitat loss and
degradation is commonly regarded as the most pressing issue for many species [9,10]. Conser-
vation and management frameworks have been implemented in many countries and through
cross-boundary treaties to counter freshwater biodiversity declines, as well as to manage aquatic
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resources and ecosystem services [11–14]. Frameworks can be aimed at requiring development
proponents to mitigate impacts and provide compensatory environmental benefits through
offsets [12,15,16]. Other management frameworks are meant to preserve ecosystem services
provided by freshwater habitats and species like recreational and sport fishing, using licensing,
take limits, habitat restoration and enhancement, and often stocking [17–19].

Northern pike (Esox lucius) is one of the most widespread, abundant, and commonly
targeted top predators in northern Canada, aside from popular species like lake trout
(Salvelinus namaycush) or walleye (Sander vitreus) [20–22]. These prolific benthopelagic
ambush predators can be found in lacustrine as well as riverine environments, preferring
cool to warm waters (17–24 ◦C) with heavy aquatic vegetation [23,24]. Notably, northern
pike growth and body condition are mainly dependent on temperature, water clarity, and
prey availability [23,25,26]. The reasons behind stunted growth or low body conditions in
pike populations are generally related to overpopulation and consequent competition, a
lack of adequately sized prey, thus lowering their energy uptake from smaller prey items,
and thermal stress in the absence of summer refugia [26]. However, given their hardiness
and generalist piscivore feeding behavior, northern pike can be found in a wide range
of habitats aside from their preferred ones [21,25]. Northern pike also show remarkable
plasticity in prey choice and size, including consuming aquatic invertebrates, even in their
adult stage, and conspecific predation as well as adaptation in high turbidity settings [25,27].
Inherent plasticity and adaptability apply to northern pike in Canada’s northern boreal
ecoregion, which contains an estimated 1.5 million lakes, with many northern boreal lakes
being small, oligotrophic, and shallow [28]. Overall low productivity, low species richness,
long winters, active fire regimes, limited organic input, and low recruitment rates (5.8 pieces
of large woody debris per lake per century, e.g., through treefall or storms [29]), distinguish
these lakes and resident fish populations from other more productive ones [29–33].

The northern boreal ecoregion of Canada and its freshwater habitats are exposed to
both development stress, mainly through resource extraction, and recreational activities
including fishing [1,20,34,35]. Approved anthropogenic impacts like logging or mining in
the northern boreal ecoregion are often compensated for by creating new lakes either from
the ground up or by repurposing mining pits [36]. These newly created ecosystems rely on
expert knowledge to ensure trophic and community stability in the long run [36–38]. This
becomes even more important given the persistent shortcomings of creating physical habi-
tats, with high rates of project failures and uncertainty, and a lack of long-term population
stability, with most mitigation policies requiring long-term or in-perpetuity functionality
and provision of positive effects for the system or population [15,39–43]. Similarly, man-
aging already existing natural lakes to ensure recreational ecosystem services for anglers
will benefit from region-specific insights. Most anglers tend to target larger or trophy fish,
which holds important implications for size and take limits for fish populations [44,45]. To
advance our understanding of northern pike ecology and adaptation in the northern boreal
ecoregion, we investigate northern pike populations and their respective prey choices in
two northern boreal lakes in northern Alberta, one oligotrophic (Steepbank) and the other
eutrophic (Wappau). Specifically, we have the following hypotheses:

(1) The growth rates (von Bertalanffy growth parameters) of northern pike will differ
between Steepbank and Wappau due to differences in environmental conditions (e.g.,
lake size, depth, aquatic vegetation, and prey availability).

(2) Northern pike in Wappau will exhibit a higher relative body condition compared to those
in Steepbank due to a more diverse and abundant prey base, based on a prey fish catch.

(3) Prey selection by northern pike will differ between Steepbank and Wappau, with
northern pike in Steepbank relying more on conspecific predation due to limited prey
diversity and a potentially lower prey fish catch.
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Deepening the understanding of how top predators, like northern pike, behave and
fare under different environmental conditions within the context of the northern boreal
ecoregion will be of immense help to implement management measures and achieve
ecosystem stability with offsets comparable to natural reference lakes, as well as the
management recreational fisheries [21,37,40,46].

2. Materials and Methods
2.1. Study Lakes

Steepbank (185.4 ha, max depth 16 m) and Wappau (576.6 ha, max depth 6 m) in
northern Alberta are northern boreal lakes with northern pike as the top predator (Figure 1).
Steepbank is a shallow, oligotrophic lake with low vegetation cover (6.38%; Braun-Blanquet
percent: 6.38% based on 24 littoral plots; Simba 0.3–5; [47]) and a summer thermocline of
~8 m. It has a Secchi depth of 2.25 m and is managed with a limit of one pike >70 cm per
angler (Table 1). The fish community includes five species: northern pike, Catostomus com-
mersonii (white sucker), Notropis hudsonius (spottail shiner), Pungitius pungitius (ninespine
stickleback), and Culaea inconstans (brook stickleback).

Table 1. Study lakes in northern Alberta, including base parameters related to lake physiology and
habitat characteristics. Lists each lake’s size in hectares, maximum depth in meters, mean summer
pH with standard deviation, mean summer temperature in degrees Celsius with standard deviation,
percentage of littoral zone covered by aquatic vegetation, mean epilimnetic dissolved oxygen (DO) in
milligrams per liter with standard deviation, and Secchi depth in meters during summer sampling.

Lake Size ha Max
Depth m

Mean Summer
pH

Mean Summer Temperature ◦C
(1 m Steps)

Littoral % Aquatic
Vegetation

Mean DO
mg/L

Secchi
Depth m

Steepbank 185.4 16 8.23 ± 0.47 18.5 ± 0.68 6.38 ± 8.95 8.16 ± 0.09 2.25
Wappau 576.6 6 8.66 ± 0.03 18.4 ± 0.71 18.04 ± 16.94 8.87 ± 1.57 1.125
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Figure 1. The study area, including Wappau (yellow) and Steepbank (blue) lakes, is in the northern
boreal region of Alberta, Canada. Potential prey species availability for resident northern pike
populations. Symbol attribution: Tracey Saxby, Kim Kraeer, Lucy Van Essen-Fishman, Integration
and Application Network; Dieter Tracey, Marine Botany; ian.umces.edu/media-library. Geospatial
layers are available from AHS-GIS and open.alberta.ca under ‘Open Government Licence—Alberta’
and are part of QGIS 3.32.2.
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Wappau is larger, with more aquatic vegetation cover (18.04%), and is eutrophic. Its
Secchi depth is 1.125 m and northern pike management allows for two fish per day without
size limits (Table 1). Its fish community includes seven species. In addition to the fish com-
munity in Steepbank, there are Perca flavescens (yellow perch) and Percopsis omiscomaycus
(troutperch). Both lakes are remote (Figure 1), with minimal human impact, and are used
as models for constructing new lakes for compensatory offsetting in northern Alberta.

Variables such as lake size (ha), maximum depth (m), and mean summer pH are
important to consider because they influence habitat availability and water chemistry, both
of which can affect predator distribution and abundance [48]. Mean summer temperature
(◦C, measured at 1 m intervals) can influence predator metabolic rates and prey availabil-
ity [49,50]. The percentage of littoral aquatic vegetation serves as an indicator of habitat
complexity and prey refuge availability, which can affect predator foraging behavior [49,51].
Mean dissolved oxygen (DO) concentration (mg/L) was included because oxygen availabil-
ity is critical for the survival and activity of aquatic organisms, especially during warmer
months [52,53]. Lastly, Secchi depth (m) was used to capture water clarity, which can impact
predator–prey interactions by influencing visual hunting efficiency [54]. Collectively, these
variables were controlled for given their known relevance to predator ecology, helping to
identify potential drivers of differences between the two predator populations.

2.2. Sampling and Study Data

The lakes in this study are routinely sampled by Alberta Environment and Parks (AEP) for
walleye (Sander vitreus) and northern pike population monitoring. In August 2018 (13th–24th),
30 northern pike from each lake (n = 60) were netted with multi-mesh gill nets (18 m), set
at random locations at depths of ≥2 m, and kept overnight (Research License: RL18-1809).
Further sampling occurred in August 2019 and 2020 (14th–24th) using 23 m monofilament
multi-mesh gill nets. Gill net meshes knot-to-knot for the sampling period were: 25 mm,
38 mm, 51 mm, 63 mm, 76 mm, 102 mm, 127 mm, and 152 mm; net height: 1.83 m. The use of
a multi-mesh design follows standard protocols for community-based fish sampling [55,56] as
well as license requirements (Research License: RL19/20-1809). Nets were deployed at depths
between 2 and 6.7 m, a range that was chosen to target the primary nearshore habitat of
northern pike during summer months [21,25,27,51]. Nets were set for 3 h, in compliance with
research license agreements, at similar locations to 2018 to facilitate comparability between
years [57].) Northern pike samples collected from Steepbank included n = 13 (2019) and
n = 14 (2020), while Wappau provided n = 12 (2019) and n = 13 (2020). Sampling stopped once
12–14 voucher specimens were reached to avoid exceeding mortality limits. Specimens from
all years were measured (total and fork length in mm) and weighed (g).

Northern pike CPUE was calculated as the number of pike captured per hour of
sampling. Prey fish density (CPUA) was calculated as the number of prey fish per unit
area sampled using 50 m seine hauls (n = 5 per year and lake), standardized over 100 m2 of
sampled area. Preliminary results indicated no significant differences in within-lake CPUE
for northern pike or prey fish CPUA across the sampling years, allowing us to pool the data
for each lake over the three years despite variations in net set times [58]. CPUE and CPUA
between lakes were compared through Kruskal–Wallis rank sum tests, with eta-squared
as effect size measure (η2) and upper bound fixed at 1, which quantifies the proportion of
total variance in the response variable explained by the predictor variable [59].

2.3. Age and Growth Analysis

Growth was analyzed using the von Bertalanffy Growth Function for northern pike
in both lakes, using length-at-age data from 2018, 2019, and 2020, with age determined
through the cleithrum [60,61]. Growth parameters, L∞ (asymptotic length), K (growth
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rate), and t0 (hypothetical age at zero length), were estimated via non-linear least squares
regression [61,62]. Deviations (alpha < 0.05) from expected growth were identified to
examine significant differences between the lakes, identifying ages at which growth curves
between the two lakes potentially differ (Wilcoxon rank sum test; [63]).

2.4. Condition Analysis

Body condition was assessed using relative weight (Wr), calculated as Wr = W/W′ × 100,
where W is the observed weight and W’ is the species-specific standard weight for a given
length. Wr values were compared across age groups (2–4, 5–7, and >8 years) and lakes to
determine growth efficiency differences [62,64]. Statistical comparisons (ANOVA; eta2 for
effect size) were conducted to assess any significant variations in condition between the
lakes and age classes.

2.5. Diet and Stomach Contents Analysis

The diet of northern pike was assessed through stomach contents analysis, with sam-
ples obtained via dissection, with caught specimen being frozen after capture to preserve
stomach and prey integrity. This approach allowed for a comprehensive evaluation of prey
composition and feeding behaviors across different age classes and lake environments [65].
For stomach contents analysis, we categorized prey item presence and absence in individual
northern pike stomachs into four groups: macroinvertebrates, conspecific northern pike,
piscivorous (other prey fish), and empty stomachs. This grouping facilitated the analysis
of prey group switches and differences between lakes [65]. The normalized proportion
of prey types per age group was calculated, and prey choice differences between lakes
were evaluated using Kruskal–Wallis rank sum tests [59]. Diet changes with age (2–4,
5–7, and >8 years) were explored to identify potential differences in prey items across
lakes. Conditional probabilities were calculated to assess the likelihood of selecting one
prey type given the selection of another (co-selection), stratified by lake and age. For each
prey type, the probability P(PreyB|PreyA) was computed as the proportion of individuals
selecting both prey A and prey B relative to the total number of individuals selecting prey A
within each lake–age subgroup [66]. This approach captures age-related dietary shifts and
lake-specific foraging strategies, offering insights into how individual feeding behaviors
adapt in response to ecological conditions [27,67].

3. Results
3.1. Northern Pike CPUE and Prey Fish CPUA

Both lakes exhibited a median catch-per-unit-effort (CPUE) of 0.25 pike per net-hour
(pike/nh; Figure 2a). The mean CPUE was slightly lower in Steepbank (0.244 pike/nh,
SD = 0.237) than in Wappau (0.283 pike/nh, SD = 0.250; Table S1). The prey fish density,
measured via seine net hauls, was higher in Wappau (mean = 43.4 fish/100 m2, SD = 16.8)
than in Steepbank (mean = 31.2 fish/100 m2, SD = 6.87; p = 0.04; η2 = 0.2; Figure 2b). The
species composition of prey fish differed between the lakes, with yellow perch dominating
in Wappau (81%, SD = 8%) and spottail shiner in Steepbank (85%, SD = 5%; Table S1).
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Figure 2. Mean Catch Per Unit Effort (CPUE) for northern pike caught in gill net sets, standardized
to catch per net hour (a). Prey fish catch in 50 m seine hauls standardized to fish per 100 m2 (b).
Sampling was conducted over three years (2018–2020) at Wappau and Steepbank lakes, Alberta,
Canada. * Indicates significant differences for catch.

3.2. Age and Growth

Northern pike from Steepbank had an average length of 434.8 mm (SD = 144.4 mm),
while those from Wappau were larger on average, with a length of 502.5 mm (SD = 206.4 mm).
The growth rates were significantly higher in Wappau (55.6 mm/year) compared to Steep-
bank (39.1 mm/year; p = 2.43 × 10−13; Table S2). The predicted growth deviations occurred
in older individuals (≥8 years), as illustrated in Figure 3.
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Figure 3. Predicted growth deviations for northern pike in Steepbank and Wappau lakes based on
average growth rates as estimated by Von Bertalanffy growth curves (age in years/length in mm).
Average growth rate comparison (mm/age) is provided on secondary y-axis. Age is determined
through extracted cleithra.
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3.3. Condition

The relative weight (Wr) of northern pike differed significantly between the lakes
(p = 0.004; η2 = 0.17; Figure 4a) and showed an interaction between the lake and age class
(p = 0.01; η2 = 0.25; Table S3). In Steepbank, the Wr decreased with age, with mean values
of 109.0 (SD = 10.7) for ages 2–4, 101.0 (SD = 8.99) for ages 5–7, and 95.4 (SD = 7.75) for ages
8–11. In Wappau, the Wr values were 96.2 (SD = 11.3) for ages 2–4, 92.0 (SD = 7.28) for ages
5–7, and 109.0 (SD = 11.9) for ages 8–11. Younger pike (ages 2–7) in Steepbank had a higher
Wr than those in Wappau (p = 0.04), but for the oldest age class (8–11), the Wr was higher
in Wappau (p = 0.04; Figure 4b). This interaction indicates that the condition of the pike
changes with age differently in the two lakes (Figure 4).
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3.4. Diet and Stomach Contents

The proportion of empty stomachs and those containing piscivorous prey did not differ
significantly between the lakes (Table S4; Figure 5). However, conspecific predation was
higher in Steepbank, especially for age classes 2–4 (33.3%) and 8–11 (33.3%), compared to
Wappau, where no conspecifics were observed in these age groups. For ages 5–7, conspecific
predation was 12.5% in Steepbank and 6.67% in Wappau (p = 0.04; Table S4; Figure 5).

Invertebrate consumption also varied between the lakes (p = 0.049; Table S4). Steep-
bank pike consumed more invertebrates across all age classes compared to Wappau. In
Steepbank, invertebrate consumption declined from 33.3% at ages 2–4 to 18.8% at ages
5–7 and 16.7% at ages 8–11. In Wappau, consumption was lower overall, with 22.2% for
ages 2–4, 6.67% for ages 5–7, and no recorded invertebrate consumption for ages 8–11.
These results suggest that invertebrates play a diminishing role in pike diets as they age,
particularly in Wappau (Figure 5).

In Steepbank lake, prey co-selection patterns evolved across age groups. For ages 2–4
and 5–7, macroinvertebrates were the central prey type, with mutual co-selection observed
between macroinvertebrates and piscivorous prey, as well as between macroinvertebrates
and conspecific prey (Figure S1). However, there was no strong direct link between
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piscivorous prey and conspecific prey in either age group. By ages 8–11, this pattern had
shifted. The link between macroinvertebrates and conspecific prey disappeared, while
a new direct link formed between piscivorous prey and conspecific prey, (33% and 50%
co-selection). Additionally, individuals feeding on macroinvertebrates were highly likely
to also feed on piscivorous prey (100%), with a reciprocal link from piscivorous prey to
macroinvertebrates (33%). This shift suggests a growing reliance on piscivorous prey in
older age groups.

In Wappau, there were no strong associations between prey types in the 2–4 and 8–11
age groups. In age group 5–7, individuals feeding on macroinvertebrates were likely to
also feed on piscivorous prey, and those feeding on conspecific prey were likely to also feed
on piscivorous prey (100%). However, the reverse was not true (Figure S1). This suggests
that, in this age group, piscivorous feeding is more central to prey choice.

Hydrobiology 2024, 3, FOR PEER REVIEW  8 
 

 

while a new direct link formed between piscivorous prey and conspecific prey, (33% and 

50% co-selection). Additionally,  individuals feeding on macroinvertebrates were highly 

likely to also feed on piscivorous prey (100%), with a reciprocal link from piscivorous prey 

to macroinvertebrates (33%). This shift suggests a growing reliance on piscivorous prey 

in older age groups. 

In Wappau, there were no strong associations between prey types in the 2–4 and 8–

11 age groups. In age group 5–7, individuals feeding on macroinvertebrates were likely to 

also feed on piscivorous prey, and those feeding on conspecific prey were likely to also 

feed on piscivorous prey (100%). However, the reverse was not true (Figure S1). This sug-

gests that, in this age group, piscivorous feeding is more central to prey choice. 

 

Figure 5. Diet composition of northern pike from Steepbank and Wappau lakes in Alberta, Canada, 

showing normalized proportion of empty stomachs, piscivorous prey, conspecific prey, and ma-

croinvertebrates across different age classes (2–4, 5–7, and 8–11 years). * Indicates overall significant 

differences in prey type proportions. 

4. Discussion 

Our  study  investigated  the growth  rates,  relative  condition, and prey  selection of 

northern pike in Steepbank and Wappau lakes to test three key hypotheses. We predicted 

that the growth rates of northern pike would differ between the lakes due to their con-

trasting environmental conditions. This was confirmed, as the northern pike in Wappau 

exhibited  significantly  higher  growth  rates  for  older  specimens  compared  to  those  in 

Steepbank, supporting the notion that lake-specific factors such as prey availability influ-

ence growth. We also hypothesized  that  the northern pike  in Wappau would exhibit a 

higher relative condition due to having a more diverse prey base. This hypothesis was 

partially supported, as  there were significant differences  in relative condition  (Wr) be-

tween  the  lakes, but  this effect varied by age  class. Northern pike  in Steepbank had a 

higher relative condition in the younger age groups, while Wappau northern pike had a 

higher condition in the oldest age group. Finally, we expected that prey selection would 

differ between the lakes, with the northern pike in Steepbank relying more on conspecific 

predation due to limited prey diversity. This hypothesis was supported by the findings, 

Figure 5. Diet composition of northern pike from Steepbank and Wappau lakes in Alberta, Canada,
showing normalized proportion of empty stomachs, piscivorous prey, conspecific prey, and macroin-
vertebrates across different age classes (2–4, 5–7, and 8–11 years). * Indicates overall significant
differences in prey type proportions.

4. Discussion
Our study investigated the growth rates, relative condition, and prey selection of

northern pike in Steepbank and Wappau lakes to test three key hypotheses. We predicted
that the growth rates of northern pike would differ between the lakes due to their con-
trasting environmental conditions. This was confirmed, as the northern pike in Wappau
exhibited significantly higher growth rates for older specimens compared to those in Steep-
bank, supporting the notion that lake-specific factors such as prey availability influence
growth. We also hypothesized that the northern pike in Wappau would exhibit a higher
relative condition due to having a more diverse prey base. This hypothesis was partially
supported, as there were significant differences in relative condition (Wr) between the
lakes, but this effect varied by age class. Northern pike in Steepbank had a higher relative
condition in the younger age groups, while Wappau northern pike had a higher condition
in the oldest age group. Finally, we expected that prey selection would differ between
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the lakes, with the northern pike in Steepbank relying more on conspecific predation due
to limited prey diversity. This hypothesis was supported by the findings, as conspecific
predation was significantly more common in Steepbank, particularly in the youngest and
oldest age classes.

4.1. Growth Rates, Condition, and Prey Choice

The observed differences in growth rates between the northern pike populations in
Steepbank and Wappau reflect both environmental and ecological influences. Both lakes
exhibited similar median and mean CPUEs per net hour for northern pike, suggesting a
comparable northern pike abundance. However, the population differences likely stem
from other factors, particularly habitat characteristics and prey availability.

The northern pike in Wappau exhibited significantly higher growth rates compared
to those in Steepbank. This difference is linked to Wappau’s habitat complexity, higher
prey fish density (measured as prey fish CPUA), macrophyte cover, and overall lake
size [23,27,67]. Wappau’s shallower, vegetated habitat likely enhances lake productivity,
creating abundant prey resources for northern pike [68,69]. This complex habitat supports
both prey fish and ambush hunting opportunities for pike, with dense macrophytes pro-
viding cover and a rearing habitat [25,69]. In contrast, Steepbank’s deeper, less complex
habitat may limit prey availability and consequently, the growth potential of its northern
pike [32,69,70].

Interestingly, the younger northern pike (ages 2–7) in Steepbank exhibited a higher
relative condition (Wr) compared to those in Wappau. This suggests that younger pike
benefit from opportunistic feeding on invertebrates [66,71]. Research indicates that young
pike in environments with limited prey fish availability rely on invertebrates for suste-
nance, which is a pattern that was observed in Steepbank. The consistent co-selection
between macroinvertebrates and piscivorous prey or conspecifics in the 2–4 and 5–7 age
groups suggests that macroinvertebrates serve as an important alternative food source
at younger ages. [67,71]. However, this dietary shift, while supporting the growth of
younger pike, highlights a compensatory feeding strategy. The diet analysis reveals that
older northern pike in Steepbank also still rely to some degree on invertebrates due to low
prey fish availability. However, in older individuals (ages 8–11), the disappearance of the
macroinvertebrate–conspecific relationship and the emergence of stronger links between
piscivory and conspecific predation suggests that as pike grow larger, they become more
efficient at predation on other pike and fish [25,58,71]. In contrast, the northern pike in
Wappau shift towards prey fish as they age, emphasizing how prey abundance influences
feeding behavior and diet composition. The lack of strong co-selection patterns, with the
few patterns present centered around piscivory, further support the high abundance of
prey fish, where individuals, regardless of age, have less need to feed on less preferred
prey [71].

Older pike (>8 years) in Wappau presented with a better relative condition than those
in Steepbank, likely benefiting from the higher prey fish density in Wappau [25,72,73].
Adult northern pike thrive in habitats rich in high-energy prey, and the abundance of prey
fish like yellow perch provides the necessary resources for maintaining their condition
and size [72,73]. Consequently, Wappau provides a more suitable environment for larger,
older pike.

Despite similar CPUEs for northern pike in both lakes, the shallower, more vege-
tated Wappau offers greater habitat accessibility compared to the deeper, less complex
Steepbank [74]. This difference in habitat complexity impacts the northern pike, especially
smaller individuals, who may be confined to less favorable habitat patches in Steepbank,
thus limiting their access to prey and increasing competition [75]. Larger northern pike in
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Steepbank may face competition and conspecific predation, which could influence their
growth and distribution [76]. The stomach contents analysis reveals significantly higher
rates of conspecific predation in Steepbank, with older pike preying on smaller individuals,
which is likely driven by prey scarcity and habitat limitations [76].

In contrast, Wappau showed minimal conspecific predation, with no predation ob-
served in the oldest age group. The higher conspecific predation in Steepbank reflects
a compensatory feeding behavior in response to prey scarcity, with a shift towards con-
specifics when alternative prey is scarce. This aligns with previous studies observing such
behavior in predator populations under similar conditions [25,27]. Interestingly, white
sucker, although abundant in Steepbank, do not appear to be a major prey item for pike,
likely due to their larger size and rapid growth [77]. The ability of the younger pike in
Steepbank to maintain a higher condition through prey switching (such as the increased
consumption of invertebrates) highlights the adaptability of northern pike to changing
environmental conditions [67]. However, this strategy may not be sustainable in the long
term, as indicated by the stunted growth and lower condition of the older pike in Steepbank.
This suggests that while younger individuals may adapt their diet, the long-term health
of northern pike populations may be compromised if habitat and prey conditions remain
suboptimal [26,67].

4.2. Management Implications

Our ecological findings also have practical management implications for northern pike
populations, with an emphasis on enhancing trophy fisheries, improving habitat conditions,
and designing new lakes for compensation efforts in the northern boreal region.

For trophy fisheries, ensuring the long-term health and growth of northern pike re-
quires careful consideration of both habitat enhancement and fishing regulations [23,24].
The differences observed between the Steepbank and Wappau populations suggest that
populations in stunted environments, such as Steepbank, would not benefit from stocking
efforts alone. In such cases, stocking does not address the root cause of density-dependent
bottlenecks or juvenile mortalities in the population, such as conspecific predation or a lack
of prey fish. Instead, stocking may exacerbate the problem by adding more individuals to a
population that is already resource-limited [78,79]. To improve northern pike populations
in stunted lakes, angling regulations should focus on targeting stunted size classes. Imple-
menting a size slot limit (where only pike within certain size ranges can be harvested) will
allow smaller individuals to grow and mature, while protecting the large, fecund adults
that contribute to population stability. This approach balances conservation goals with
angler interests [80,81].

In areas with limited shelter for younger pike, creating refuges or adding vegetation
and coarse woody structures can provide essential cover for juvenile fish [23,24]. These
enhancements, in turn, support the prey fish populations that northern pike rely on [32].
While targeted interventions like habitat enhancement or stocking could improve con-
ditions, it is important to consider whether such management aligns with the natural
ecological balance [40,82]. In cases where stunted populations represent a natural state
of the ecosystem, extensive management efforts might not be justified and could disrupt
existing ecological processes [40,41,82].

When designing new lakes as part of compensation efforts or offsetting, it is critical
to consider the unique ecological features of the northern boreal region [36,37]. Boreal
lakes have a slow wood regime, meaning that they naturally accumulate little deadwood
over time [29,32]. For newly designed or restored lakes, adding coarse woody habitats can
accelerate the development of functional ecosystems by providing shelter and food for both
prey fish and northern pike [32,83]. Similarly, riparian planting can provide an additional
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habitat and contribute to the system’s overall ecological health [40,69,84,85]. In lake design,
factors such as the depth and surface area also play a crucial role in determining habitat
connectivity, as lakes with smaller surface area to depth ratios, as seen in Steepbank, may
have limited opportunities for ecological exchanges between habitat patches, while larger
lakes can offer more extensive, interconnected environments for both predator and prey
species [70,76,86].

The choice of prey fish should also be a key consideration in lake design. For example,
while prey fish abundance is often thought to be sufficient for supporting predator popu-
lations, the species composition matters [87,88]. In Steepbank, for instance, white sucker
were abundant but not heavily targeted by northern pike due to their large size and rapid
growth [58,87,89]. This highlights the need to carefully select prey fish species that are
appropriately sized for northern pike, such as yellow perch, which are more suitable for
younger and adult pike [71,90].

Another important factor is food web interactions and connectivity. Introducing a
single top predator, such as northern pike, will regulate the food web differently compared
to systems where pike coexist with other top predators like walleye or bass [72,73]. This
should be carefully considered when designing new systems, as the absence of competitive
interactions could lead to different prey dynamics [73]. If new lakes are connected to
nearby streams or other lakes within the watershed, this could alter the balance of prey
and predator species, introducing both diversity, nutrients, and competition. These shifts
must be carefully planned to avoid unforeseen consequences, such as the introduction of
additional predators or changes in prey availability, especially in systems with naturally
low species diversity [91,92].

Finally, climate stressors, such as the active fire regimes and long winters in the north-
ern boreal ecoregion, should be factored into design plans. These environmental pressures
and the associated death of both predator and prey species can exacerbate the stress on
northern pike populations, particularly in newly established systems [33,93–95]. It is im-
portant to design lakes that can withstand these pressures while providing stable conditions
for predator and prey populations [94,95]. Additionally, the potential overabundance of
parasites and the chance for disease outbreaks in new systems, as well as algal blooms,
must be monitored closely [96,97].

Monitoring should include regular evaluations of both community composition and
habitat availability, as well as, and more importantly, habitat use, which has been over-
estimated for certain species in the past [36,98,99]. Tracking these factors over time can
reveal changes in the ecosystem and fish behavior that might otherwise go unnoticed,
allowing for timely interventions if needed [100–102]. Incorporating metrics that evaluate
community health, such as species diversity, trophic relationships, and ecosystem resilience,
will provide a more complete picture of overall ecosystem health [73,90,102].

5. Conclusions
Our study highlights the significant impact of prey availability and habitat complexity

on the growth and condition of northern pike in northern boreal lakes, represented by
Steepbank and Wappau lakes. Higher prey densities and more complex habitats, as
observed in Wappau, support better growth and conditions compared to less complex
and less productive environments like Steepbank. Younger northern pike can adapt to a
lower prey availability by consuming invertebrates, but this may result in stunting for older
individuals, if prey levels remain insufficient, and a higher degree of conspecific predation.
For management, considering harvest slots in lakes with naturally lower prey availabilities
might balance population dynamics, while more extensive interventions should be carefully
weighed against natural stunting tendencies. Insights from this study also highlight that,
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when creating new lakes for compensatory mitigation, prioritizing prey fish availability
and habitat complexity is essential for supporting productive ecosystems, especially if the
goal is to enhance overall fish biomass rather than replicating regional lake conditions.

This study’s focus on only two lakes and a specific timeframe limits its ability to cap-
ture seasonal or long-term variations in northern pike populations [71,103]. Future studies
should include a wider range of lakes and longer monitoring periods to enhance the gener-
alizability of these findings [72,104]. Aside from the overall spatial and temporal scope, the
absence of telemetry data restricts our understanding of northern pike movements and habi-
tat use. Incorporating telemetry could provide insights into how northern pike navigate
their environments and how their movements correlate with prey availability and habitat
features as done in other studies [100,105,106]. Future studies should also account for other
environmental factors such as nutrient concentration, like nitrogen or phosphorus, which
would provide a more comprehensive view of northern pike ecology in the region [107,108].
By addressing these limitations and exploring additional research avenues, future studies
can build on our findings to develop more effective management strategies and improve
our understanding of northern pike ecology for the northern boreal ecoregion.
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