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Abstract: Soil moisture is placed at the interface between land and atmosphere which influences water
and energy flux. However, soil moisture information has a significant importance in hydrological
modelling and environmental processes. Recent advances in acquiring soil moisture from the
satellite and its effective utilization provide an alternative to the conventional soil moisture methods.
In this study, an attempt is made to apply physically based, distributed-parameter, Soil and Water
Assessment Tool (SWAT) to validate Advanced Microwave Scanning Radiometer (AMSR2) soil
moisture in parts of Puerto Rico. For this, calibration is performed for the years 2010 to 2012 with
known observed discharge sites, Rio Guanajibo and Rio Grande de Añasco in Puerto Rico and
validation, with the observed stream flow for the year 2013 using the AMSR2 soil moisture. Moreover,
the SWAT and AMSR2 soil moisture outcome are compared on a monthly basis. The model capability
and performance in simulating the stream flow are evaluated utilizing the statistical method. The
results indicated a negligible difference in SWAT soil moisture and AMSR2 soil moisture for stream
flow estimation. Finally, the model retrievals show a satisfactory agreement between observed and
simulated streamflow.
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1. Introduction

Soil moisture, referring to limited period storage water in the top layer of soil, is important
in operational hydrology. Accurate soil moisture information is crucial for climatology, water
resource management, agriculture, and flood forecasting [1]. The conventional in situ soil moisture
measurement method is accurate, but high temporal and spatial variability provide limitations for
information at local, regional, and global scale [2]. Recently developed satellite soil moisture retrieval
techniques provide insight into quantitative assessment at large scale, which is feasible to use by
means of microwave remote sensing satellite. However, conventional in situ information is necessary
to assess the accuracy of satellite soil moisture [3–6]. Furthermore, integration of these two datasets is
used to achieve substantial accuracy. Soil moisture measured by satellite remote sensing approaches
relies on the estimations of active or passive electromagnetic radiations [7].

In the past, quite a few active and passive missions retrieved soil moisture, which mainly
includes Soil Moisture and Ocean Salinity (SMOS) [8], Soil Moisture Active Passive (SMAP) [9],
Advanced Scatterometer (ASCAT) [10], European Remote Sensing (ERS) [11], Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E), and Advanced Microwave Scanning
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Radiometer 2 (AMSR2) [12,13]. Global Change Observation Mission First-Water (GCOM-W1) launched
on 17 May 2012 carries AMSR2 and is an improved design of AMSR-E NASA’s Aqua Satellite with
enhancement in the reflector, C-band frequency and improved calibration system. Before the direct
application, the data have to be corrected by removing the gaps from the product. Xiao et al. [14]
applied a data assimilation algorithm to fill the gaps in the soil moisture data; Microwave Radiometer
Imager (MWRI), AMSR-E, and AMSR2 dataset. The study shows that assimilation algorithm efficiently
regenerates spatial and temporal soil moisture time series.

As of late, many reviews have surveyed the AMSR2 soil moisture capability for hydrological and
climatic applications. However, due to the large spatial coverage integration, the product may give
faster and better outcome for the various hydrological models. Wu et al. [15] made a comprehensive
appraisal of AMSR2 with in situ soil moisture. Study outcome demonstrated the best correspondence
between AMSR2 and in situ soil moisture estimation and thus offered better understanding into the
suitability and reliability of AMSR2 soil moisture product. Zhang et al. [16] analyzed AMSR2 and
SMAP product against in situ measurement and found the best agreement with in situ measurement
and stable pattern for capturing the spatial distribution of surface soil moisture. Brocca et al. [17] briefly
reviewed techniques to monitor soil moisture for hydrological applications and described the use of in
situ and satellite soil moisture data for improving hydrological predictions. Zhuo et al. [18] explored
the advantages of satellite soil moisture in hydrological modeling and suggested an evaluation,
representation, and compatibility of satellite soil moisture in a hydrological model. Further, it is
recommended to modify the hydrological model to make it compatible with variation in real field
soil moisture.

Hydrological models mainly depend on the water cycle which is broadly applied to achieve
long-term sustainability for any hydrological project. Stream flow is the major element of the water
cycle that needs reliable estimation for resolving quantity and quality problems in water resource
project. However, the soil moisture is the essential parameter in a hydrological model that controls
the streamflow estimation but routine soil moisture measurement is tedious and inconvenient in the
larger area hence satellite soil moisture is critical for improving the understanding and ability of the
hydrological model over a larger area.

In the present study, SWAT is used to simulate streamflow in the Rio Gunajibo and Rio Grande de
Anasco watersheds. The model simulates streamflow on monthly basis for the period 2008 to 2013.
This study provides a hydrological comparison between SWAT generated and AMSR2 retrieved soil
moisture data and performs calibration and validation for stream flow using AMSR2 soil moisture.
Finally, the study evaluates the SWAT performance using the coefficient of determination (R2).

2. Materials and Methods

2.1. Study Area

The study areas, Rio Guanajibo and Rio Grande de Añasco, are located in the western portion of
the main island of Puerto Rico, USA (Figure 1). The watersheds are positioned between coordinate;
northeast corner 18◦19′14.16” N–66◦40′11.28” W to southwest corner 17◦58′5.88′ ′ N–67◦11′20.04” W
and covers an area of 310.53 km2 and 252.52 km2, respectively. In general, both the sites receive annual
average precipitation of 1687 mm. The annual average maximum and minimum temperature is 32 ◦C
and 20 ◦C whereas the elevation ranges from −2 m to 370 mm above mean sea level. Evergreen forest
is the dominant land use followed by herbaceous and hay in both the watershed.
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Figure 1. Location of the Rio Gunajibo and Rio Grande de Anasco sub-basins in Puerto Rico, USA. 
The study area showing stream networks, outlet points, and basin boundary. 

2.2. Data Sources 

SWAT interface for both the study area is created using input from various sources such as 
Digital Elevation Model (DEM) of 30 m resolution obtained from United States Geological Survey 
(USGS) SRTM (http://srtm.csi.cgiar.org/) (Figure 2a); land use land cover from national land cover 
database (NLCD) (http://databasin.org/datasets/) (Figure 2b); Soil Survey Geographic Database 
(SSURGO) soil map from National Resource Conservation Services (NRCS) (http://websoilsurvey. 
nrcs.usda.gov/) (Figure 2c); daily rainfall and temperature station data for the period 2008 to 2013 are 
collected from National Climatic Data Center (NCDC) (http://www.ncdc.noaa.gov/); solar radiation, 
relative humidity, wind speed are simulated on the basis of weather generated database by the 
model. Watershed outlet location and daily observed streamflow are collected from USGS gauge 
station (https://waterwatch.usgs.gov/). Remotely sensed satellite soil moisture data are collected from 
the Japan Aerospace Exploration Agency (JAXA) available on (http://global.jaxa.jp/). The soil 
moisture retrieved from AMSR2 on board GCOM-W1 that was launched in May 2012. The AMSR2 
soil moisture data is available on the daily or monthly basis with a spatial resolution of 0.1° and 0.25° 

(10/25 km). 
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Figure 1. Location of the Rio Guanajibo and Rio Grande de Añasco sub-basins in Puerto Rico, USA.
The study area showing stream networks, outlet points, and basin boundary.

2.2. Data Sources

SWAT interface for both the study area is created using input from various sources such as
Digital Elevation Model (DEM) of 30 m resolution obtained from United States Geological Survey
(USGS) SRTM (http://srtm.csi.cgiar.org/) (Figure 2a); land use land cover from national land cover
database (NLCD) (http://databasin.org/datasets/) (Figure 2b); Soil Survey Geographic Database
(SSURGO) soil map from National Resource Conservation Services (NRCS) (http://websoilsurvey.
nrcs.usda.gov/) (Figure 2c); daily rainfall and temperature station data for the period 2008 to 2013 are
collected from National Climatic Data Center (NCDC) (http://www.ncdc.noaa.gov/); solar radiation,
relative humidity, wind speed are simulated on the basis of weather generated database by the model.
Watershed outlet location and daily observed streamflow are collected from USGS gauge station
(https://waterwatch.usgs.gov/). Remotely sensed satellite soil moisture data are collected from the
Japan Aerospace Exploration Agency (JAXA) available on (http://global.jaxa.jp/). The soil moisture
retrieved from AMSR2 on board GCOM-W1 that was launched in May 2012. The AMSR2 soil moisture
data is available on the daily or monthly basis with a spatial resolution of 0.1◦ and 0.25◦ (10/25 km).
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Figure 2. Input data for SWAT (a) DEM elevation of the area ranges from 3 m to 1183 m; (b) LULC 
classifications in the area; (c) Soil type. 

2.3. Model Application 

SWAT is a physically based semi-distributed basin scale model that uses parameter such as 
DEM, soil, land use, and climatic data for hydrological and climatological modeling on the daily or 
monthly basis [19–21]. Major model components include weather, hydrology, soil properties, plant 
growth, nutrients, and land management practices. The first stage of modeling involves watershed 
delineation. The delineated watershed is further subdivided into hydrologic response units (HRU) 

Figure 2. Input data for SWAT (a) DEM elevation of the area ranges from 3 m to 1183 m; (b) LULC
classifications in the area; (c) Soil type.

2.3. Model Application

SWAT is a physically based semi-distributed basin scale model that uses parameter such as DEM,
soil, land use, and climatic data for hydrological and climatological modeling on the daily or monthly
basis [19–21]. Major model components include weather, hydrology, soil properties, plant growth,
nutrients, and land management practices. The first stage of modeling involves watershed delineation.
The delineated watershed is further subdivided into hydrologic response units (HRU) which is
the unique combination of land use, soil, and slope. Each HRU in the model behaves differently
for precipitation and temperature input [22]. For the given study each watershed is considered as
the single basin to avoid complexity and to match the spatial resolution of AMSR2 soil moisture.
The conversion of sub-basin to the single basin is made by changing the threshold limit in the model
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while the number of HRUs generated by the model remain same. The SWAT flow chart process is
depicted in Figure 3.

Hydrology 2017, 4, 45  5 of 11 

 

which is the unique combination of land use, soil, and slope. Each HRU in the model behaves 
differently for precipitation and temperature input [22]. For the given study each watershed is 
considered as the single basin to avoid complexity and to match the spatial resolution of AMSR2 soil 
moisture. The conversion of sub-basin to the single basin is made by changing the threshold limit in 
the model while the number of HRUs generated by the model remain same. The SWAT flow chart 
process is depicted in Figure 3. 

 

Figure 3. Flow chart of methodology for streamflow measurement using SWAT in Puerto Rico, USA. 

2.4. Streamflow Generation 

The hydrological cycle simulated by SWAT based on water balance equation and calculates 
water balance for each HRU. SW୲ = SW୭ + [Rୢୟ୷–Qୱ୳୰– ETୟ–Wୱୣୣ୮–Q୵] (1)

where t is the time in days, SWt is the final soil water content, SW0 is the initial soil water content, Rday 
is amount of precipitation, Qsurf is the amount of surface runoff, ETa is the amount of 
evapotranspiration, Wseep is the amount of percolation, and Qgw is the amount of return flow. 
Thereafter, the aggregated results of various physical processes on HRU scale and can be integrated 
into basin level. Soil Conservation Services Curve Number method (SCS-CN) is used to calculate 
streamflow, infiltration, and canopy storage [23,24]. The lateral flow is simulated using a kinematic 
storage routing technique whereas return flow is simulated by considering shallow aquifer. In SWAT, 
Muskingum method is used for channel routing and potential evapotranspiration (PET) is estimated 
using the Penman–Monteith method [25]. The SWAT output includes water balance for each 
watersheds and flow at the outlet point. 

2.5. Bias Correction 

In Puerto Rico, a different network called Soil Climate Analysis Network (SCAN) run by NRCS 
is used to collect in situ data. Whereas measurement of soil moisture and temperature along with 
liquid precipitation, solar radiation, relative humidity, etc. at different depths, are assessed through 
the Snow Survey and Water Supply Forecasting Program (SSWSF). The data are compared to the data 
derived from GCOM-W1’s AMSR2 satellite. The units of the satellite data are originally v/v % before 
being converted to millimeters in order to obtain the same values in a unit of depth [26]. In order to 
retrieve the satellite data for the same coordinates as the in situ data, the minimum distance between 
two points, is calculated using the latitude and longitude of the ground station and the geographical 
coordinates included in the original satellite data [27]. This is done through the use of the Euclidean 
distance method (EDM). Once the data is retrieved, it is compared against the ground station data 
through a variety of statistical methods; although one discovery is that there is a very noticeable 
discrepancy between the in situ data and the satellite data. In order to account for this, any bias 
between the two sets of data is removed using a simple cumulative density function (CDF) that 

Figure 3. Flow chart of methodology for streamflow measurement using SWAT in Puerto Rico, USA.

2.4. Streamflow Generation

The hydrological cycle simulated by SWAT based on water balance equation and calculates water
balance for each HRU.

SWt = SWo + ∑ [Rday–Qsurf–ETa–Wseep–Qgw] (1)

where t is the time in days, SWt is the final soil water content, SW0 is the initial soil water
content, Rday is amount of precipitation, Qsurf is the amount of surface runoff, ETa is the amount
of evapotranspiration, Wseep is the amount of percolation, and Qgw is the amount of return flow.
Thereafter, the aggregated results of various physical processes on HRU scale and can be integrated
into basin level. Soil Conservation Services Curve Number method (SCS-CN) is used to calculate
streamflow, infiltration, and canopy storage [23,24]. The lateral flow is simulated using a kinematic
storage routing technique whereas return flow is simulated by considering shallow aquifer. In SWAT,
Muskingum method is used for channel routing and potential evapotranspiration (PET) is estimated
using the Penman–Monteith method [25]. The SWAT output includes water balance for each
watersheds and flow at the outlet point.

2.5. Bias Correction

In Puerto Rico, a different network called Soil Climate Analysis Network (SCAN) run by NRCS is
used to collect in situ data. Whereas measurement of soil moisture and temperature along with liquid
precipitation, solar radiation, relative humidity, etc. at different depths, are assessed through the Snow
Survey and Water Supply Forecasting Program (SSWSF). The data are compared to the data derived
from GCOM-W1’s AMSR2 satellite. The units of the satellite data are originally v/v % before being
converted to millimeters in order to obtain the same values in a unit of depth [26]. In order to retrieve
the satellite data for the same coordinates as the in situ data, the minimum distance between two points,
is calculated using the latitude and longitude of the ground station and the geographical coordinates
included in the original satellite data [27]. This is done through the use of the Euclidean distance
method (EDM). Once the data is retrieved, it is compared against the ground station data through a
variety of statistical methods; although one discovery is that there is a very noticeable discrepancy
between the in situ data and the satellite data. In order to account for this, any bias between the two
sets of data is removed using a simple cumulative density function (CDF) that utilized the mean and
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standard deviation of both the ground station data and the satellite data. The following CDF is used in
order to make the calculations

θ = µground +
σsat + σground

2
× [(sat− µsat)/σsat] (2)

where θ is the final corrected soil moisture, µground is in situ soil moisture, σsat is standard deviation of
satellite soil moisture, σground is standard deviation of in situ soil moisture, sat is satellite soil moisture,
µsat is satellite soil moisture.

Once this is finished, the corrected data is then plotted again the original in situ data and shows
that the satellite data is much closer matched than the original data.

2.6. Model Run

The model is run from the year 2008 to 2013 for both the watershed. The years 2008 and 2009
are used as a warm up period as this step is necessary to initialize the model and results of these
are not considered in the model prediction. Another model is run for calibration and validation
considering the parameter sensitivity from 2010 to 2013. Finally, the model performance is evaluated
using statistical parameter such as the coefficient of determination (R2) which indicates a relationship
between observed and model simulated values.

R2 =
[∑n

i=1
(
Qi − Q

)(
Si − S

)
]
2

[∑n
i=1

(
Qi − Q

)2
][ ∑n

i=1
(
Si − S

)2
]

(3)

where n is a number of simulation, Qi is observed stream flow at time i, Si is simulated stream flow at
time i, Q is mean observed streamflow, and S is mean simulated streamflow [28].

3. Results and Discussion

3.1. Model Sensitivity Analysis

Sensitivity analysis is the process of determining the rate of change in model output with respect
to changes in model input. Before the calibration sensitivity analysis is performed to reduce parameter
uncertainty. The SWAT-CUP (calibration and uncertainty) incorporated with sequential uncertainty
fitting (SUFI-2) is used for sensitivity analysis, calibration and validation of the model run [29,30].
The global sensitivity is performed for the given set of parameters which regresses the Latin hypercube
generated parameter against the objective function value. The next step is the calibration process
which is an effort to better parameterize a model to a given set of local conditions, thereby reducing
prediction uncertainty [31–34]. Thirteen parameters are included in the calibration shown in Table 1.

Table 1. SWAT parameters including initial and fitted value for streamflow calibration

Parameter * Parameter Name Initial
Range

Final Range
for Guanajibo

Fitted Values
for Guanajibo

Final Range
for Añasco

Fitted Values
for Añasco

r_CN2 SCS runoff curve number −0.2 to 0.2 −0.36 to −0.45 −0.40 −0.28 to −0.17 −0.24

v_ALPHA_BF Base flow alpha factor (days) 0 to 1 0 .57 to 1 0.72 0.69 to 1 0.7

a_GW_DELAY Groundwater delay time (days) 30 to 450 31 to 256 198 20 to 58 38

a_GWQMN
Threshold depth of water in

shallow aquifer for return flow to
occur (mm)

0 to 2 1.3 to 2 1.7 1.43 to 2 1.9

v_GW_REVAP Groundwater revap. coefficient 0 to 0.3 0.19 to 0.3 0.24 0.16 to 0.25 0.2

v_ESCO Soil evaporation compensation
factor 0.5 to 1 0.75 to 1 0.74 0.74 to 0.86 0.76

v_CH_N2 Manning’s n value for main
channel 0 to 0.3 0.10 to 0.27 0.2 0.20 to 0.29 0.25
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Table 1. Cont.

Parameter * Parameter Name Initial
Range

Final Range
for Guanajibo

Fitted Values
for Guanajibo

Final Range
for Añasco

Fitted Values
for Añasco

v_CH_K2 Effective hydraulic conductivity
in the main channel (mm/h) 5 to 130 52 to 85 61 79 to 130 94

v_ALPHA_BNK Base flow alpha factor for bank
storage (days) 0 to 1 0.01 to 0.22 0.1 0.01 to 0.17 0.06

r_SOL_AWC Soil available water storage
capacity (mm H2O/mm soil) −0.2 to 0.4 0.05 to 0.36 0.35 0.13 to 0.32 0.24

r_SOL_K Soil conductivity (mm/h) −0.8 to 0.8 0.14 to 0.71 0.6 0.37 to 0.79 0.6

r_SOL_BD Moist bulk density of first soil
layer (Mg/m3) −0.5 to 0.6 0.26 to 0.6 0.41 0.1 to 0.49 0.16

v_SFTMP Snow fall temperature(◦C) −5 to 5 −4.34 to 1.73 −1.3 1.44 to 4.67 1.8

* The changes in the parameter values are applied by (r) relative change means existing parameter value is to be
multiplied with (1 + fitted value), (v) variable means the existing parameter value to be replaced by fitted value,
(a) absolute means existing parameter value is added to a fitted value.

Fitted value for each parameter is obtained by iterating previous parameter range. The relative
sensitivity analysis is performed for both the study area of the Rio Guanajibo and the Rio Grande
de Anasco respectively. The p value is used to measure the significance of sensitivity. The larger
p value indicates lesser sensitive parameter whereas a value close or equal to zero indicates more
sensitivity [35]. Parameters ALPHA_BNK, CN2, ALPHA_BF, GW_DELAY, and GW_REVAP are
most sensitive parameters in the Rio Guanajibo basin, whereas ALPHA_BNK, GW_DELY, CN2,
and GW_REVAP are most sensitive parameters in Rio Grande de Añasco basin. The most sensitive
parameter has the effect on the calibration of streamflow and further change in the rest of the parameter
value had no major effect on streamflow. The name and the values are listed in Table 2.

Table 2. Global sensitivity analysis for 13 parameters in Rio Guanajibo and Rio Grande de Añasco
watershed. Smaller P value indicates more parameter sensitivity.

Rio Guanajibo Rio Grande de Añasco

Parameter Rank p Value Parameter Rank p Value

ALPHA_BNK 1 0.00 ALPHA_BNK 1 0.00
CN2 2 0.00 GW_DELAY 2 0.00

ALPHA_BF 3 0.02 CN2 3 0.03
GW_DELAY 4 0.02 SFTMP 4 0.03
GW_REVAP 5 0.05 GW_REVAP 5 0.04

CH_K2 6 0.15 SOL_AWC 6 0.26
SOL_BD 7 0.27 SOL_K 7 0.40

SOL_AWC 8 0.34 ALPHA_BF 8 0.50
SOL_K 9 0.38 GWQMN 9 0.54
ESCO 10 0.47 ESCO 10 0.61

GWQMN 11 0.56 CH_K2 11 0.70
SFTMP 12 0.64 CH_N2 12 0.77
CH_N2 13 0.75 SOL_BD 13 0.85

3.2. Calibration and Validation

The calibration is performed with 1000 simulations using data from January 2008 to December
2012 in which period 2008 to 2009 is used as warm-up period and not considered in the evaluation of
the model prediction. In the preliminary assessment, the model streamflow results compared fairly
well on a monthly basis with the observed value of streamflow. The range of a parameter is adjusted
depending on the sensitivity analysis to match observed and simulated streamflow. The calibration
yielded coefficients of determination R2 = 0.69 and R2 = 0.73 for the Rio Guanajibo and Rio Grande
de Añasco watersheds respectively, shown in Figure 4. The temporal comparison between SWAT
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and AMSR2 satellite soil moisture is shown in Figure 5. In the Rio Guanajibo watershed, the value of
AMSR2 soil moisture is higher in some months than SWAT soil moisture whereas, in the Rio Grande de
Añasco watershed, the AMSR2 value is lower than SWAT soil moisture indicates a significant amount
of bias in AMSR2 and SWAT soil moisture. This difference in soil moisture is due to change made in
SWAT soil moisture depth to match the AMSR2 soil moisture depth.

The same range of calibration parameters is used in order to perform validation for two different
cases using data from year 2013. In the first case, model-generated soil moisture values are directly
used for the validation. The R2 value estimated by the model is 0.60 for Rio Guanajibo and 0.58 for the
Rio Grande de Añasco watershed shown in Figure 6. In the second case, AMSR2 values replace the
model-generated values before being entered into the SWAT (HRU) layer. This leads to the generation
of another model run that is then input into SUFI-2 for validation. The R2 values obtained for AMSR2
data are 0.58 and 0.57 in both the watersheds and are shown in Figure 6.
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Figure 4. Calibration of observed and simulated streamflow (m3/s) during period (January 2010–
December 2012): (a) Rio Guanajibo watershed, and (b) Rio Grande de Añasco watershed,
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The comparison of validation results reveals a low influence of both SWAT and AMSR2 soil
moisture values on the estimation of streamflow. Although the bias is seen in the soil moisture,
streamflow is still less of an influence due to the parameter sensitivity. Soil moisture is less sensitive
than the rest of the parameters in both the watershed hence indicate the lesser influence in streamflow.
In some places, as a result, an observed streamflow does not match with SWAT streamflow due to
the uncertainty involved either in model prediction or in climatic data such as precipitation and
temperature, resulting in reduced R2 value. However, the estimated R2 value signifies an acceptable
correlation between observed and estimated streamflow under varying land use, topography, and
climatic conditions.

3.3. Streamflow Assessment

In the case of both watersheds, the streamflow assessment is based on the entire simulation
period. In Rio Guanajibo, the model estimates mean annual rainfall of 2660.2 mm, PET of 1201.4 mm,
evapotranspiration (ET) of 894.3 mm, water yield of 1702.57 mm, and baseflow/total flow of 71%.
The model estimated values in Rio Grande de Añasco, mean annual rainfall of 2660.2 mm, PET of
1226.7 mm, ET of 1022.6 mm, water yield of 1496.47 mm, and baseflow/total flow of 78%. Añasco Both
the watersheds are distributed with the same soil type and land use classification, which resulted in
higher water yield value. The Higher ET value is obtained due to forest dominant land use in the
watersheds. The forest land use covered in Rio Guanajibo is lower compared to Rio Grande de Añasco
which indicates lower ET value in Rio Guanajibo watershed.

4. Conclusions

The study presents applicability of SWAT for calibration and validation of AMSR2 soil moisture
in parts of Puerto Rico. The methodology evaluates assimilation of AMSR2 soil moisture in SWAT.
However, there is still a scope for improvement in results between observed and simulated streamflow
in the Rio Guanajibo and the Rio Grande de Añasco watersheds. The sensitivity analysis accounting for
streamflow calibration has shown variations between the parameter range, which had been initialized
for model calibration. Thus, it indicated that parameters ALPHA_BNK, CN2, ALPHA_BF, GW_REVAP,
and GW_DELAY are sensitive and have a great impact on the stream flow. The SUFI-2 procedure tries
to minimize the difference between observed and measured streamflow data. Further results can be
enhanced using model run on daily weather data and satellite soil moisture data over a longer period
of time. The overall effect of AMSR2 soil moisture in SWAT is negligible, thus suggesting that the use
of AMSR2 soil moisture will be effective when soil moisture is the most sensitive parameter in the
SWAT. The soil moisture replacement technique improved model efficiency and considered a larger
temporal variation. Finally, results revealed that the SWAT fusion with AMSR2 soil moisture is capable
of simulating streamflow and could be effectively applied in hydrological modeling.
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