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Abstract: Comprehensive spatially referenced soil data are a crucial input in predicting biophysical
and hydrological landscape processes. In most developing countries, these detailed soil data are not
yet available. The objective of this study was, therefore, to evaluate the detail needed in soil resource
inventories to predict the hydrologic response of watersheds. Using three distinctively different
digital soil inventories, the widely used and tested soil and water assessment tool (SWAT) was
selected to predict the discharge in two watersheds in the headwaters of the Blue Nile: the 1316 km?
Rib watershed and the nested 3.59 km? Gomit watershed. The soil digital soil inventories employed
were in increasing specificity: the global Food and Agricultural Organization (FAO), the Africa Soil
Information Service (AfSIS) and the Amhara Design and Supervision Works Enterprise (ADSWE).
Hydrologic simulations before model calibration were poor for all three soil inventories used as input.
After model calibration, the streamflow predictions improved with monthly Nash-Sutcliffe efficiencies
greater than 0.68. Predictions were statistically similar for the three soil databases justifying the use
of the global FAO soil map in data-scarce regions for watershed discharge predictions.

Keywords: soil database; soil survey; soil resource inventory; SWAT; watershed; erosion; sediment;
Ethiopia; Ethiopian highlands; Africa

1. Introduction

Soil data are crucial for landscape and water-resource planning [1]. With the advancement of
remote-sensing technologies, geostatistics and geographic information system (GIS) data integration,
soil datasets have become available in digital form with ever increasing precision and utility.
The outcome of hydrological models is strongly influenced by spatial variability of ecological and
physical processes in the landscape, which are linked with soil genesis [1-4]. Adequate representation
of soil genesis underlying the soil classification digital soil inventories has become especially important
in hydrological modeling [1]. Unfortunately, in developing countries, many digital soil inventories are
not easily and freely available [5]. So, before investing in a digital soil inventory, there is a need to
assess the accuracy required for the soil inventory for improved simulation results.

Lumped and distributed hydrological models and combinations of these two (hybrid models) are
important in predicting stream flow [6,7]. Lumped models use mean effective map values of slope,
soils and land use to simulate discharge [8-10], that assess the catchment response simply at the outlet
without considering the spatial distribution of the input parameters [10]. Distributed models that divide
up the landscape in modeling units require spatial map data as input for these modeling units [10-13].
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The distributed models require more data for parameterization than the lumped models [11]. Different
representation of soils in the modeling units may affect watershed heterogeneity during watershed
discretization of distributed models [14]. Such differences in representation become a source of input
data uncertainty in hydrologic modeling [15-19] which may lead to output uncertainty [20].

Most research on evaluating the effect of soil inventories and variability on streamflow
predictions [21-30] has been carried out in the United Sates comparing the State Soil Geographic
(STATSGO)- 1:15,000 to 1:31,000 and Soil Survey Geographic (SSURGO)-1:250,000 soil databases. For
example, Prasanna and Mulla [25] showed that STATSGO soil data were slightly better in predicting
stream flow than SSURGO soil data even when STATSGO's resolution was coarser than that of
SSURGO. Similar findings were obtained by Geza and McCray [27] before calibration and by Wang
and Melesse [26] for low flow predictions. Opposite results were reported by Geza and McCray [27]
after calibration and by Wang and Melesse [26] for intermediate flows. Finally, no significant difference
in performance of both STATSGO and SSURGO were found by Mukundan, et al. [28], and for high
flows by Wang and Melesse [26].

In other studies, evaluating the detail needed from soil inventories, Boluwade and Madramootoo [30]
showed taking more soil measurements does not necessarily increase the accuracy of the model predictions
while Chaplot [24] showed that using fine-resolution soil information can improve streamflow prediction.
Finally, Bossa, et al. [31] showed that including aggregated soil layers improved lateral flow predictions.

None of the above studies were carried out in developing countries that have a monsoon climate
where rainfall in 4 months can exceed annual rainfall in temperate climate or where agricultural lands
are often on the steep lands and used for subsistence farming. These countries often do not have the
resources to use the detailed commercial soil data basis routinely because of the cost.

The objective of this research is, therefore, to investigate the impact of soil representation on
streamflow prediction for watersheds greatly different in size that are in climates and landscapes that
have not been studied before and where only digital global or continental soil inventories are easily
available without cost.

The study areas selected were two watersheds in the upper reaches of the Blue Nile near Lake Tana
in the Ethiopian highlands consisting of the 1316 km? Rib watershed and the 3.59 km? Gomit. Three
soil data surveys were available for these watersheds consists of the Amhara Design and Supervision
Works Enterprise (ADSWE), the Africa Soil Information System (AfSIS) and the Food and Agriculture
Organization (FAO) soil inventories. The Soil and Water Assessment Tool (SWAT) was selected for
simulating discharge because it is widely used in the developing world.

This research will aid watershed planners and modelers in deciding whether obtaining detailed
soil inventory information is warranted by the improved accuracy of the output.

2. Materials and Methods

2.1. Study Area

The Rib watershed which is one of the four major tributary rivers in the eastern part the Lake
Tana basin, north-western Ethiopian highlands. The watershed has a catchment area of 1316 km? and
is located between 11°42'20” to 12°11’11” N and 37°42’43” to 38°14’20” (Figure 1). The Rib River starts
on Mount Guna. The longest flow path to the gauging station is 118 km. The elevation ranges from
1790 to 4109 m. Seventy percent of the gauged watershed has gentle to steep slopes. The remaining part
is the Fogera plain with slope of less than 1%. The climate is sub-humid with a mean annual rainfall of
1270 mm a~! (measured in the period from 1994 to 2013). Eighty percent of the annual rainfall occurs
during the rainy season, which is between June to September. The annual potential evapotranspiration
is 1428 mm a~! (millimeters per year) [32]. The agricultural system is predominantly rainfed and
mixed crop-livestock production [33]. The primary crops cultivated is maize, barley, tef, wheat, beans,
rice, and potato.
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Figure 1. Location of the Rib and the Gomit watersheds and meteorological stations: (a) Upper Blue
Nile basin showing the Lake Tana basin and the Rib watershed, (b) the Rib watershed showing the
point location of the Gomit watershed, and (c) the Gomit watershed. The background on (b) and (c) is
a digital elevation model (DEM).

The 3.59 km? Gomit watershed is nested in the upper Rib watershed between 12°6’9” to 12°8'23”
N and 37°53’16" to 37°54’ E. (Figure 1). The elevation range is between 1974 and 2612 m. The long-term
mean annual rainfall (1997-2015) is 1265 mm a~! and potential evaporation (2005-2015) is 1428 mm
a~1[32]. Twenty two percent of the watershed is cultivated. Crops are finger millet, tef, bean, maize,
and niger seed. The remainder is bush, shrub and forest land, permanent grassland and various other
minor land uses. Luvisols and leptosols, which are texturally clay and clay loam, are the dominant
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soils in the watershed. Geologically the watershed is located in the region with alkaline to transitional
tertiary basalts that is heavily faulted. More than half of the Gomit watershed has slopes greater than
30%. Land and water management (LWM) interventions were implemented starting in 2006. The LWM
interventions consisted of contour soil bunds with 50 cm-deep infiltration furrows, waterways, micro
basins, check dams, land protected from cattle entry and reforestation. The majority of the LWM
practices are still visible.

2.2. Data

2.2.1. Hydrometeorological Data

Meteorological data for the period 1994-2013 was collected from the Ethiopian National
Meteorological Agency (NMA). The meteorological stations are located at Addis Zemen, Debre
Tabor, Ebinat, Kimir Dingay, Yifag, and Ambo Meda (Figure 1). Gomit watershed has its own rain
gauge station to collect daily and event rainfall for the period 2015-2017. The meteorological data
included rainfall, temperature for all stations and relative humidity, and wind speed for some of the
stations. Most stations had only rainfall and temperature data. The Bahir Dar station data had the
most complete data including hourly rainfall data and solar radiation and was used to calibrate the
weather generator [31] Missing data was filled in using the calibrated weather generator.

Daily observed streamflow for the Rib river gauging station near Addis Zemen town (Figure 1)
was obtained from the Ethiopian Ministry of Water, Irrigation and Energy (MoWIE) for the period
1994 to 2013. The daily streamflow was aggregated to monthly and used for sensitivity analysis,
calibration and validation. We collected the stage readings for the Gomit watershed from July 2015 to
December 2017 using masonry-modified rectangular weir at the outlet of the watershed (Figure 1).
The stage-discharge curve for the Gomit watershed was determined by measuring the surface velocity
with a float and multiplying it by two thirds to obtain the average stream velocity. The product of
average velocity and wetted cross-sectional area is the discharge.

2.2.2. Spatial Data

The digital elevation model (DEM) with a spatial resolution of 12.5 m was used to discretize the
watershed and create stream networks [34-36] was obtained from the Alaska Satellite Facility [37]. The
DEM was also used to derive the slope.

The soil data were obtained from the Amhara Design and Supervision Works Enterprise (ADSWE),
the African Soil Information Service (AfSIS) (http://africasoils.net/) and the Food and Agricultural
Organization (FAO) of the United Nations (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/). The ADSWE collected soil spatial information in
2014 for the Lake Tana basin using detailed field data survey which focused on soil morphological and
physical characteristics. During the ADSWE field campaign, a total of 45,426 soil auger sites and 537
profiles were described and 1509 samples were collected [38]. One auger point represented 15 hm?
(300 m x 500 m), and soil samples were taken from 845 pits. The soil data was collected up to a depth
of 2 m; however, in areas that are dominated by rock, stones and/or hard soil layer, the depth was less
than 2 m. Data were collected from up to six points in the soil profile to determine the soil chemical
and physical properties. Finally, the ADSWE soil map was prepared at 1: 20,000 scale with 101 soil
mapping units. Spatial representation of soil properties was weighted for each soil mapping unit.

The AfSIS soil inventory is available at 1:25,000 scale with six soil layers for the entire Africa [39].
This inventory integrates the Africa soil profiles legacy database with the AfSIS Sentinel Site (new
soil samples) database to improve the spatial predictions of existing inventories. The compiled AfSIS
data consists of 28 thousand sampling locations [39]. According to Hengl et al [39], two frameworks
were implemented to producing spatial predictions of soil properties. In the first framework, soil
properties were downscaled and predicted at 250 m resolution from previously mapped models at 1
km resolution using global soil prediction models. Models were developed using global soil classes in
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the second framework. The FAO soil inventory covers the entire world and recognizes over 16,000
different soil mapping units at 1:1000,000 scale [40]. As Nachtergaele et al. [40], four source databases
were used to compile the FAO soil inventory: (i) the European Soil Database (ESDB), (ii) the 1:1 million
soil map of China, (iii) various regional Soil and Terrain digital (SOTER) databases, and (iv) the Soil
Map of the World. Linkage of the attribute data with the spatial display in terms of soil units and the
characterization of selected soil parameters, used to standardize the structure. The FAO soil map for

the Upper Blue Nile basin, where the study watersheds are located, has three soil layers.
All the three soil inventories indicated that the Rib and the Gomit watersheds consisted mainly, of
clay and clay loam soils (Table 1, Figure 2).

Table 1. Soil textural class of the Rib and Gomit watersheds for the Amhara Design and Supervision
Works Enterprise (ADSWE), the African Soil Information Service (AfSIS), and the Food and Agricultural
Organization (FAO) soil inventories.

Soil Textural Class

Watershed Soil Inventory Clay Clay Loam Others

% Yo %
ADSWE 53 39 8
Rib AfSIS 76 24 -
FAO 63.4 36.5 0.1
ADSWE 66 34 -
Gomit AfSIS 40 60 -
FAO 45 55 -

Il Clay
I Clay loam
I Other

(d)

00204 08 km
L L)

Figure 2. Spatial representation of the soil inventories of (a-c) the Rib and (d—-f) Gomit watersheds; (a,d)
the Amhara Design and Supervision Works Enterprise (ADSWE), (b,e) the African Soil Information
Service (AfSIS) and (c,f) the Food and Agricultural Organization (FAO).

50f19
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Only the ADSWE inventory showed that a significant amount of other soils existed in the
watershed, namely 8% of the Rib. The soils consisted of loam, sandy loam, sandy clay and sandy clay
loam (Table 1, Figure 2). The percentage of clay and clay loam soils varied among the three soils and
was not consistent between the watersheds (Table 1). For example, for the Rib watershed the AfSIS
soil inventory reported the lowest percentage of clay loam soils among the three soil inventories The
opposite was the case for the Gomit watershed where the AfSIS soil inventory indicated the greatest
portion of clay (Table 1, Figure 2).

The land-use data for the Rib watershed was extracted from the Upper Blue Nile (Abay) River
master plan study, which was obtained from the Ethiopian Ministry of Water, Irrigation and Energy [41].
The land-cover map for Rib watershed was predominantly (89%) cultivated land, and the remaining
part of the watershed was grassland, afro-alpine vegetation and urban (Figure 3a). The land-cover
map of the Gomit watershed was developed using Google Earth image in combination with field
observations (Figure 3b). Object-based image classification using multiresolution segmentation
classification algorithm was applied to develop the Gomit watershed land cover. This classification
approach has been proven to provide better classification results than per-pixel classification approaches
in vegetation classification, especially for fine spatial resolution data [42-44]. Field investigation was
used to verify the land cover types of the watershed. For the Gomit, 57 % of the watershed was
comprised of bush and shrub land. Cultivated land covered 22 % of the watershed and 7 % consisted
of forested land. The remaining part of the watershed (14 %) consisted of a farm village, grassland,
plantations, and settlements.

(@)

Legend

[ 1 Bushland [ |Grass land
[ | Cultivated land Plantations
Il Farm village [ Shrub land
I Forest land [ lUrban

036 12 km 00204 08km

Figure 3. Landcover maps of (a) the Rib and (b) Gomit watersheds.

2.3. Analysis

2.3.1. Soil and Water Assessment Tool (SWAT) Model Description

In this study, soil and water assessment tool (SWAT) hydrological model was used because it is
widely used physically distributed model in the globally designed to predict the impact of land-use,
climate and agricultural management changes on water, sediment, and agricultural chemical yields
in gauged and ungauged watersheds [45]. In addition, SWAT uses spatially distributed data on
topography, soils, land cover, land management, and weather compared with other hydrological
models like Hydrologiska Byrans Vattenbalansavedlning (HBV) and Hydrologic Engineering Center
- Hydrologic Modeling System (HEC-HMS) [46]. It operates on a daily time step. The model has a
platform that permits the user to partition the watershed into sub-basins, sub-basins to hydrologic
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response units (HRUs). Runoff curve number method determines the amount of runoff in each HRU.
SWAT has land and routing phases in simulating the hydrology of a specific watershed [34]. The land
phase controls the amount of water, sediment, nutrient and pesticide loadings to the main channel
from each sub-basin. The routing phase determines the movement of water, sediment and other
pollutants in the channel network to the watershed outlet [34]. The land phase of the hydrological
cycle is simulated by SWAT using the water balance equation:

t
SW; = SWO + Zizl(Rday - qurf —E; - Wseep — ng) (1)

where SW; is the final soil water content (mm), SW, is the initial soil water content on day i (mm), ¢ is
the time (days), R4y is the amount of precipitation on day i (mm), Qs ¢ is the amount of surface runoff
on day i (mm), E, is the amount of evapotranspiration on day i (mm), wsep is the amount of water
entering the vadose zone from the soil profile on day i (mm), and Qg is the amount of return flow on
day i (mm) [47].

2.3.2. Model Setup and Calibration

The steps in running SWAT include defining watershed and stream network, hydrological response
unit (HRU) analysis, sensitivity analysis, calibration and validation using the three soil inventories
(Figure 4). The discretization for the Rib watershed was created in SWAT with an area threshold of
2500 hm?. The threshold in the Gomit watershed was 10 hm?.

To evaluate the model response for the different soil representations, the model should have a
sufficient number of sub-basins. We did not set equal threshold areas for both of the watersheds
(Figure 4a), because the required threshold area for the small watershed creates too many sub-basins
for the large watershed that would need smart computer architecture [48]. The digitized stream
networks were used to improve hydrographic segmentation and sub-watershed boundary delineation.
The watershed discretization provided 35 sub-basins for the Rib watershed and 19 for the Gomit
watershed (Figure 4a). The HRUs were defined considering all land use, soil and slope data (i.e., using
zero percent as a threshold to eliminate smaller units, Figure 4b). Before using the three soils for the
HRU definition, the soils map was resampled to 12.5 x 12.5 m using nearest neighbor resampling
technique to create similar resolution as to the DEM data [49-51]. Similar to the soil map, the land-cover
map was resampled to create similar resolution to the DEM data. The number of HRUs for the Rib
watershed for the ADSWE soil inventory were 2617, for the AfSIS inventory were 6123 and 374 for the
FAQ inventory, and for the Gomit watershed, 430, 341 and 248, respectively (Figure 4b).

The Rib and Gomit SWAT models were calibrated using the Sequential Uncertainty Fitting
Version-2 (SUFI-2) optimization algorithm included in the SWAT Calibration and Uncertainty Program
(SWAT-CUP) [52]. The SUFI-2 algorithm was selected because of its satisfactory performance in the
study watershed [53]. The model calibration was performed after selecting the sensitive streamflow
parameters [30] (Figure 4c). Acceptable ranges of flow parameter and the type of change to be applied
to the parameter were collected from literature and SWAT-CUP absolute SWAT values (see Table S1 in
the Supplementary Materials). A similar set of model parameters was used in both watersheds models
to ensure a reasonable comparison between the watersheds (Table 4). The calibration was conducted
by considering and excluding sensitive soil parameters to evaluate the impact of the different soil
inventories in streamflow prediction (Figure 4d). The Rib watershed was calibrated using observed
streamflow for the period 1996 to 2007 and validated for the period 2008 to 2013 (Figure 4e). The
observed streamflow data for the period 1994 to 1995 were used for model warm up. For the Gomit
watershed, observed streamflow data were available only for the period of July 2015 to December 2017,
which was used for model calibration. The data for 2014 were used to warm-up the model simulation
with rainfall of the Ambomeda station. Since the model validation was short, all the observed data for
the Gomit were used for calibration, and model validation was not conducted.
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Figure 4. Flow chart showing the Soil and Water Assessment Tool (SWAT) hydrological modeling
procedures of this study using three soil inventories: Amhara Design and Supervision Works Enterprise
(ADSWE), Africa Soil Information Service (AfSIS) and Food and Agricultural Organization (FAO).
The letters in parenthesis represents the various steps in preparation of the input data and running of
the model (a) watershed discretization; (b) data input and Hydraulic Response Unit (HRU) selection;
(c) sensitivity analysis (d) model calibration and (e) model validation. PVISSP represents calibration
including the soil parameters, and PVESSP stands for calibration that did not include the soil parameters.

2.3.3. Model Performance Evaluation

The effect of soil representation on streamflow prediction was evaluated before and after model
calibration using descriptive statistics, goodness-of-fit criteria and paired samples t-test [54-56].
The descriptive statistics used for evaluation were maximum, minimum and mean. The goodness-of-fit
evaluation methods considered for the analysis were coefficient of determination (R?), Nash-Sutcliffe
efficiency (NSE), and relative volume error (RVE).
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The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude
of the residual variance compared to the measured data variance [57]. NSE indicates how well the plot
of observed versus simulated data fits the 1:1 line. NSE is computed as:

(0= Py)?
NSEzl—LZ_ZL )

i1 (0;=0)

where O is observed, P is simulated values and the over bar denotes the mean for the entire time period
of the evaluation.

NSE values can generally range between —co and 1; an NSE value of 1 represents a perfect
match between simulated and observed data. NSE value between 0 and 1 are generally considered as
acceptable levels of model performance, whereas values <0 indicates that the mean observed value is a
better predictor than the simulated value, which indicates an unacceptable performance. Generally, a
model performance is considered satisfactory when the NSE value is more than 0.5 [55].

The coefficient of determination (R?) explains the fraction of the total variance and ranges from 0
to 1. RZ with a value of one indicates excellent agreement, and the value of zero reflect that there is no
co-relation between the simulated and observed values [58]. R? is defined as:

?_1(0,- - (5)(131- - 13)

) \/Z?—l (0i - (_))2 \/Z?_l (P - 1_’)2

The relative volume error (RVg) is used to evaluate the volumetric difference between simulated
and observed streamflow, which can vary between +co and —co. The method is used in combination with
another objective function that evaluates the overall shape agreement between the two variables. An

2

RZ

®)

RVE value of zero indicates there is no volumetric difference between simulated and observed
streamflow. Generally, a relative volume error between +25% indicates a satisfactory model
performance [55]. The equation that is used to compute RV is:

Z?:l P;— Z?:l O;

RVg =
?:1 O;

(4)

An independent two sample t-test, which compares the means of two unrelated groups of
samples [59], was used to evaluate the similarity of model simulations. The difference between
simulations was considered significant when the p-value was less than 5%.

3. Results

3.1. Comparing Model Components before Calibration

Mean annual water balance simulated before model calibration for the Rib (1996-2007) and the
Gomit (2015-2017) watersheds using each of the three soil inventories is shown in Table 2. There was a
distinct difference between the water balance components for each of the simulations. For example,
the surface runoff with the ADSWE inventory was the lower in the Rib watershed compared to the
surface runoff predicted with the AfSIS and the FAO inventories. The opposite was true for the Gomit
watershed where simulated surface runoff was greater with the ADSWE inventory. Simulation with
the AfSIS and the FAO inventories indicated that approximately two thirds of the rainfall in the Rib and
one sixth in the Gomit watershed was lost either as overland flow or baseflow (Table 2). Simulations
with the ADSWE inventory in the Gomit watershed resulted in the lowest amount evaporation and the
greatest amount of surface runoff (Table 2).
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Table 2. Mean SWAT-simulated annual water balance components (in mm a~!) using the soil inventories
of the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa Soil Information Service
(AfSIS) and the Food and Agricultural Organization (FAO) for the Rib watershed (1996-2007) and the
Gomit watershed (2015-2017) before model calibration.

Watershed  Soil in-Ventories  Rainfall Evapotranspiration Surface Runoff Baseflow Recharge. to Re-evap s.hal-
Deep aquifer low Aquifer
ADSWE 1276 466 340 426 20 24
Rib AfSIS 1276 525 399 314 14 24
FAO 1276 465 401 368 19 24
ADSWE 988 640 153 128 5 73
Gomit AfSIS 988 836 41 103 0 62
FAO 988 760 117 60 4 70

In both watersheds, the simulated discharge (both surface runoff and baseflow) overestimated
the observed discharge. For the Rib watershed, the simulated mean annual (1996 to 2013) streamflow
ranged from 713 mm to 769 mm a~! and were not statistically different (Table 2). The long-term mean
annual observed streamflow of 370 mm a~! which was significantly less (p < 0.5). Thus, there was a
two-fold overestimation of the observed streamflow for the three soil inventories (Figures 4a and 5a).
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Figure 5. Monthly streamflow simulation before calibration using the soil inventories of the Amhara
Design and Supervision Works Enterprise (ADSWE), the Africa Soil Information Service (AfSIS) and
the Food and Agricultural Organization (FAO). To display the detail, the timescale for the 1999 and
2000 was extended; (a) the Rib watershed and (b) the Gomit watershed.

In the Gomit watershed, the average simulated watershed outflow over the three years was
200 mm a~! or around 20% of the rainfall (Table 2) and was significantly greater than the observed
three year average of 65 mm (7% of the precipitation). Consequently, the flows during the rainfall
events were severely overpredicted (Figure 5b, Figure 6b). Adem et al. [60] explained that discharge at
the outlet was small because subsurface flow through the faults was significant. The faults transported
water to a different basin. The soil inventories failed to include the faulted geology of the watershed
and hence the model directed most rainfall in excess of evaporation to the outlet (Table 2).
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Figure 6. Mean monthly streamflow before calibration using the soil inventories of the Amhara Design
and Supervision Works Enterprise (ADSWE), the Africa Soil Information Service (AfSIS) and the Food
and Agricultural Organization (FAO). (a) The Rib watershed and (b) the Gomit watershed.

Statistically, the negative Nash—Sutcliffe coefficients in Table 3 indicates that the average streamflow
was a better predictor for discharge than the discharge predicted by SWAT. Similarly, the RVg >100%
showed that model performance was poor in both watersheds for all three soil inventories (Table 3).
Finally, the coefficient of determination (R?) for both watersheds was greater than 0.6, indicating that
both simulated and observed runoff were greater during the rain phase than in the dry monsoon phase
(Figures 5b and 6b) and it does not relate to satisfactory simulations because only the slope close to 1
would indicate the amounts were nearly the same (Table 3).

Table 3. Goodness-of-fit evaluation for SWAT model streamflow prediction of the Rib and Gomit
watersheds using the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa Soil
Information Service (AfSIS) and the Food and Agricultural Organization (FAO) soil inventories. Values
refer for the streamflow simulations before model calibration. R? is the coefficient of determination,
NSE is the Nash—Sutcliffe efficiency and RV is relative volume error.

ADSWE AfSIS FAO
Rib Gomit Rib Gomit Rib Gomit
R? 0.83 0.70 0.85 0.72 0.83 0.6
NSE -0.77 -22.5 -0.41 -2.7 -0.73 -8.5
RVE, % 125 326 108 110 126 166

3.2. Sensitivity Analysis

In the sensitivity analysis, 14 input parameters were selected out of 23. To ensure a reasonable
comparison between the watersheds, sensitive parameters (e.g. GW_REVAP) in one of the study
watershed were included in the other watershed (Table 4). The four soil-related parameters consisted
of the soil available water content (SOL_AWC), soil albedo (SOL_ALB,) soil depth (SOL_Z), and soil
hydraulic conductivity (SOL_K). Table 4 ranks the sensitivity of the 14 input parameters. The ranking
is similar for the three inventories for each watershed but dissimilar between the two watersheds.

The four most sensitive input parameters that provide the largest change in discharge for the
same relative change in the input value in the Rib watershed are groundwater delay (GW_DELAY),
groundwater “revap” coefficient (GW_REVAP), SCS runoff curve number (CN2), and threshold depth
shallow aquifer for return flow (GWQMN) (Table 4).
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Table 4. Sensitivity analysis of fourteen input parameters for simulating streamflow in the Rib and
Gomit watersheds using the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa
Soil Information Service (AfSIS) and the Food and Agricultural Organization (FAO) soil inventories.

Sensitivity Ranking
Parameter Description Rib Gomit
ADSWE AfSIS FAO ADSWE AfSIS FAO

GW_DELAY Groundwater delay (days) 1 2 1 9 11 5
GW_REVAP Groundwater "revap" coef. 2 3 3 18 16 15
CN2 SCS runoff curve number 3 1 2 1 1 1
GWQMN Threshold depth shallow aquifer for return flow 4 4 4 12 12 8
RCHRG_DP Deep aquif percolation frac 5 5 5 5 10 4
ESCO soil evaporation comp fac. 6 7 6 2 2 2
ALPHA_BNK Baseflow fac. for bank sto. 7 8 7 7 8 7
SOL_AWC Avail. water cap layer 8 11 10 3 3 3
ALPH_BF_D Baseflow fac. deep aquifer 9 10 9 22 22 17
CANMX Maximum canopy storage, 10 6 8 4 5 6
SOL_Z Depth surf. to bottom layer 18 9 13 11 6 10
SOL_K Saturated hydraulic cond. 19 20 20 10 4 11
SOL_ALB Moist soil albedo 20 18 17 6 9 9
BIOMIX Biological mixing eff. 21 22 23 8 7 12

3.3. Comparing Model Components for the Period of Calibration

3.3.1. General Observations

The water balance components changed considerably after model calibration in both watersheds.
Calibrated parameters, their range and fitted values for the streamflow simulations using the ADSWE,
the AfSIS and the FAO in the Rib and Gomit watersheds are shown in Table S1 in the Supplemental
Material. In both watersheds, after the model was calibrated the simulated streamflow (consisting
of both surface runoff and baseflow) was reduced, and the evapotranspiration and recharge to the
deep aquifer were increased (compare Tables 2 and 5). In the Rib watershed, the evaporation (both
evapotranspiration from the plants and the evaporation from the shallow groundwater) increased
modestly and accounted for between 53% and 59% of the rainfall depending on the digital soil inventory
used. In addition, in the Rib watershed, the percolation to the deep groundwater increased from 1% to
12% with the AfSIS and the FAO inventories, and decreased from 2% to none with the ADSWE soil
inventories (Table 5). The discharge at the outlet in the Gomit watershed was less due mainly to the
increased evapotranspiration of crop, bush and forests. The total the Gomit watershed evaporation
accounted for 89% to 97% of the rainfall.

3.3.2. The Rib Watershed

Despite the improved model performance in the Rib watershed during both calibration and
validation of the SWAT model (with either of the three soil inventories and independent whether the
soil parameters were considered in the calibration), the predicted discharge at the outlet was greater
than the observed streamflow. Only in the first year of simulation was discharge underpredicted.
In particular, the simulated discharge overpredicted the peaks in August and falling limbs of the
hydrographs from September to the beginning of the rain phase in May and June (Figures 7 and 8).
The overprediction was greater for the ADSWE and the FAO soil inventories compared with the
AfSIS inventory.

In the Rib watershed, where the average mean annual observed streamflow over the period
1996-2007 was 370 mm a~!, the mean annual simulated streamflow with the ADSWE, the AfSIS, and
the FAO soil inventories ranged from 389 to 495 mm a~!, respectively (Table 5). The t-test showed
that the difference between the mean annual observed streamflow and simulated streamflow with
the ADSWE and the AfSIS soil inventories were not statistically significant. However, the observed
monthly streamflow and simulated monthly streamflow with the FAO soil inventory were significantly
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different. Finally, the streamflow simulations with the three soil inventories independent whether soil
parameters in the calibration were considered, were not significantly different.

Table 5. Mean simulated annual water balance components in mm a~! for the calibrated SWAT
model using the soil inventories of the Amhara Design and Supervision Works Enterprise (ADSWE),
the Africa Soil Information Service (AfSIS) and the Food and Agricultural Organization (FAO) for
the Rib watershed (calibration period, 1996-2007) and the Gomit watershed (2015-2017) after model
calibration. PVISSP represent values of water balance components for the simulations with all calibrated
parameters including the soil parameters, and PVESSP represent values of water balance components
for simulations that did not include the soil parameters during calibration.

. . o Surface Recharge to Re-evaporation from
Water-shed Soil Data Rainfall Evapo-transpiration Runoff Base-Flow Deep Aquifer Shallow Aquifer
ADSWE 1276 537 323 172 0 213
PVISSP AfSIS 1276 606 256 133 134 133
Rib FAO 1276 534 327 91 159 146
ADSWE 1276 536 318 176 0 215
PVESSP AfSIS 1276 595 269 124 137 136
FAO 1276 529 335 85 135 192
ADSWE 988 840 26 64 19 36
PVISSP AfSIS 988 911 6 73 0 0
. FAO 988 897 12 40 16 57
Gomit
ADSWE 988 855 11 68 0 52
PVESSP AfSIS 988 897 5 86 0 0
FAO 988 894 15 40 24 17
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Figure 7. Monthly observed and simulated streamflow during calibration and validation using the
soil inventories of the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa Soil
Information Service (AfSIS) and the Food and Agricultural Organization (FAO). Calibration period
was from 1996 to 2007 and validation period from 2008 to 2013; the timescale for the 1999 and 2000
was extended to display the detail; (a) model calibration included the soil parameters, and (b) model
calibration did not include the soil parameters.
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Figure 8. Long-term mean monthly observed and simulated discharge using the digital soil inventories
of the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa Soil Information Service
(AfSIS) and the Food and Agricultural Organization (FAO); (a) model calibration included the soil
parameters, and (b) model calibration did not include the soil.

3.3.3. The Gomit Watershed

In the Gomit watershed, where the average mean annual observed streamflow over the period
2015-2017 was 65 mm a~!, the mean annual simulated streamflow with the ADSWE, the AfSIS, and the
FAO soil inventories ranged from 52 to 91 mm a~!, respectively (Table 5). While the rainfall was greatest
in July, the peak of runoff tended to occur in August (Figure 9). Independently of the soil inventory
used, the simulated runoff peak coincided with the month of highest rainfall. The annual runoff ratio
varied between 9% for the ADSWE and the AfSIS inventories to 5% for the FAO inventory. According to
the t-test, no significant differences were found between observed and none of the calibrated streamflow
despite some of them did not include the soil parameters in the calibration procedure.

Unlike in the Rib watershed, the inclusion of the soil parameters (SOL_AWL, SOL_K, SOL_Z, and
SOL_ALB) changed the values of the other parameters and the ranking of the sensitivities (Table 4),
and improved the NSE values but not the RV, (Table 6) during calibration. Unfortunately, the observed
record was too short for the validation. Thus, soil information was found to have a greater but
not significant effect on the modelled hydrological processes in the smaller Gomit watershed when
compared to the larger Rib watershed.

Table 6. Evaluation of streamflow simulation using the digital soil inventories of the Amhara Design
and Supervision Works Enterprise (ADSWE), the Africa Soil Information Service (AfSIS) and the
Food and Agricultural Organization (FAO) for the Rib and the Gomit watersheds. NSE and RVE
refer to the Nash-Sutcliffe efficiency and relative volume error, respectively. PVISSP represents
goodness-of-fit values for the simulations of all calibrated parameters including the soil parameters,
and PVESSP represents goodness-of-fit values for simulations that did not include the soil parameters
during calibration.

ADSWE AfSI FA
Watershed Process Criteria S fSIS 0
PVISSP PVESSP PVISSP PVESSP PVISSP PVESSP
Calibrati NSE 0.78 0.79 0.83 0.83 0.75 0.75
Rib atbration - py7. 7 25 35 35 51 43
Validati NSE 0.41 0.46 0.57 0.58 0.44 0.43
andation - py 53 47 54 55 68 69
Comit  Calibration, VSE 0.63 0.60 0.59 0.46 0.67 0.67

RVE 14 1 12 22 9 1
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Figure 9. Mean monthly observed and simulated streamflow for the Gomit watershed using the digital
soil inventories of the Amhara Design and Supervision Works Enterprise (ADSWE), the Africa Soil
Information Service (AfSIS) and the Food and Agricultural Organization (FAO). (a) considering 14

sensitive parameters including four soil parameters during calibration and (b) without the inclusion of
the soil parameters during calibration.

4. Discussion

The discharge was predicted in two watersheds using the SWAT model with three soil inventories
with varying complexity. The soil inventories used were the ADSWE, the AfSIS and the FAO. The soil
map of the two watersheds showed large spatial differences for the three soil inventories (Figure 2;
Table 1). For example, the amount of clay loam varied from 34% in the ADSWE inventory to 60% in
the AfSIS soil inventory in the Gomit watershed (Table 1).

Independently of the digital soil inventory used, the discharge at the outlet of the Rib and the
Gomit watersheds were overpredicted before the models were calibrated (Table 2, Figures 5 and 6).
After calibration the discharge in the Rib watershed was still overpredicted but not in the Gomit
watershed (Table 5, Figures 7 and 8). The observed stream flows in the Rib and Gomit watersheds are
less than those of the watersheds to south of Lake Tana, because of the presence of fractures and fault
zones in the watersheds [60]. Dessie, et al. [61] reported that these geological formations cause regional
subsurface flow, which reduce streamflow at the watershed outlets. In addition, the observed peak
streamflow of the Rib river could be reduced due to overbank flooding [62,63]. However, the bank
flooding cannot explain the deviation between observed and predicted discharge during the dry phase
(Figures 7 and 8). Moreover, since the Gomit watershed streamflow, measured by us, was reliable, and
nested within the Rib watershed, it supports the premise that the low runoff generation in the Rib
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watershed was due to regional subsurface water loss in geological fault zone formations and not by
measurement error.

The use of the three soil inventories did not affect the simulated discharge significantly because
models runs with calibrated the soil parameters were not significantly different from those that did
not include the soil parameters. There were some slight non-significant differences in performance
of the soil inventories: the ADSWE soil inventory simulations provided in the most accurate in the
Rib watershed discharge (RVg < 25%); the FAO soil inventory in the Gomit watershed predicted
discharge best (RVg <9%) (Table 6). The AfSIS soil inventory gave the best streamflow prediction
before calibration in the in the Gomit watershed. (Tables 2 and 5).

Our modeling results on the effect of level soil inventories on streamflow prediction for two
watersheds in a monsoon climates are consistent with other studies in temperate climates that the detail
of the soil information was insignificant [21-23,26-30]. Thus, in regions with a monsoon climate and in
temperate climates and under widely varying land-use conditions, the choice of the soil inventory
affects the streamflow predictions only minimally.

5. Conclusions

In this study, we used digital soil inventories from the Amhara Design and Supervision Works
Enterprise (ADSWE), the African Soil Information Service (AfSIS), and the Food and Agricultural
Organization (FAO) to evaluate the effect of soil data representation and spatial variability on simulating
the hydrology of the watershed. The evaluation was conducted using the SWAT hydrological model.
This model is widely used in developing countries because of its extensive support structure.

The findings are that in the highlands of Ethiopia with a monsoon climate the details of soil
spatial information do not affect discharge predictions significantly and are in agreement with those in
temperate climate and other less steep landscapes [22-30]. The additional information provided in
more complex soil inventories can change the fitted parameters in the model, but do not affect the flow
at the outlet of the watershed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5338/7/1/8/s1: Table
S1: Calibrated parameters, their range and fitted values for the streamflow simulations using the ADSWE,
the AfSIS and the FAO in the Rib and the Gomit watersheds

Author Contributions: All authors were involved in the conceptualization and methodology. A.A.A. collected
the data, made the model runs, analyzed the data and wrote the first draft. All authors were involved in writing
the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This publication was made possible through support provided by CGIAR Research Program on
Water, Land and Ecosystem’s East Africa focal regional program and by the Feed the Future Innovation Lab for
Small Scale Irrigation through the U.S. Agency for International Development, under the terms of Contract No.
AID-OAA-A-13-0005. The contents of the paper do not necessarily reflect the views of CGIAR and USAID.

Acknowledgments: Bahir Dar Institute of Technology and the Postgraduate School at Bahir Dar provided financial
support during the write-up.

Conflicts of Interest: The authors declare that they do not have conflicts of interest.

References

1.  Lin, H; Wheeler, D.; Bell, ].; Wilding, L. Assessment of soil spatial variability at multiple scales. Ecol. Model.
2005, 182, 271-290. [CrossRef]

2. Burrough, P.A. Soil variability: A late 20th century view. Soils Fert. 1993, 56, 529-562.

3. Foussereau, X.; Hornsby, A.; Brown, R. Accounting for variability within map units when linking a pesticide
fate model to soil survey. Geoderma 1993, 60, 257-276. [CrossRef]

4. Wilding, L.P; Bouma, J.; Goss, D.W. Impact of spatial variability on interpretive modeling. Quant. Modeling
Soil Form. Process. 1994, 10, 61-75. [CrossRef]

5. FAO. FAO Soils Portal. FAO SOILS PORTAL. Available online: http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/en/ (accessed on 24 December 2019).


http://www.mdpi.com/2306-5338/7/1/8/s1
http://dx.doi.org/10.1016/j.ecolmodel.2004.04.006
http://dx.doi.org/10.1016/0016-7061(93)90030-O
http://dx.doi.org/10.2136/sssaspecpub39.c4
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/

Hydrology 2020, 7, 8 17 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

DeVantier, B.A.; Feldman, A.D. Review of GIS applications in hydrologic modeling. J. Water Resour. Plan.
Manag. 1993, 119, 246-261. [CrossRef]

Cho, Y.; Engel, B.A. Spatially distributed long-term hydrologic simulation using a continuous SCS CN
method-based hybrid hydrologic model. Hydrol. Process. 2018, 32, 904-922. [CrossRef]

Singh, V.P. Computer Models of Watershed Hydrology; Water Resources Publications LLC: Highlands Ranch,
CO, USA, 1995; Volume 1130.

Beven, K.J. Rainfall-Runoff Modelling: The Primer; John Wiley & Sons: Chichester, UK, 2011.

Jajarmizadeh, M.; Harun, S.; Salarpour, M. A review on theoretical consideration and types of models in
hydrology. J. Environ. Sci. Technol. 2012, 5, 249-261. [CrossRef]

Arnold, J.G,; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment
part I: Model development. Jawra J. Am. Water Resour. Assoc. 1998, 34, 73-89. [CrossRef]

Singh, V.P,; Frevert, D.K. Watershed Models; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005.
Pechlivanidis, I.; Jackson, B.; McIntyre, N.; Wheater, H. Catchment scale hydrological modelling: A review of
model types, calibration approaches and uncertainty analysis methods in the context of recent developments
in technology and applications. Glob. Nest . 2011, 13, 193-214.

Romanowicz, A.A.; Vanclooster, M.; Rounsevell, M.; La Junesse, L. Sensitivity of the SWAT model to the soil
and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecol. Model. 2005, 187,
27-39. [CrossRef]

Earls, ].; Dixon, B. A comparative study of the effects of input resolution on the SWAT model. WIT Trans.
Ecol. Environ. 2005, 83, 213-222.

Dixon, B.; Earls, J. Effects of urbanization on streamflow using SWAT with real and simulated meteorological
data. Appl. Geogr. 2012, 35, 174-190. [CrossRef]

Faramarzi, M.; Abbaspour, K.C.; Vaghefi, S.A.; Farzaneh, M.R.; Zehnder, A.].; Srinivasan, R.; Yang, H.
Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85-101.
[CrossRef]

Shen, Z.; Chen, L.; Liao, Q.; Liu, R;; Huang, Q. A comprehensive study of the effect of GIS data on hydrology
and non-point source pollution modeling. Agric. Water Manag. 2013, 118, 93-102. [CrossRef]

Zhang, P; Liu, R.; Bao, Y.; Wang, J.; Yu, W.; Shen, Z. Uncertainty of SWAT model at different DEM resolutions
in a large mountainous watershed. Water Res. 2014, 53, 132-144. [CrossRef] [PubMed]

Chaubey, I.; Cotter, A.; Costello, T.; Soerens, T. Effect of DEM data resolution on SWAT output uncertainty.
Hydrol. Process. Int. ]. 2005, 19, 621-628. [CrossRef]

Kuo, W.L,; Steenhuis, T.S.; McCulloch, C.E.; Mohler, C.L.; Weinstein, D.A.; DeGloria, S.D.; Swaney, D.P. Effect
of grid size on runoff and soil moisture for a variable-source-area hydrology model. Water Resour. Res.
1999, 35, 3419-3428. [CrossRef]

Peschel, ].M.; Haan, PK.; Lacey, R.E. A SSURGO pre-processing extension for the ArcView Soil and Water
Assessment Tool. In Proceedings of the 2003 ASAE Annual Meeting, Las Vegas, NV, USA, 27-30 July 2003;
pp- 1-17.

Levick, L.; Semmens, D.; Guertin, D.; Burns, L; Scott, S.; Unkrich, C.; Goodrich, D. Adding Global Soils Data
to the Automated Geospatial Watershed Assessment Tool (AGWA). In Proceedings of the 2nd International
Symposium on Transboundary Waters Management, Tucson, AZ, USA, 16-19 November 2004; pp. 16-19.
Chaplot, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads
predictions. J. Hydrol. 2005, 312, 207-222. [CrossRef]

Prasanna, H.; Mulla, D. Scale effects of STATSGO vs. SSURGO soil databases on water quality predictions.
In Proceedings of the Watershed management to meet water quality standards and emerging (total maximum
daily load)(TMDL), Atlanta, GA, USA, 5-9 March 2005; pp. 5-9.

Wang, X.; Melesse, A.M. Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation.
JAWRA ]. Am. Water Resour. Assoc. 2006, 42, 1217-1236. [CrossRef]

Geza, M.; McCray, J.E. Effects of soil data resolution on SWAT model stream flow and water quality
predictions. J. Environ. Manag. 2008, 88, 393—406. [CrossRef]

Mukundan, R.; Radcliffe, D.; Risse, L. Spatial resolution of soil data and channel erosion effects on SWAT
model predictions of flow and sediment. J. Soil Water Conserv. 2010, 65, 92-104. [CrossRef]

Singh, H.V,; Kalin, L.; Srivastava, P. Effect of soil data resolution on identification of critical source areas of
sediment. J. Hydrol. Eng. 2011, 16, 253-262. [CrossRef]


http://dx.doi.org/10.1061/(ASCE)0733-9496(1993)119:2(246)
http://dx.doi.org/10.1002/hyp.11463
http://dx.doi.org/10.3923/jest.2012.249.261
http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://dx.doi.org/10.1016/j.ecolmodel.2005.01.025
http://dx.doi.org/10.1016/j.apgeog.2012.06.010
http://dx.doi.org/10.1016/j.jhydrol.2012.12.016
http://dx.doi.org/10.1016/j.agwat.2012.12.005
http://dx.doi.org/10.1016/j.watres.2014.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24509347
http://dx.doi.org/10.1002/hyp.5607
http://dx.doi.org/10.1029/1999WR900183
http://dx.doi.org/10.1016/j.jhydrol.2005.02.017
http://dx.doi.org/10.1111/j.1752-1688.2006.tb05608.x
http://dx.doi.org/10.1016/j.jenvman.2007.03.016
http://dx.doi.org/10.2489/jswc.65.2.92
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000318

Hydrology 2020, 7, 8 18 of 19

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

Boluwade, A.; Madramootoo, C. Modeling the impacts of spatial heterogeneity in the castor watershed
on runoff, sediment, and phosphorus loss using SWAT: I. Impacts of spatial variability of soil properties.
WaterAir Soil Pollut. 2013, 224, 1692. [CrossRef] [PubMed]

Bossa, A.; Diekkriiger, B.; Igué, A.; Gaiser, T. Analyzing the effects of different soil databases on modeling of
hydrological processes and sediment yield in Benin (West Africa). Geoderma 2012, 173, 61-74. [CrossRef]
Adem, A.A; Aynalem, D.W,; Tilahun, S.A; Steenhuis, T.S. Predicting Reference Evaporation for the Ethiopian
Highlands. . Water Resour. Prot. 2017, 9, 1244-1269. [CrossRef]

Moges, D.M.; Bhat, H.G. Integration of geospatial technologies with RUSLE for analysis of land use/cover
change impact on soil erosion: Case study in Rib watershed, north-western highland Ethiopia. Environ.
Earth Sci. 2017, 76, 765. [CrossRef]

Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and water assessment tool theoretical documentation
version 2009; Texas Water Resources Institute: College Station, TX, USA, September 2011.

Adem, A.A;; Tilahun, S.A.; Ayana, E.K.; Worglul, A.W.; Assefa, T.T.; Dessu, S.B.; Melesse, A.M. Climate
Change Impact on Sediment Yield in the Upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia. Landsc.
Dyn. Soils Hydrol. Process. Varied Clim. 2016, 615-644. [CrossRef]

Adem, A.A;; Tilahun, S.A.; Ayana, EK.; Worglul, A.W.; Assefa, T.T.; Dessu, S.B.; Melesse, A.M. Climate
change impact on stream flow in the upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia. Landsc. Dyn.
Soils Hydrol. Process. Varied Clim. 2016, 645—-673. [CrossRef]

ASFE. ALOS PALSAR_Radiometric_Terrain_Corrected_low_res; Includes Material © JAXA/METI 2007.
Available online: https://vertex.daac.asf.alaska.edu (accessed on 23 January 2020).

ADSWE. Tana Sub Basin Land Use Planning and Environmental Study Project, Technical Report I: Soil Survey;
ADSWE, LUPESP: Bahir Dar, Ethiopia, 2015; Volume 1, p. 151.

Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, ].G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A;
de Jesus, ].M.; Tamene, L. Mapping soil properties of Africa at 250 m resolution: Random forests significantly
improve current predictions. PLoS ONE 2015, 10, 1-26. [CrossRef]

Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Batjes, N.; Dijkshoorn, K.; van Engelen, V.; Fischer, G.;
Jones, A.; Montanarella, L.; Petri, M. Harmonized world soil database (version 1.1); FAO: Rome, Italy, March
2009; p. 43.

MoWR. Abbay River Basin Integrated Development Mater Plan Project: Land Resources Development, Part 1,
Reconnaissance Soils Survey Report; Ministry of Water Resources (MoWR): Addis Ababa, Ethiopia, 1998;
Volume 8, Phase 2.

Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis
and IKONOS-2 imagery. Remote Sens. Environ. 2006, 102, 390-401. [CrossRef]

Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification
performance. Int. |. Remote Sens. 2007, 28, 823-870. [CrossRef]

Blaschke, T. Object based image analysis for remote sensing. ISPRS ]. Photogramm. Remote Sens. 2010, 65,
2-16. [CrossRef]

Arnold, ].G.; Moriasi, D.N.; Gassman, PW.; Abbaspour, K.C.; White, M.].; Srinivasan, R.; Santhi, C.; Harmel, R.;
Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. Asabe 2012, 55,
1491-1508. [CrossRef]

Douglas-Mankin, K.; Srinivasan, R.; Arnold, J. Soil and Water Assessment Tool (SWAT) model: Current
developments and applications. Trans. Asabe 2010, 53, 1423-1431. [CrossRef]

Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. SWAT User Manual (Version 2009). Tex. Water Resour. Inst.
Tech. Rep. 2005.

Azizian, A.; SHOKOOHI, A. DEM resolution and stream delineation threshold effects on the results of
geomorphologic-based rainfall runoff models. Turk. J. Eng. Environ. Sci. 2014, 38, 64-78. [CrossRef]

Dixon, B.; Earls, ]. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrol. Process.
2009, 23, 1714-1724. [CrossRef]

Singh, G.; Kumar, E. Input data scale impacts on modeling output results: A review. J. Spat. Hydrol. 2017, 13.
Camargos, C.; Julich, S.; Houska, T.; Bach, M.; Breuer, L. Effects of Input Data Content on the Uncertainty of
Simulating Water Resources. Water 2018, 10, 621. [CrossRef]

Abbaspour, K.C. SWAT-CUP4: SWAT Calibration and Uncertainty Programs—A User Manual. Swiss Fed.
Inst. Aquat. Sci. Technol. Eawag 2011, 21.


http://dx.doi.org/10.1007/s11270-013-1692-0
http://www.ncbi.nlm.nih.gov/pubmed/24273353
http://dx.doi.org/10.1016/j.geoderma.2012.01.012
http://dx.doi.org/10.4236/jwarp.2017.911081
http://dx.doi.org/10.1007/s12665-017-7109-4
http://dx.doi.org/10.1007/978-3-319-18787-7_28
http://dx.doi.org/10.1007/978-3-319-18787-7_29
https://vertex.daac.asf.alaska.edu
http://dx.doi.org/10.1371/journal.pone.0125814
http://dx.doi.org/10.1016/j.rse.2006.02.022
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.13031/2013.42256
http://dx.doi.org/10.13031/2013.34915
http://dx.doi.org/10.3906/muh-1401-13
http://dx.doi.org/10.1002/hyp.7306
http://dx.doi.org/10.3390/w10050621

Hydrology 2020, 7, 8 19 of 19

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Setegn, S.G. Hydrological and Sediment Yield Modelling in Lake Tana Basin, Blue Nile Ethiopia. Ph.D.
Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008.

Krause, P; Boyle, D.; Bése, F. Comparison of different efficiency criteria for hydrological model assessment.
Adv. Geosci. 2005, 5, 89-97. [CrossRef]

Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L.]. Model evaluation
guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol.
Eng. 2007, 50, 885-900. [CrossRef]

Elshamy, M.E. Assessing the hydrological performance of the Nile Forecast System in long term simulations.
Nile Water Sci. Eng. Mag. 2008, 1, 22-36.

Nash, ].E.; Sutcliffe, ].V. River flow forecasting through conceptual models part [—A discussion of principles.
J. Hydrol. 1970, 10, 282-290. [CrossRef]

Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic
model validation. Water Resour. Res. 1999, 35, 233-241. [CrossRef]

Skaik, Y.A. The bread and butter of statistical analysis “t-test”: Uses and misuses. Pak. J. Med. Sci. 2015, 31,
1558-1559. [CrossRef] [PubMed]

Adem, A.A.; Aynalem, D.W,; Tilahun, S.A.; Mekuria, W.; Azeze, M.; Steenhuis, T.S. Runoff response and the
associated soil and nutrient loss in two northwestern Ethiopian highland watersheds. In Proceedings of the
International Conference on the Advancements of Sceince and Technology (ICAST-CWRE-2017), Bahir Dar,
Ethiopia, May 2017; pp. 30-35.

Dessie, M.; Verhoest, N.E.; Admasu, T.; Pauwels, V.R.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, ]. Effects of
the floodplain on river discharge into Lake Tana (Ethiopia). J. Hydrol. 2014, 519, 699-710. [CrossRef]

Wale, A.; Rientjes, T.; Dost, R.; Gieske, A. Hydrological balance of Lake Tana Upper Blue Nile basin, Ethiopia.
In Proceedings of the workhop on hydrology and ecology of the Nile river basin under extreme conditions,
Addis Ababa, Ethiopia, 16-19 June 2008; pp. 159-180.

Zimale, F; Moges, M.; Alemu, M.; Ayana, E.; Demissie, S.; Tilahun, S.; Steenhuis, T. Calculating the sediment
budget of a tropical lake in the Blue Nile basin: Lake Tana. SOIL Discuss. 2016. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.5194/adgeo-5-89-2005
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1029/1998WR900018
http://dx.doi.org/10.12669/pjms.316.8984
http://www.ncbi.nlm.nih.gov/pubmed/26870136
http://dx.doi.org/10.1016/j.jhydrol.2014.08.007
http://dx.doi.org/10.5194/soil-2015-84
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Hydrometeorological Data 
	Spatial Data 

	Analysis 
	Soil and Water Assessment Tool (SWAT) Model Description 
	Model Setup and Calibration 
	Model Performance Evaluation 


	Results 
	Comparing Model Components before Calibration 
	Sensitivity Analysis 
	Comparing Model Components for the Period of Calibration 
	General Observations 
	The Rib Watershed 
	The Gomit Watershed 


	Discussion 
	Conclusions 
	References

