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Abstract: An important step when using some data assimilation methods, such as the ensemble
Kalman filter and its variants, is to calibrate its parameters. Also called hyper-parameters, these
include the model and observation errors, which have previously been shown to have a strong
impact on the performance of the data assimilation method. Many metrics can be used to calibrate
these hyper-parameters but may not all yield the same optimal set of values. The current study
investigated the importance of the choice of metric used during the hyper-parameter calibration phase
and its impact on discharge forecasts. The types of metrics used each focused on discharge accuracy,
ensemble spread or observation-minus-background statistics. The calibration was performed for the
ensemble square root Kalman filter over two catchments in Canada using two different hydrologic
models per catchment. Results show that the optimal set of hyper-parameters depended heavily
on the choice of metric used during the calibration phase, where data assimilation was applied.
These sets of hyper-parameters in turn produced different hydrologic forecasts. This influence was
reduced as the forecast lead time increased, because of not applying data assimilation in the forecast
mode, and accordingly, convergence of model state ensembles produced in the calibration phase.
However, the influence could remain considerable for a few days up to multiple weeks depending
on the catchment and the model. As such, a preliminary analysis would be recommended for future
studies to better understand the impact that metrics can have within and outside the bounds of
hyper-parameter calibration.

Keywords: ensemble square root Kalman filter; ensemble Kalman filter; hydrologic modelling;
hyper-parameter calibration; discharge forecasting

1. Introduction

Accurate streamflow simulation has been always a high priority to water resources
scientists and decision makers for a more reliable streamflow prediction. Numerous hydro-
logical models, varying in structure and hydrological conceptualization, were developed
to represent the hydrological processes over catchments that are affected by various hydro-
logical and climatological characteristics. Yet, their performance in streamflow prediction
comes with uncertainties rooted in forcing data, parameters, and model structure. To
compensate for these uncertainties, post-processing and data assimilation methods have
drawn the interest of hydrologists. While the former methods modify ensemble stream-
flow prediction (ESP) based on historical observed and simulated streamflow records, the
latter methods update model states are based on available observations. Although various
post-processing methods have been developed to improve ESP of single models (such as
event bias correction method [1], quantile mapping method [2], and forecast ensemble
calibration method [3]) and to combine ESPs of multiple models while respecting each
model performance (such as quantile model averaging (QMA; [4]), and Bayesian model
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averaging (BMA; [5]), the necessity of data assimilation systems has been highlighted for
the accuracy of the ensemble forecast regardless of post-processing implementation [6].

Data assimilation techniques are becoming more widespread in hydrologic modelling
as more data become available. In particular, the value of the ensemble Kalman filter
(EnKF; [7]) and its variants to improve discharge simulation has been shown repeatedly [8–13].
A conclusion often repeated in these studies is the importance of properly specifying
the method’s own set of parameters, often called hyper-parameters, such as model and
observation errors. Furthermore, [14] report that transparently quantifying observation
and model errors are a bottleneck in using data assimilation for operational hydrologic
forecasting. Different approaches have been developed to adjust these hyper-parameters
in a transparent manner. The traditional way is an adjustment that aims to optimize a
metric [15] resulting in hyper-parameters that are fixed in time, but there are also adaptive
methods that allow hyper-parameters to evolve over time [16–18]. Though adaptive
methods allow hyper-parameters to evolve over time, they do not necessarily reduce the
number of hyper-parameters to calibrate.

Different metrics have been used across studies to calibrate these hyper-parameters,
particularly for the EnKF and its variants. For example, [13,19] use metrics that focus on
the accuracy of the hydrologic ensemble or its mean, while [8,12] use a metric that focuses
on the representativeness of the hydrologic ensemble spread. Other studies, such as [11,20],
use metrics tailored for data assimilation purposes by focusing on analysis increments or
related properties. While some properties may be more important to one community, such
as the data assimilation community, it is often not the most relevant property according to
another community, such as many decision makers. For example, large reservoir managers
may prioritize the evaluation of a hydrologic ensemble forecast’s performance based on
the bias of the ensemble mean over a flooding period rather than based on the specified
observation and model errors matching their true errors. This could be in contrast with the
data assimilation community, which could favor the latter property since it is an underlying
assumption for the proper use of many data assimilation methods, including the EnKF and
its variants.

Ideally, all types of useful metrics should be improved. However, adjusting hyper-
parameters specific to a data assimilation method in order to optimize a particular metric
may potentially lead to a decrease in performance according to another. This is analogous
to the procedure of calibrating parameters specific to a hydrologic model, which have been
shown to have an impact on the parameters obtained and therefore on the behavior of the
resulting model [21,22]. This can cause some ambiguity as to which metric to prioritize
and raises questions about its importance on model performance for streamflow modelling
and forecasting. Few studies assessing this impact in hydrology have been published,
particularly in a context of discharge forecasting. Ref. [23] addressed the issue of using
a spread-sensitive metric not supported by probability theory. The use of an incorrect
equation led to a systematic underestimation of ensemble spread as a function of forecast
lead time. Ref. [19] also presented some challenges faced when implementing the EnKF for
lumped models over catchments in Quebec, Canada. The existence of a tradeoff between
two metrics used to calibrate EnKF-specific hyper-parameters was shown when calibrating
a single set of hyper-parameters over a large number of catchments. Nevertheless, the focus
of studies regarding the effect of hyper-parameters calibration on the discharge forecasting’s
performance was mainly on calibrating hyper-parameter sets based on a specific metric or
two [8,24]. Owing to the earlier discussion, as different metrics prioritize different aspects
of the discharge simulation, such as accuracy, uncertainty representativeness and bias
quantification (the aspect of interest may vary from one community to another), a detailed
study assessing the effect of different metrics on the discharge forecasting’s performance
would be of great help to the water resources community.

Accordingly, the current study wished to investigate this feature in greater detail
for individual catchments using different models and various metrics. Specifically, the
objective of this study was to evaluate the impact that the choice of metric used to calibrate
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EnKF hyper-parameters can have on hydrologic discharge forecasting. An approach based
on fixed hyper-parameters with respect to time was used to reduce complexity of the
calibration and focus on the effect of hyper-parameters themselves.

The remainder of the article is divided into three parts. Section 2 presents the catch-
ments, the hydrologic models, the EnKF and its application, the procedure used to generate
forecasts, and the metrics. Section 3 presents the results, followed by a discussion for the
calibration of the EnKF hyper-parameters and the hydrologic forecasts of various data
assimilation scenarios. Section 4 provides some concluding remarks.

2. Materials and Methods
2.1. Study Catchments

Two catchments located in Canada were used in the current study. Both of these catchments
contain reservoirs managed by Rio Tinto, mainly for hydroelectricity production purposes.

The first was the 14,106 km2 catchment drained by the Nechako reservoir located
by the Coast Mountains in British Columbia, Canada (Figure 1). It is a mainly forested,
snow-dominated catchment, where an estimated 53% of the precipitation falls as snow. The
difference in elevation between the highest and lowest point in the watershed is recorded
at 1711 m. The measured annual precipitation ranges between 703 mm and 1218 mm with
an average of 903 mm.
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Figure 1. The Nechako catchment in British Columbia, Canada, including the weather stations and
hydrometric stations.

The second was the 45,406 km2 Lac Saint-Jean catchment in Quebec, Canada (Figure 2).
It is also a predominantly forested catchment. The measured annual precipitation ranges
between 763 mm and 1244 mm and averages at 1019 mm. However, the difference in
elevation is less prominent than the Nechako catchment, reaching a maximum of 855 m, and
though snow precipitation contributes much to the hydrology of the catchment (estimation
at 35%), most precipitation falls as rain.
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through weighted average using of the inverse distance of the three nearest stations to 
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the Nechako catchment. The stations are protected by an Alter-type shield to mitigate the 
effect of the wind on precipitation measurements. However, there are strong suspicions 
that the measurements considerably underestimate the real precipitation, particularly for 
solid precipitation. These suspicions arose from the difficulties in closing the water bal-
ance, as well the well-known issue of snowfall undercatch [25]. There is anecdotal evi-
dence that reports events where rain and snow gauge measurements likely did not yield 
a representative measurement. One example of such events, described by a Rio Tinto em-
ployee (B. Larouche, personal communication), includes the case where sticky snow 
formed a large snowball around and over a gauge opening in the Nechako catchment 

Figure 2. The Lac Saint-Jean catchment in Quebec, Canada, including the weather stations and
hydrometric stations.

Each catchment contains a hydrometric station (orange square) that measures daily
water levels. Knowing the volume of water routed to the penstocks and the spillway every
day, net natural discharge (hereby simply referred as discharge) can be computed from the
differences in water level at a daily time step. A three-day smoothing filter was applied
to the resulting discharge data to avoid irregularities, such as negative values. The time
periods covered by these data ranged from 1957 to 2016 for the Nechako catchment, and
1953 to 2017 for the Lac Saint-Jean catchment. Historical discharge is shown in Figure 3
for the Lac Saint-Jean and Nechako catchments, with mean discharges of 868 m3/s and
203 m3/s, respectively. The snowmelt period is generally later for Nechako catchment, but
snowmelt for both catchments normally occurs between 1 April and 31 August.
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Several weather stations are also located within and around each catchment (Figure 1
for Lac Saint-Jean, Figure 2 for Nechako; purple diamonds). These stations measure daily
precipitation and air temperature only. These measurements are then interpolated through
weighted average using of the inverse distance of the three nearest stations to produce
a grid that is 10 km × 10 km for the Lac Saint-Jean catchment and 5 km × 5 km for the
Nechako catchment. The stations are protected by an Alter-type shield to mitigate the
effect of the wind on precipitation measurements. However, there are strong suspicions
that the measurements considerably underestimate the real precipitation, particularly
for solid precipitation. These suspicions arose from the difficulties in closing the water
balance, as well the well-known issue of snowfall undercatch [25]. There is anecdotal
evidence that reports events where rain and snow gauge measurements likely did not
yield a representative measurement. One example of such events, described by a Rio Tinto
employee (B. Larouche, personal communication), includes the case where sticky snow
formed a large snowball around and over a gauge opening in the Nechako catchment
during a storm, preventing further solid precipitation from entering the gauge and therefore
not being accounted for by the gauge. Correcting such event-based biases is a difficult
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challenge to overcome without independent and reliable observations. Some corrections
have been applied manually by Rio Tinto for some events to match the volume of water
over the melt season, as measured at the reservoir by the hydrometric gauge. Though
these corrections are not ideal, in the sense that they are somewhat subjective and applied
inconsistently over time, they provide an improved modelling of discharge forecasts.

2.2. Hydrologic Models

Two different hydrologic models were used in this study. The first was the spatially
distributed model CEQUEAU [26]. It is a conceptual model that uses reservoirs to simulate
hydrological processes, such as a surface reservoir to simulate near-surface processes such
as infiltration and evapotranspiration, a deeper reservoir to simulate groundwater and
base flows, and a reservoir for lakes and swamps. Evapotranspiration was modelled using
the [27] formulation, while snow-related processes were modelled using the snow model
presented by [28]. Overall, CEQUEAU required only daily precipitation and temperature
as input, as well as a set of parameters that needed to be calibrated. These parameters had
previously been calibrated by Rio Tinto to match discharge for each catchment separately.
Table 1 shows the parameters used with CEQUEAU.

Table 1. Value of parameters specific to the CEQUEAU model.

Model Parameter Lac Saint-Jean Nechako Typical Parameter Range [26,29]

Temperature threshold for solid precipitation (STRNE) −1.222 1.540 (−5,5)

Melt rate in forested areas (TFC) 1.579 3.013 (1,7)

Melt rate in open areas (TFD) 3.916 1.397 (1,7)

Melt temperature in forested areas (TSC) −0.838 1.448 (−5,5)

Melt temperature in open areas (TSD) 0.167 1.173 (−5,5)

Energy exchange coefficient (TTD) 0.710 0.100 (0,1)

Snow ripening temperature (TTS) −3.630 −5.639 (−5,5)

Infiltration coefficient for groundwater reservoir (CIN) 0.153 0.076 (0,1)

Discharge coefficient for lake reservoir (CVMAR) 0.065 0.199 (0,1)

Low outlet discharge coefficient for groundwater reservoir (CVNB) 0.009 0.027 (0,1)

High outlet discharge coefficient for groundwater reservoir (CVNH) 0.400 0.300 (0,1)

Low outlet discharge coefficient for surface reservoir (CVSB) 0.002 0.005 (0,1)

Intermediate outlet discharge coefficient for surface reservoir (CVSI) 0.163 0.179 (0,1)

Maximum infiltration coefficient (XINFMA) 20.000 30.000 (0,100)

Percolation threshold from surface to groundwater reservoir (HINF) 63.171 58.608 (0,1500)

Height of intermediate outlet for surface reservoir (HINT) 65.971 99.156 (0,1500)

Height of outlet for lake reservoir (HMAR) 268.966 195.352 (0,1500)

Height of high outlet for groundwater reservoir (HNAP) 195.884 200.619 (0,1500)

Minimum height to use evapotranspiration as potential (HPOT) 20.000 126.719 (0,100)

Surface reservoir capacity (HSOL) 99.164 200.000 (0,1500)

Minimum water for runoff on impermeable surfaces (HRIMP) 0.000 1.245 (0,50)

Fraction of evapotranspiration taken from groundwater reservoir (EVNAP) 0.895 0.365 (0,1)

Thornthwaite formula exponent coefficient (XAA) 0.885 1.228 (0.5,1.5)

Thornthwaite formula thermal index (XIT) 29.187 8.790 (5,40)

Transfer coefficient for routing units (EXXKT) 0.0198 0.0018 (0,1)

The second model was the spatially lumped GR4J [30]. Like CEQUEAU, GR4J is also
a reservoir-type conceptual model that requires only daily precipitation and temperature
as input, with one conceptual reservoir to simulate vertical water movement and a second
reservoir for routing water at the watershed outlet. However, the default model does not
model evapotranspiration or snow-related processes. The evapotranspiration module im-
planted followed the [31] formulation, while the snow module was the same as the mixed
degree-days-energy-balance model formulated in the HYDROTEL [32] hydrologic model.
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The parameters were calibrated using the dynamically dimensioned search (DDS; [33])
algorithm to match discharge for each catchment separately. The values for these parame-
ters are shown in Table 2. As mentioned earlier, GR4J coupled with HYDROTEL’s snow
module differs from the basic GR4J model as it also accounts for snow accumulation and
melt processes. This may be the reason for some calibrated parameters falling beyond the
80% confidence interval of empirical parameter range acquired by applying basic GR4J on
different catchments without snow-related processes [30]. Additionally, model parameters
falling outside the 80% confidence interval as presented in [30] did not automatically imply
their values must be rejected. The confidence interval provided by [30], was derived from
the 0.1 and 0.9 percentiles of the distributions of model parameters obtained over a large
sample of catchments, implying that parameters outside the range were obtained for a
number of tested watersheds. Finally, since this coupled model has been rarely applied in
other studies, representing its empirical parameter range might be erroneous, and thus,
were disregarded.

Table 2. Value of parameters specific to the GR4J model.

Model Parameter Lac Saint-Jean Nechako

Maximum capacity of the surface reservoir (X1) 27.57 27.06
Groundwater exchange coefficient (X2) 4.69 −19.76

Maximum capacity of the routing reservoir (X3) 707.61 1045.84
Unit hydrograph time parameter (X4) 1.12 1.014

Rain–snow parameter threshold 0.0061 0.0461
Snow–soil interface melt rate coefficient 346.91 525.33

Maximal snow cover density 0.000808 0.0000293
Compaction coefficient 0.0032 0.0062

Snow–air interface melt rate coefficient −1.629 0.433
Snowmelt temperature threshold 2.364 2.105

Though both models share some similarities, they nonetheless each use a different
formulation applied at different scales for most processes. Perhaps the most significant
distinction between the two models is in the way they numerically discretize the watershed
since CEQUEAU uses regular tiles, while GR4J is lumped.

2.3. Ensemble Kalman Filter and Ensemble Square Root Kalman Filter

The data assimilation method used in this study was the ensemble square root Kalman
filter (EnSRF; [34]). Like its better-known alternative, the ensemble Kalman filter [7], the
EnSRF is a sequential data assimilation scheme that produces an analysis using a weighted
average between an observed state and a modelled state. The main distinction between the
two approaches is that the EnKF requires an ensemble of observations, which introduces
sampling errors, while the EnSRF uses the observation covariance matrix to account for the
observation errors. Another advantage of EnSRF is that, as opposed to EnKF, it does not
assume a linear relationship between observations and model states [15]. These advantages,
however, are at the cost of additional computations that are mainly rooted in separately
updating model states mean and variance according to their respective observational values
using two Kalman gain factors instead of one. In addition, and analogous to EnKF, the
required time for data assimilation to be implemented also rises as the model’s calculation
units get finer (i.e., the hydrological model is distributed on a finer grid). However, in the
case where few observations are assimilated simultaneously, this additional computation
becomes negligible because of lighter covariance matrix calculation and simultaneous
analysis process for all observations.



Hydrology 2021, 8, 36 8 of 19

In order to apply the EnSRF, an ensemble of model runs of size N is propagated in
time (t) to represent model errors. From this ensemble of modelled states (xb

t ) and its mean
(xb

t ), the model covariance matrix (Pb
t ) at a time t can be computed as such:

Pb
t =

1
N − 1

(
xb

t − xb
t

)(
xb

t − xb
t

)>
(1)

An observation covariance matrix (Rt) is also required for every time step for which
an observation (yt) is to be assimilated. However, unlike the traditional EnKF, Rt is not
computed in a similar manner to eq 1 since observations are not perturbed. Instead, the full
covariance matrix at each time step must be provided in order to compute the traditional
Kalman gain (Kt):

Kt = Pb
t H>t

(
HtPb

t H>t + Rt

)−1
(2)

where Ht is the observation operator that converts the model state into the observations
space. Another feature of the EnSRF is the application of a separate gain (K̃t) applied to
update deviations from the ensemble mean:

K̃t = Pb
t H>t

[(√
HtPb

t H>t + Rt

)−1
]>(√

HtPb
t H>t + Rt +

√
Rt

)−1
(3)

The updated states (xa
t ) are finally computed following:

xa
t = xb

t + Kt

(
yt − Htxb

t

)
− K̃t

(
Htxb

t − Htxb
t

)
(4)

In the case where only one observation is available, or if several observations are
assimilated separately, the terms Rt and HtPb

t H>t become scalars and Equation (4) can be
simplified (a more detailed derivation is provided by [34]) to yield:

xa
t = xb

t + Kt

(
yt − Htxb

t

)
−
(

1 +

√
Rt

HtPb
t H>t + Rt

)
Kt

(
Htxb

t − Htxb
t

)
(5)

2.4. Data Assimilation Experiment

The scenarios considered in this study are based on the assimilation of the discharge
for the Nechako and Lac Saint-Jean catchment. This section provides details related to the
procedure used to assimilate these observations.

2.4.1. Precipitation Ensemble Generation

The ensemble size used for all scenarios in the study consisted of 64 members. This
size was found to be an acceptable trade-off between computing time and consistency
between successive models runs [13].

The ensemble used to apply the EnSRF was generated by perturbing precipitation
input. Since precipitation cannot be negative, and also in order to generate random values
similar to normal distribution to respect EnSRF assumptions, a gamma distribution was
used to respect the physical bound of precipitation values without introducing bias and
while complying with EnSRF assumptions [12,13,35]. In addition, in order to perturb
precipitation and observation, while making sure that the introduced noises followed a
zero mean Gaussian distribution (EnSRF assumption), introduced noises to precipitation
and observation needed to be proportional to their mean values [8]. Accordingly, at every
time step, the mean (µpcp,t) around which the distribution was centered was the observed
precipitation value, while the variance (σpcp,t) was considered to be a hyper-parameter that
was a function of the mean:

σpcp,t =
(
αpcpµpcp,t

)2 (6)
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where αpcp is a multiplicative hyper-parameter that must be greater or equal to 0. The
hyper-parameter was considered constant in space, which is equivalent to using an infinite
correlation length. The observation variance was defined in a similar way so that it was
computed as a function of the observed value and a multiplicative parameter (αQ):

Rt =
(
αQyt

)2 (7)

Since every state variable for both CEQUEAU and GR4J depends on precipitation,
using an ensemble of precipitation as input produced an ensemble of states, which could
be updated via the EnSRF. Additional perturbations on the states or temperature input
were not applied given that preliminary investigations showed this deteriorated the model
performance and added unnecessary hyper-parameters to calibrate. Similarly, model-
specific parameters were not perturbed to simplify the procedure and reduce the number
of hyper-parameters to calibrate. Therefore, this study focused on calibration of two
hyper-parameters, αpcp and αQ, that affected quantification of model and observation
errors, respectively.

2.4.2. State Vector Configuration

In order to have an effect on future time steps, discharge data assimilation needed to
update state variables. Since discharge was a model output and not a state variable, other
variables needed to be added to the state vector. The details of the procedure applied to
select the relevant variables can be found in [36]. The procedure relied mainly on choosing
the best performing scenario among many different state vector configurations. For the
CEQUEAU model, these variables included the level of the surface reservoir, which was
the conceptual equivalent of soil moisture, and the level of the routing reservoir, which
routed the available water to the outlet. For the GR4J model, the variables included in the
state vector included the level of the surface and routing reservoirs, as well as the water
contained in the nonlinear routing stores computed using unit hydrographs.

The various scenarios produced included the open loop, which was the case where
no data were assimilated, and different values of αpcp and αQ for the assimilation of
discharge observations.

2.5. Ensemble Forecasting

Once discharge was assimilated, hydrologic ensemble forecasts [37] were produced
using a historical weather ensemble (climatology) as input in their respective model. For
example, starting from the states generated from the assimilation of discharge on the 1st of
January 2010, the hydrologic forecast for the next day used an ensemble of precipitation
and temperature using observations from January 2nd of all the other years except 2010.
All other available years, even those occurring after the forecast time, were used in order
to keep the ensemble size constant. The initial states from which hydrologic forecasts
were generated were the results of the EnSRF. Since no data assimilation occurred during
the forecast process, the effect of the various data assimilation scenarios should have
eventually diminished over a sufficiently long lead time and converged with the open
loop. The difference in performance between the scenarios and the open loop should have
reflected the impact of each data assimilation scenario.

2.6. Metrics

Several metrics were used to calibrate the hyper-parameters of αpcp and αQ, as well as
to assess the performance of different data assimilation scenarios for hydrologic forecasts.
Though the list of potential assessment tools was very large [38,39] and continued to grow,
only a few are presented here, which were deemed sufficient for the purpose of this study.
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The Nash–Sutcliffe efficiency or NSE [40] is a widespread metric used by hydrologists.
It is a normalized ratio between the magnitude of the residual variance and the measured
data variance. It is computed as shown:

NSE = 1− ∑T
t=1(xt − yt)

2

∑T
t=1(y− yt)

2 , (8)

where xt is the ensemble-averaged simulated discharge, y is the time-averaged observed
discharge and T is the total number of time steps. The range of the NSE is defined by
(−∞, 1] and improves as the value increases.

The mean absolute flood bias (MAFB) measures the average tendency of the model
to overestimate or underestimate the total volume of discharge cumulated over a specific
period of time, in this case the flooding period due to snowmelt defined from April 1st to
August 31st. It is computed as shown:

MAFB =
1

Nyr

Nyr

∑
1

∣∣∣∣∣∑
NF
t=1(xt − yt)

∑NF
t=1 yt

∣∣∣∣∣ · 100%, (9)

where Nyr is the number of years considered in the simulation and NF is the number of time
steps for each flooding period (153 days in this case). The MAFB is defined in the range
(0, ∞), where 0 corresponds to a perfect fit between the observed and simulated volume
of water over the flooding periods. The MAFB increases as differences arise between
the simulated and observed volumes, whether it is positive (overestimation) or negative
(underestimation).

The continuous ranked probability score or CRPS [41] is a metric adapted to ensembles.
It measures the mean squared difference between the simulated (F(xt)) and observed
(F(yt)) cumulative probability distribution of a variable as such:

CRPS =
1
T

T

∑
t=1

∫ +∞

−∞
(F(xt)− F(yt))

2dx, (10)

The CRPS ranges from 0 to +∞, with a lower value corresponding to a more accurate
forecast. For discharge, the CRPS has units of m3/s.

The normalized root mean square ratio (NRR; [42]) was also adapted to ensemble. It is
defined as the normalized ratio between the time-averaged root mean square error (RMSE)
of the ensemble mean and the mean RMSE of the ensemble members:

NRR =

√
2q

q + 1
·

√
1
T ∑T

t=1(xt − yt)
2

1
q ∑

q
i=1

√
1
T ∑T

t=1(xt,i − yt)
2

(11)

where q is the ensemble size. The NRR ranges from 0 to +∞. It essentially measures the
deviation from an ideal spread (NRR = 1), with values inferior to 1 indicating a spread
that is too large and values greater than 1 indicating too little spread. Unlike the previous
metrics, the NRR is not directly affected by the accuracy of the ensemble but focuses on
the representativeness of its spread. This is an important aspect of forecasts, particularly
for hydrological forecasting centers that use ensemble prediction systems in their decision-
making process.

The last metric used was the consistency diagnostic on innovations presented by [43].
Under the assumptions of linearity of the observation operator (H) and no correlation
between the observation errors and background errors, the following relation should be
valid if the covariance of observation errors (R) and the covariance on background errors
in observations space (HBHT) are correctly specified in the analysis:

E
[
(yt −Hxt)(yt −Hxt)

T
]
= R + HBHT (12)
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The E[ ] operator takes the temporal mean of its input. Since only one type of observa-
tion is assimilated and no more than one observation is assimilated at any given time step,
the covariance matrices reduce to scalar values. Rearranging this equation, we obtain a
ratio (D1) that can range from 0 to +∞ and is equal to unity under ideal error specification:

D1 = E
[
(yt −Hxt)(yt −Hxt)

T
]
(R + HBHT)−1 (13)

This last metric is specific to data assimilation matters for which an improper assign-
ment of errors can potentially lead to filter divergence [34]. It can be used to calibrate
hyper-parameters but cannot be used in forecast mode since there are no observations to
assimilate over the forecast at the time for which forecasts are emitted.

3. Results and Discussion
3.1. Calibration of EnSRF Hyper-Parameters

The data for the calibration of EnSRF hyper-parameters over the Lac Saint-Jean and
Nechako catchments were respectively taken from the periods of 1 January 1955, to 31
December 1990, and 1 October 1992, to 30 September 2007, with the preceding two years
being used as a warm-up period. First shown are the results of the calibration of the
hyper-parameters αpcp and αQ over the Lac Saint-Jean (Figure 4) and Nechako (Figure 5)
catchments. For both catchments, the performance of the models as a function of αpcp and
αQ varied much according to all metrics shown. For example, the Nash–Sutcliffe efficiency
could range from 0.76 to 0.94 and more, while the log2(D1) ranged from −4 to 4. The
importance of proper specification of hyper-parameters shown here agrees with other
studies that highlighted similar conclusions [15,44].

For the Lac Saint-Jean catchment (Figure 4), the overall portrait was similar across both
hydrologic models, in the sense that the contour lines followed a similar pattern for each
model and the optimal zones coincided. For the Nechako catchment (Figure 5), the portrait
was once again similar across both models, though there were some differences. Notably,
the MAFB contours for the GR4J model showed a positive gradient as αQ increased, while
this only applied for the CEQUEAU model up to a certain region, after which the metric
decreased in value (improved in performance).

The similarities across models seemed to indicate a low sensitivity of the calibration
of the hyper-parameters to the choice of hydrologic model among the two shown here.
This could be influenced by the type of observation assimilated and the relative similarities
between the state vector used for each model. For example, assimilating a different type
of observation, such as snow water equivalent, to update different state variables, such
as simulated snow water equivalent, may have yielded different results. While some
differences in absolute performance between the hydrologic models can be noted, as is also
the case for the open loops, the question of which model performed best under various
data assimilation schemes falls out of the scope of the current study.

As for the location of the optimal zones, they depended heavily on the choice of the
metric used. The optimal zone, in (αpcp, αQ) coordinates, appeared to be (80,1), which
were the upper and lower limits imposed during the calibration for the NSE, MAFB,
and CRPS. This means that decreasing αQ or increasing αpcp could potentially further
improve these metrics. In the opposite corners of these optimal zones were the zones of
least performance. These results indicate that the model performed best when discharge
observations were given large weights in the assimilation stage. The 1 % perturbation was
likely an underestimation of the “true” observation error for discharge. This result could
be the result of a suboptimal procedure in the generation of ensembles, such as avoiding
perturbing model parameters and perturbing initial states beyond the spread produced
by precipitation perturbations but was also influenced by the metrics’ focus on accuracy.
Either way, these metrics were optimal around (80,1).
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logarithmic scale for visibility purpose. A white circle is added to highlight the optimal zones.

For the NRR, there was a local minimum (80,1) for the GR4J scenarios, but the optimal
zones were nevertheless located at (80,80) for all scenarios, which was the upper limit used
for both hyper-parameters. It is possible that the optimal zones lie beyond these limits,
but pursuing this aspect would not be practical. High values of αpcp introduced heavy
distortions on the resulting gamma distribution when compared with the ideal Gaussian
distribution normally required for the EnSRF, as well as biases in the water balance due to
the nonlinear relationship between precipitation and discharge. As for αQ, the limit where
the hyper-parameter tended to +∞ resulted in the open loop. The current (80,80) result
for the optimal zones and values of NRR consistently above 1 indicates that both models
required additional spread. An important factor of this underestimation of ensemble spread
may be the likely remaining bias in the precipitation input, even after manual corrections
were applied. The assimilation of discharge observations reduced the resulting modelled
discharge bias to some degree, but a method that acts directly on the precipitation input,
such as one used in [9], could be more effective.
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In the current setup, the variation found in the metrics up to this point was mainly
monotonic, with the exception of the MAFB for the Nechako catchment and for the CE-
QUEAU model. For the D1, the optimal zone, that is for which the value equaled 0,
followed a curve. The curve began near (10,30), went through a point near (60,25) and
ended near (80,20) for all scenarios except the CEQUEAU model on the Lac Saint-Jean
catchment, for which the two latter two points were closer to (60,10) and (80,8). This offers
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a set of solutions that is infinite in theory but can be reduced to a few points for practical
purposes. This situation is analogous to the concept of equifinality well known to the
hydrologic modelling community [45]. In this case, the situation could be avoided if the ob-
served discharge error was fixed prior to running the scenarios, as is often done in studies
(e.g., [9,10,13,44]). In this latter scenario, the calibration of the αPCP hyper-parameter would
result in a single optimal solution. However, the full picture is shown here to demonstrate
the complexity of the problem and the ambiguities that can arise when calibrating more
than one hyper-parameter.

While a more complete pareto front could be determined using a multi-objective
calibration approach [46], the results ultimately show that the optimal calibration solution
depended on the choice of the metric used, which was the first step to reaching the study’s
main objective. The calibration phase results indicate similar hyper-parameter pairs for
metrics focused on the accuracy of the discharge simulation (NSE, MAFB, CRPS), regardless
of the hydrological model used and the catchments considered. This suggests that satisfying
one of these metrics should suffice for scientific projects mainly focusing on the accuracy of
the discharge forecasts [12,13,47]. Similarly, hyper-parameter pairs were analogous for the
metric focused on the uncertainty representativeness of the discharge simulation (NRR) for
hydrological models and catchments considered. Satisfying this metric has been suggested
for studies that prioritize the reliability of the discharge simulation while applying data
assimilation [8,19]. However, attention should be paid in using these hyper-parameter pairs
for other data assimilation sets, as the inner structure of the hydrological models, calibration
algorithms, accuracy of the forcing and observation data, model states configuration can
all affect the selected hyper-parameter pairs for different metrics. For instance, distributed
physically based hydrological models with the capability of simulating more elaborate
hydrological processes, while accounting for the heterogeneous processes over catchments,
are expected to yield more accurate model states, and therefore, model states are given
more weights through data assimilation implementation.

According to calibrated hyper-parameter pairs based on each metric, four sets of
solutions were chosen to generate hydrologic forecast scenarios, along with reference
scenarios, to quantify the impact of the calibration solutions on forecasts. As indicated in
Figures 4 and 5 using white dots, one of these scenarios was the (80,1) optimal point for the
NSE-MAFB-CRPS combo, named the OptNBC scenario from now on. The second was the
(80,80) optimal point according to the NRR metric, referred to as the OptNRR scenario. The
other two scenarios fell on the optimal curve shown for the D1 metric. One was the (10,30)
point named OptDQ since it had a larger value for αQ. This point was common to the curves
of all cases shown in Figures 4 and 5 for the D1 metric. The other scenario (OptPCP) had
different values depending on the model and catchment since the upper end of the curves
were not identical. The hyper-parameter values were (60,10) and (80,20) for CEQUEAU
and GR4J over the Lac Saint-Jean catchment, and (60,25) and (80,20) for CEQUEAU and
GR4J over the Nechako catchment, respectively. The scenarios are summarized in Table 3.

Table 3. Hyper-parameter scenarios used for discharge forecasts. LSJ is short for Lac Saint-Jean. Opt:
optimal point; NBC: Nash–Sutcliffe efficiency (NSE)–mean absolute flood bias (MAFB)–continuous
ranked probability score (CRPS); NRR: normalized root mean square ratio; DQ subscript: D1 metric,
when αQ is larger than αpcp; PCP subscript: D1 metric, when αpcp is larger than αQ.

Scenario Name αpcp (%) αQ (%) Catchment and Model

OptNBC 80 1 All
OptNRR 80 80 All
OptDQ 10 30 All

OptPCP

60
80
65
80

10
20
25
20

LSJ + CEQUEAU
LSJ + GR4J

Nechako + CEQUEAU
Nechako + GR4J
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3.2. Discharge Forecasting

Forecasts were made for various scenarios over a different period than the calibration,
spanning 1 January 1991, to 31 December 2017, for the Lac Saint-Jean catchment and 1 Octo-
ber 2007, to 30 September 2016, for the Nechako catchment. Note that these periods include
every day of the year, including the winter and spring periods when snow accumulates and
melt. Results for the Lac Saint-Jean and Nechako forecasts are shown in Figures 6 and 7,
respectively. The scenarios include the four sets of optimal hyper-parameters (OptNBC,
OptNRR, OptDQ and OptPCP), as well as two different references; namely, the open loop
and a historical discharge ensemble (climatology) which was comprised of all the observed
discharge with the same day of the year as the forecasted day.
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For the Lac Saint-Jean catchment (Figure 6), results show that the four data assimilation
scenarios and the open loop performed generally better than the climatology for the NSE,
the MAFB, and the CRPS, but not for the NRR. It was expected that the climatology should
have been close to the ideal value (unity) and should have approached it when the sample
size and the period for forecasts increased. For the climatology scenario, all metrics were
independent of the forecast lead time because only the day of year of the forecast mattered.
Since the climatological precipitation and temperature were used as the inputs to the
forecast mode, it was expected that after a specific lead time, initial model states derived
from data assimilation implementation under different scenarios for hyper-parameter
calibration, would converge toward the climatological discharge. This lead time was the
time length required for climatological weather inputs to negate initial model states derived
from data assimilation. According to Figure 6, lead time of 1–20 days seem sufficient for
four DA scenarios and the open loop to converge for NSE and CRPS metrics but not for
the MAFB. Seeing that MAFB was computed only during the melt period, it was mainly
affected by the amount of snow that accumulated over many months prior to melting.
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Using the climatological precipitation for a lead time of 1–20 days appears to be insufficient
to converge back to the climatological snow water equivalent and therefore insufficient to
converge back to the climatological discharge volume. The MAFB should have eventually
converged to the climatology scenario with a sufficiently long lead time (many months).
The improvement of the NRR as the lead time increases shows that the ensemble spread
was becoming more representative of its error, but this was insufficient for GR4J, for which
the ensemble spread remained too thin (NRR > 1).

For the Nechako catchment (Figure 7), the climatology was not surpassed as easily,
even for the open loop. As shown by the poor performance of the open loop for the MAFB,
this could have been influenced by the likely undercatch of snow precipitation, which fell
more frequently in the Nechako catchment. The only scenario that improved forecasts
for nearly all metrics and lead times, for both the climatology and the open loop, was the
OptNBC, which minimized the ratio of observation error to model error.

The spread for each metric between the four data assimilation scenarios varied be-
tween models and catchments. Choosing to calibrate hyper-parameters using one metric
or another can have an impact on forecasts that can last a few days to multiple weeks.
Relative to the initial spread, the scenarios converged to similar values more slowly as
a function of the forecast lead time for the Nechako catchment than the Lac Saint-Jean
catchment, and more slowly for GR4J than the CEQUEAU. For the difference between
models, it should be expected since the variables included in the state vector were different.
For the difference between catchments, the additional snow in the Nechako catchment
played an important role in the duration of the spread. Although the modelled snow–water
equivalent was not included in the state vector and was therefore not updated through the
Kalman gain, its spread was nonetheless affected by the hyper-parameter αpcp. Changes to
snow–water equivalent mainly affect discharge during the spring, which occurs around the
same time from year to year, as opposed to groundwater storage which affects discharge in
the following days. Depending on the time of the year that the forecasts are generated, the
changes to the snowpack can potentially affect discharge weeks or months later [13].

4. Conclusions

The study investigated the impact of the choice of metric on the EnSRF hyper-
parameters calibration and its application for discharge forecasting. The calibration phase
showed that the optimal set of hyper-parameters varied depending on the metric con-
sidered but was not strongly affected by the hydrologic models used and the catchment
over which they were applied. It was shown that the choice of metric used during the
calibration phase influenced discharge forecasts over a different period. This influence,
regardless of the hydrological model and the catchment, diminished as the forecast lead
time increased but remained substantial for lead times of a few days up to multiple weeks
depending on the catchment and the model used. Careful attention and a preliminary
analysis would be recommended for future studies when choosing a metric to optimize
during the hyper-parameter calibration phase, as this choice can have a lasting impact
on hydrologic forecasts. Some properties may be improved that could satisfy some un-
derlying assumptions behind the data assimilation method, but this could also lead to a
deterioration of other properties that may be of more practical interest to decision makers.

These results should not necessarily be generalized to all models, as the models used
in this study were not representative of all hydrologic models, though they had many
differences. The same caution should apply to the generalization over all catchments,
especially since the catchments used in this study share many similarities, such as having
snow cover for multiple months a year. The results are also possibly dependent on the setup
used in the data assimilation approach. This includes the configuration of the state vector,
the generation of ensembles, as well as the preprocessing and post-processing options. As
such, expanding the works to include a wider variety of metrics, catchments, and models
would be of interest for future studies, as well as investigating the effect of seasonality on
the calibration of the EnKF hyper-parameters.
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