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Abstract: Undertaking integrated and sustainable water resources management (ISWRM) and pro-
viding socially acceptable solutions with scientifically solid bases is a dynamic and challenging
process. Two basic pillars–umbrellas can be identified in the literature: stakeholder engagement and
analysis; and integrated monitoring–modelling in the form of a decision support system (DSS) that
can assess, evaluate and rank the management options. This study presents a framework that can
be used as a good-practice example of successful stakeholder engagement (public engagement and
collaboration with local communities towards shared visions) and an integrated DSS for ISWRM
(including characterisation at catchment and local scales, programmes of measures and their eval-
uation): the Framework for Integrated Land and Landscape Management (FILLM), developed by
an Irish multi-disciplinary and multi-stakeholder platform, the Water Forum. The fundamental
theoretical principles and practical aspects of the FILLM are analysed. A step-by-step guide is
proposed for its application, bridging the above pillars, using examples, reviewing methods and
software, and analysing challenges and trends. It can help both socio-economic and environmental
scientists (modellers) understand each other’s roles and find reviews of useful tools and methods for
their work. This work can be a reference point for future ISWRM and environment management and
can contribute to holistic education on such topics.

Keywords: Framework for Integrated Land and Landscape Management; water resources communi-
cation; decision support systems; sustainability; water forum/An Fóram Uisce; Ireland

1. Integrated Water Resources Management and the Situation in Ireland

The technocratic conception of life and the future of the planet, along with the utilitar-
ian approach that treats the environment with a conqueror mentality—i.e., as continuously
providing necessary raw materials—are linked to the development model of past decades.
In contrast, extreme positions have risen, condemning technological and economic progress
as responsible for the destruction of the environment. An intermediate approach is the the-
ory of integrated and sustainable water resources management (ISWRM), which promotes
the achievement of economic–productive objectives, but with environmental constraints.
The term “water resources management” includes all methods and practices required for
the rational conversion of aquatic systems into a state that meets water needs, with the
maximum benefits according to predefined goals [1]. The outputs of traditional hydrology
(monitoring and allocating the available resources over time and space) are combined
with physical, environmental, economic, social and other factors to fulfil policymaking
objectives. In modern times the field is evolving and becoming more interdisciplinary,
including hydrology, hydraulics, geology, hydrogeology, meteorology, engineering, com-
puter science, statistics, probabilistic theory, sociology, economics, political and law science,
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systems’ analysis and many more. Combining the above and their optimum use to bal-
ance multiple and competitive water users makes modern water resources management
(WRM) “integrated” [2]. The term “sustainable” refers to a broader development model
promoting the principle that the efforts for covering current needs should not undermine
the corresponding efforts of future generations to meet their own needs.

In Ireland, there are limited studies on the principles and applications of ISWRM.
Richards et al. [3] use the Water Framework Directive 2000/60 (WFD) as a tool for sus-
tainable grassland production because it integrates economic and environmental concepts.
They note that monitoring and understanding catchment hydrology, nutrient transport and
how the catchments operate as systems is crucial for targeting the appropriate measures
for each purpose. This approach is promoted not only for rural catchments but also for
urban ones, as Hall and Murphy [4] show in their analysis, where more than one water
use is examined. Another management aspect, regarding full cost recovery as part of a
rational water policy and environmental protection, is highlighted by Kelly-Quinn [5] and
Quinn et al. [6]. Water utilities in Ireland (Irish Water (IW)) were founded in 2014 and up
to today there is no organised consumption metering per household, nor any domestic
water tariffs. In this context, scholars try to challenge the public’s “water abundancy”
mindset. Daly et al. [7] highlighted the importance of integrated catchment management
(ICM) for the proper implementation of the Water Framework Directive in Ireland, and
ICM has been adopted as the underpinning concept for delivering Ireland’s second, and
forthcoming third, River Basin Management Plan. In an attempt to identify the imped-
iments that slow down integrated WRM, Rolston et al. [8] carried out an assessment of
opinions on water management and community engagement. The suggestion was to
involve key stakeholders in the River Basin Management Plan process through initiatives
that empower communities regarding local water management issues. In summary, the
exploration of the ISWRM started from the importance of monitoring and understanding
catchment hydrology, including all water uses in planning and using social science and
economic tools for water management, and was enriched with the need for integrated
catchment management, transparency and stakeholder engagement.

Towards that multi-disciplinary direction, the Water Forum/An Fóram Uisce (AFU)
was established as a statutory body in 2017, with the purpose of strengthening democratic
input into water decision-making. The Water Forum consists of 26 members representing
the perspectives of the community, agriculture, industry, the environment and public water
customers. The Water Forum’s primary role is to advise ministers on water policy and more
efficient implementation of any water-relevant legislation. Since formation, significant
progress has been made; however, the understanding and efficient implementation of
ISWRM is still a big challenge. The main issues, as highlighted in the AFU’s research and
the reports of the Environmental Protection Agency (EPA), are: the lack of monitoring and
control of the urban water networks, leakages from water distribution networks, water
quality management (raw sewage discharges, catchment-scale nutrient input into receiving
waters, trihalomethane concentrations in drinking water), the lack of project and financial
management, limited long-term planning and consideration of risks and methodologies
“borrowed”’ from the UK.

A clear lesson from the above concerns the need to develop and communicate inte-
grated management tools, understandably and consistently, which was the aim of this
study. A conceptual framework for integrated management was developed based on
the principles of ISWRM, structured with potential tools and methods for each step and
justified by the literature and examples that successfully applied those principles and
tools. The framework goes beyond traditional ISWRM and integrates more environmental
and socio-economic disciplines. This approach is a novel element for Ireland and has an
operational character, allowing its application in any case study.
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2. ISWRM as a Decision Theory Problem and the Role of Integrated Land and
Landscape Management

The development of humans and societies is accompanied by a plethora of different
situations and options, bringing up increasingly important decisions, and thus decision-
making has become a scientific field itself. To cite Nobel prize-holder Herbert Simon, a
decision is a complex and complicated process for selecting among alternatives that seem
more or less suitable for achieving certain goals [9]. Decision-making is often consid-
ered a situation that is synonymous with management. Most water and environmental
management problems can be approached as decision-making problems, as they target
multiple (often competitive) objectives that can be satisfied by numerous (infinite) alterna-
tives (also called strategies, scenarios or best management practices (BMPs)). These may
have different characteristics and results and may not be subject to common measures,
while the best solution may not be easily visible, so such problems are characterised as
“complex” [1]. Given their versatile role, choosing a BMP is often a broader process than
the classic hydrological and techno-economic approach. The peculiarities of decisions on
environmental issues (e.g., large-scale works of great importance, investments needed, the
determination of the surrounding environment, the difficulty in predicting their results,
the involved population and their irreversible character) increase their complexity.

One of the AFU’s objectives is to bridge these gaps, and those identified above. The
need for a “manual of good practice” has been identified based on the perspective that
water and environmental problems are actually decision-making problems, which must be
structured in an integrated way. Three essential stages can be highlighted: (1) identifying
the problems, (2) understanding their effects on the system and (3) finding and choosing
the optimum ways (BMPs) to tackle them. The role of ISWRM is to achieve that in a
way that provides the maximum benefits to all users/stakeholders, even if their interests
are competitive. Thus, the decision-making process must be objective, transparent and
scientifically supported. These stages are depicted in Table 1, where the main fields to be
considered, with their effects and indicative solutions, are summarised.

The above are indicative; they constantly interact and hence they must be part of
the planning and decision-making process. Integrated land and landscape management
(ILLM) is an increasingly popular approach to addressing most of the above issues and
is expanding to other fields. Land, water and landscape management are not new but
the recognition that atmospheric systems, geosystems and ecosystem services are inter-
connected, interlinked and interdependent led research to the understanding of these
interconnected processes. Applications usually refer to large-scale processes, combin-
ing natural resource management with environmental and livelihood considerations (i.e.,
integrated modelling and multi-stakeholder approaches for long-term planning).

The AFU used this concept as a vehicle for Ireland’s transition to future trends by inte-
grating all the above under a framework; the result of this conception was the Framework
for Integrated Land and Landscape Management (FILLM). It was first presented as a new
system-based approach, as part of the AFU’s submission to the Department of Housing,
Local Government and Heritage on Significant Water Management Issues [26]. The FILLM
has been well perceived by the country’s stakeholders so far (the AFU’s broad range of
members and the communities they represent, as stated in the regular meetings—details
follow in the “stakeholder analysis” section below): it is an easy word to remember and its
meaning is synonymous with the interaction of all the above fields; thus, it is a promising
way to promote the principles mentioned above to stakeholders and the public.
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Table 1. Main fields of integrated water and environmental management.

Field Main Features–Effects Role of Measures and BMPs Indicative Literature

Disasters Floods, droughts, pollution Forecast, protection, warning, prevention,
evaluation, restoration [10,11]

System Analysis Management in watershed/ river
basin level

Optimising system’s efficiency and
performance under specific criteria [12]

Transboundary waters
and water rights Different demands and pressures Balancing interests through fair agreements [13]

Resources Allocation Covering competitive demands with
available resources

Combination and management of surface and
groundwater use, water conservation
(maximum profits, minimum costs)

[14]

Water storage works Dams and reservoirs (design, operation,
hydropower, pollution control)

Different strategies for the optimum
performance and efficiency [15]

Water distribution Pipelines (open, closed), pumping stations,
networks, diversions

Optimum design, operation, pollution
control, damage and leakage control [16]

Water quality

Wastewater treatment, desalination,
tracking pollutants, river and deltas control,

lakes and wetlands quality,
nature-based solutions

Optimum design, performance, protection,
warning, prevention, restoration, control of

point and non-point pollution sources
[17]

Soil–land
Land use and land cover changes,

deforestation, erosion,
deposition, desertation

Protection, prevention, evaluation, restoration
(reforestation), surface roughening, [18]

Air–atmosphere Air pollution, climate change, extreme
weather conditions

Monitoring, forecast, protection, warning,
prevention, evaluation, restoration [19]

Biology–ecology
Stream ecology, ecohydrology, ecological

flow, habitat (fishes, macroinvertables,
diatoms), riparian areas, ecosystems

Monitoring, modelling, fish passages,
retaining riparian vegetation, control of point

and non-point pollution sources
[20–22]

Socio-economic aspects
Costing, payments, project investments,

environmental evaluation, pricing, rights
and shares, distribution

Different policies, alternative ways, methods
and applications [23]

Policy and governance
Combining the above into strategies,

informing, education, public participation,
collaborative modelling

Evaluating alternatives, globally optimum
solutions, planning, legislations, game

theory approaches
[24]

Other cross-disciplinary fields, such as ecohydrology, socio-hydrology, climate change impacts, water–energy–food nexus,
etc., combining the above BMPs and decisions [25]

The practical applications of ILLM are increasing, although in the international experi-
ence it is found to be difficult to combine its principles [27]: shared or agreed management
objectives with multiple benefits from and for the landscapes and BMPs contributing to all
the related fields, through collaborative and community-engaged processes. According to
Thaxton et al. [28], private investors and companies have begun to recognise the impor-
tance of using ILLM approaches to lower environmental and social risks, build community
goodwill and secure the long-term sustainability of supply regions, with positive effects
for both rural and urban areas. International policy initiatives and programmes have
also been developed recently to support ILLM approaches. However, there are still some
significant obstacles:

• Lack or absence of a stakeholder platform and/or a landscape investment facilitator
who can plan and coordinate the necessary actions.

• Efficient communication with the key stakeholders. The will of decision-makers (DMs)
and researchers to work together must be strengthened to efficiently frame the issues
and address the challenges through system approaches.

• Integrated data and modelling that allows the inclusion of ILLM criteria into the
planning process and the investment decision-making, providing the necessary in-
formation to the investor. The monitoring process must not be limited to the data
gathering but should include monitoring of the management outcomes at a large scale.
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Recent research has shown that ILLM needs to be developed as a decision support
system (DSS) and it’s a conceptual design has been suggested [29]. However, very few
research methods exist that can address the above issues altogether and incorporate them in
a DSS (including computational guidance). This work attempts to fill this gap by providing
solid steps and tools for each stage. To promote discussion and further understanding, the
AFU’s FILLM is used as an example as to how a DSS can be implemented.

3. FILLM: Description and Methods

In Ireland, the AFU is the only stakeholder platform relevant to the FILLM’s purposes,
having members and representatives from all sectors interested in integrated management
to improve water quality. Following the previous section’s conclusion, the other two ob-
stacles are: a guide to the steps and the scientific tools and methods for implementing the
FILLM, and the efficient collaboration–communication with the stakeholder groups. Below,
the FILLM is outlined and then these two issues are analysed. The FILLM builds on and
broadens the concept of integrated catchment management by including other environmen-
tal components while retaining catchments as the appropriate landscape units (Figure 1).
Catchment-scale environmental management is more appealing and understandable to
local communities and facilitates engagement to co-create and develop local solutions.
Thus, it can be an overarching framework for European environmental management as a
means of connecting, for instance, the Water Framework Directive, the Urban Wastewa-
ter Treatment Directive, the Habitats Directive, the Floods Directive, the Drinking Water
Directive, climate change adaption and mitigation, soil conservation, spatial planning
and sustainable food and timber production, in line with the UN Sustainability Goals for
2030 [30]. A guide to the FILLM’s application stages, including indicative methods, is
presented in Table 2.
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Table 2. Stages and methods of the Framework for Integrated Land and Landscape Management (FILLM). Differently
coloured blocks refer to stages of the same (broader) expertise fields.

Stages Description/Methods–Recommendations
Public engagement

- Awareness raising.
- Sharing knowledge.
Collaboration with local communities
- Identify key stakeholders.
- Identify their issues

and concerns.
- Build partnerships.
- Conduct public outreach.

Raising awareness and sharing knowledge on the major
problems of the catchment related to the
FILLM’s components.
Local communities and key representatives must be
involved in social and environmental learning and
decision-making by using participatory processes.
Meetings with groups can identify the optimum paths to
achieving both “improvement” and “protection” objectives.
Stakeholders need to see commitment and receive training
in each of the FILLM’s components to understand their
businesses’ interactions and effects.
Going from a “single-profit” to a “team growth” mindset.

Developing a shared vision

- Integrated catchment
science and management.

- Growth of communities
and environment.

- Sustainability.
- Cooperation.

The previous stage is a continuous process, so each of the
following ones must be communicated to the public,
accordingly. This stage is a component of the public
engagement.The existing legislation must also be
communicated to clarify under which framework we can
act, or what we would need to modify.

Desk study, including relevant papers
(short reviews).
Scientific support for the meetings:
>Techno-economic background for catchment
and management issues.
>Social background for legislation issues,
stakeholder mapping, grouping and training.
>Support from a respective software to
monitor and assess the groups, opinions and
progress (see next section).

Characterisation at catchment scale
- Integrated monitoring and

modelling, including all
the FILLM’s components.

- Significant pressures and
their impacts.

Characterisation at local scale
- “Downscale” further to

sub-catchments.
- In line with WFD and river

basin management
plans (RBMPs).

This is a multi-disciplinary process and collaboration with
relevant public bodies is mandatory.
Data gathering, developing databases and organising them to
create an integrated catchment inventory is the first and
most important step.
Monitoring processes will need to be initiated
and continued.
Data analysis.
Integrated modelling is essential to understand the system’s
functions, interactions, uncertainties, pressures and
drivers. This must include the natural (environmental)
components, but also the socio-economic
modelling aspect.
With the knowledge of the system’s causes–effects,
local-scale measures will naturally come up and be evaluated.

This needs specific tools and the cooperation
of different scientists to combine the FILLM’s
components into models (see next section).
>Engineering, meteorology, hydrology,
bio-physical sciences (hydrogeology, soil
science, bio-ecology, hydrochemistry, etc.).
>Socio-economics, environmental economics,
multi-agent modelling, etc.
>Case-specific expertise (e.g., drainage systems,
agronomic science, coastal science, etc.).

Programmes of measures

- Existing measures.
- New measures (BMPs).
- Tests under

various conditions.
- Optimisation considering

spatially targeted measures.
- DSS.

The integrated modelling of the previous step is the basis.
1. Simulate the existing measures and management actions,
in order to quantify their effects and evaluate them based
on predefined criteria.
2. Examine the mandatory and suggested measures
included in the RBMPs.
3. Develop new possible management options. BMPs can
include nature-based solutions, environmentally friendly
techniques, cost-effective practices and
protection–mitigation options.
4. Test these further using uncertainty analysis and future
conditions (e.g., climate change).
5. Undertake assessments, as required by the Habitats and
Strategic Environmental Assessment Directives,
as appropriate.
6. Optimise the measures based on multi-objective
objective functions, using all the necessary constraints,
considering the spatial distribution.
7. Develop a DSS to rank the measures based on the
predefined integrated criteria—multicriteria
analysis (MCA).

Strong modelling skills, holistic understanding
and judgment are required.
>Steps 1, 2 and 4 are a repetition of the
previous stage, under different conditions
(measures = modelling scenarios).
>Steps 3 and 5 can be desk-based interactive
processes with the other steps.
>The last two steps are the most challenging
because they require the setting the of the
optimisation’s objective function and of the
constraints, the manipulation of the data
accordingly and the selection of the best
optimisation method. The criteria of the
MCA must include all the inputs from the
previous steps (stakeholder input,
environmental and economic modelling) and
the most appropriate method must be selected.

Policy, Regulations and Incentives

- Move from theory to
practical implementation.

- Cooperative approach.
- Continued investment

needed.

Identify possible policy/regulatory gaps.
Develop solid suggestions for modifications, using the results
of the previous stage’s models. Their combination with the
input from the public engagement and vision stages and the
proof that the suggestions are socially acceptable measures and
enhance the local economy and environment must be the basis
for any change.
Top-down or bottom-up approaches can be used or
combined. Principles such as “public money for public
goods” and using “results-based payments” can be
considered as means of achieving the desired outcomes.

The scientific support of the proposed
measures from the techno-economic background
can be a basis for the social-political science to
provide/modify/approve and support the
actions through incentives and
policy regulations.
This stage is subject to each case’s policy, and
there are numerous paths for the application
(e.g., from start-ups relevant to implementing
the measures to horizontal measures approaches).
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Table 2. Cont.

Stages Description/Methods–Recommendations
Tracking the progress

- Inspections.
- Continuous monitoring

and modelling.
- Meetings with stakeholders.
- Flexible and adaptive

management.

Inspections are an extension of the FILLM’s actions, based
on and considering the characterisation results.
The same can be said with regard to continuous monitoring
and modelling.
The observations regarding each action must be
communicated to the stakeholders, thus continuing the
regular meetings.
Flexible management: adjustments and “plan Bs”, if
necessary. For this reason, the whole process may need to
be repeated, but if the meeting routine and the models
exist, there will not be any delays. Having already set the
tools of the previous stages will make the management flexible
and will make it possible to move very quickly to alternative
options, with “known” (simulated) results.

>Specialised and trained inspectors combine the
backgrounds mentioned in the previous
stages. Communication among scientists is
essential to ensure the “same language”
and scope.
>Use metrics (based on models) to track and
evaluate progress and analyse trends
and outcomes.
>Update the previous stages based on the
observed changes (e.g., models, stakeholders,
etc.) and make the necessary application
adjustments (flexibility).

Note: Each row of the table is a stage of the procedure, titled with the red-coloured headlines. The rows of the table with the same
background colours (including more than one stage) are parts of the same scientific fields, namely: stakeholder analysis, environmental
modelling–DSS, policy analysis and continuous project tracking.

The over-arching requirements are included in the first fundamental stages, which are
continuous processes and define the next stages. Thus, there are two basic pillars:

• stakeholder analysis: the processes of public engagement, collaboration with local
communities, development of a shared vision and its continuous communication;

• DSS: in a general context, this can include the actions needed for the characterisation
and the programmes of measures, including monitoring, modelling, simulation, opti-
misation of measures and ranking the alternatives. It also includes the last stage, in the
context of the continuous monitoring and examining of the system under alternatives,
in order to provide flexible management.

Both pillars are essential but challenging and potentially slow to achieve. More points
for consideration arise as one goes into their details, which is why the right column of
Table 2 includes recommendations and the scientific backgrounds needed. The next two
sections refer to each of these pillars, explaining potential approaches and providing examples.

4. Stakeholder Analysis

This process is conceptually simpler; however, many projects fail because of its poor
implementation, so it must be based on scientifically solid bases to build trust and get
the desirable results. Jacobs et al. [31] found that participatory processes appear to work
better in the context of short-term and easily adjusted decisions, such as water allocation
decisions, and do not work so well for longer-term, high-stakes decisions regarding in-
frastructure. Recent advances have highlighted the importance of legal, regulatory and
institutional frameworks in supporting: (i) stakeholder engagement, (ii) tools for building
water management and governance capacity and (iii) perspectives on water management
and governance [32,33]. The AFU’s approach in the context of the FILLM is that all relevant
stakeholders with an interest in the FILLM’s objectives and whose opinions and actions will
impact the management outcome are included in the AFU’s regular (monthly) meetings.
They are also in a continuous information loop in the form of newsletters, public consul-
tations, background (informative) reports on interest topics and publications. All these
communication methods are combined and continuous two-way feedback is achieved. The
AFU’s members come from the following sectors, often having more than one representa-
tive: angling, agriculture, business, the community and voluntary sectors, education, water
and environment, fisheries/aquaculture, forestry, general consumers, the National Federa-
tion of Group Water Schemes, recreation, river trusts, social housing, tourism and trade
unions. The basic principles for every activity are: transparency and openness, fairness,
equality and respect, efficiency, collegiality and tolerance and common goal-visions, in line
with the FILLM’s approach and the international guidelines and experience [34–36].

A shifting point regarding the perception and the practical implementation of such
applications is their consideration in the context of systems approaches, as this enables the



Hydrology 2021, 8, 40 8 of 20

process’s mathematical representation [1]. Studies from the literature mentioned above
have also suggested that the quantitative perspective of the stakeholder analysis needs to be
enhanced to achieve a practically efficient decision-making process. A simple step-by-step
example of the logical procedure of a systematic stakeholder analysis follows [37–39]:

• Divide the stakeholders into groups based on different characteristics (e.g., how closely
they are related to a proposed measure, how adaptive they seem to such changes, etc.).

• Work with them on a specific problem and explain it to the different groups (some
groups will need more time), so that everyone reaches the same level of understanding.

• As indicated in the previous section, the techno-economic background is necessary
to analyse the problem, relate it to technical, social, institutional, economic and envi-
ronmental characteristics, and find their connections with the transformation process
towards a more sustainable future situation.

• At this stage, the common vision arises naturally as the common desire for the features
and expected results of this future situation overall, as well as with regard to each
participant’s field.

• The ways to achieve this can be found in collaboration with the relevant expertise and
may include (depending on the problem): behaviour change or adaptation, technical
and technological solutions, nature-based solutions, changes in technical, economic,
social or institutional frameworks, a search for financial resources, etc. This is a
continuous process of overcoming obstacles through novelty and collaboration.

For each step packages and software produce assisting maps and graphs. For an
in-depth theoretical analysis of such processes, including different methods to analyse the
data arising from each meeting, see the study by Mabelo [40]. It includes a number of
stakeholder analysis tools and techniques for complex problems (e.g., versions of power
versus interest grids, occasional friends and foes (OFF) and lines of influence network
(LOIN) systemigrams to explore stakeholder relationships). A great example of a successful
practical application is a recent book by Koundouri [41]. It undertakes stakeholder analysis
for proposing investment options and management solutions to achieve the “common
vision”, in the direction of the UN Agenda 2030 (the 17 SDGs) and European Commission’s
European Green Deal. Such approaches are also proposed in the FILLM, an analytical sys-
temic framework for stakeholder analysis that can turn current challenges into sustainable
and fair economic and environmental growth opportunities. This aspect, combined with
the other components of the FILLM (e.g., DSS), makes it a unique framework. Figure 2 is a
visualisation example of this multi-disciplinary approach proposed by the FILLM, using
indicative pieces of works that deploy stakeholder’s analysis, integrated environmental
modelling and DSSs. The aim is to show how an application of the FILLM could work,
demonstrate the combination of expertise needed and familiarise users with processes
covering most of the stages described in Table 2.
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5. Decision Support Systems and Applications in ISWRM

This process refers to the technical part of the project and that is why the introductory
sections presented the basic principles of ISWRM and environmental management as
complex decision theory problems. This part is emphasized, as in Ireland it is the most
challenging component of the FILLM’s implementation; therefore, a detailed list of tools
is also provided. Furthermore, the FILLM was initiated as part of the AFU’s contribution
to the country’s ISWRM, so this component of the FILLM is used as the demonstration
example in this work.

The definition of the term “DSS” that has prevailed is that of an interactive system
(software) that uses computational MCA or optimisation techniques to assist decision-
makers [45]. DMs usually define the importance of the factors (criteria) involved and the
modellers (decision analysts) apply, create or adapt the methods. Figure 3 shows a simple
example of the process, with greater detail than the brief high-level description of its stage
in Table 2.
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Many DSS approaches have been developed and the research is evolving; various
relevant books, guides, journals and software have been released for DSS applications
in many scientific fields, some even decades ago. Indicatively, the following are some
published reviews on the use of MCA in DSSs: Pohekar and Ramachandran [47] included
around 90 studies on energy design, Hayashi [48] examined around 80 on agricultural
issues and Steuer and Na [49] identified 265 such studies on water economics. Hajkowicz
and Collins [50] grouped these studies into seven categories: (i) watershed management
(land uses, reservoirs, economy, environmental criteria), (ii) aquifer management and
exploitation, (iii) choice of the best project or project evaluation (appraisal of water supply
works, dams, reservoirs, diversions, groundwater remediation), (iv) optimum water alloca-
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tion, (v) water policy and supply planning, (vi) water quality management and (vii) marine
protected areas management. Overall, the concept of an ISWRM DSS can be considered
synonymous with the concept of integrated modelling, which needs integrated data to use
the simulation of the studied case as a basis for the analysis.

Applications of ISWRM DSSs (specifically for water) are mainly based on the hydro-
logical component of the system, which defines the balance among available resources and
demand, while gradually trying to incorporate factors that advance the spatial representa-
tion, simulation, forecast, social or economic aspects, the optimisation of parameters and
variables, the user’s interface, etc. The schematisation mentioned is usually GIS-based and
node-based (i.e., for water demand, a node represents each demand site).

Table A1 (Appendix A) presents some of the main DSSs used in ISWRM—of course
more applications have been developed (e.g., AQUARIUS, WRAP, ResSim, AQUAPLAN,
SimBaT, OASIS, REZES, RDM, NOSTRUM-DSS, WBalMo, ELBE–DSS, CalSim, CALVIN,
Vista DSS, etc.; see [51,52]). The main purpose of each DSS is mentioned, followed by
a number of elements that significantly affect the modeller’s choices: mapping system
existence and interface, modelling capacities of surface water, groundwater, water quality,
hydropower, water demand estimation, socio-economic factors (from simple engineering
costs to valuation and cost–benefit analysis (CBA) routines), optimisation for calibration
and scenario optimum performance, and linking (compatibility) with other models (e.g.,
agronomic, soil, climate, hydraulic, etc.). For the later element, a simple qualitative scale
of low–high potential (based on stars) was used because each DSS has different links to
different software, so this was a non-comparable factor. The mentioned packages are
continuously updating and upgrading, so an indicative reference to their first version is
given whilst the features are based on 2020 data. The purpose of Table A1 is to provide a
single up-to-date and complete catalogue of the most common and well-known packages,
along with their features, that can be used for ISWRM, assisting future modellers–analysts–
researchers in choosing the most appropriate one.

Universities, research centres or companies usually develop these packages. The
majority have high license costs and closed programming codes, and thus expert trained
personnel are working for their expansion, operation, maintenance and adaptation to the
new technologies and tools. The required data vary depending on the software’s purpose
and structure. Most of the established DSSs simulate a baseline scenario and then develop
alternative “what-if” scenarios or BMPs, which can then be examined comparatively.
The way that the decisions are supported varies depending on the model/software (e.g.,
optimisation, usually just the graphical representation of BMP results, a least-cost approach,
cost effectiveness or CBA and, more rarely, MCA). The relationships between the objective(s)
of problems and the constraints or criteria, as well as the way that these relationships are
synthesized, define the decision methods. The selection of the most appropriate technique
is not a new topic: Cohon and Marks [53] evaluated different MCA techniques for WRM
problems based on their computational efficiency, clarity of relations and information
quality. Tecle [54] used MCA to evaluate 15 MCAs applied in ISWRM. A general finding
from comparative studies is that there is no inherently superior method [55,56], but the
most appropriate is the one that better fits the specific features of the studied problem,
while factors such as ease of use, necessary data and efforts also play a role [57].

Ideally, a DSS should be as integrated as possible, while keeping its functions simple.
Of course, there are differences in the factors involved and in how water resource systems
are modelled and optimised. However, considering the elements of the reviewed pack-
ages, in their completer form, they aim for: (a) a good schematisation (often GIS-based or
geo-referenced); (b) detailed simulation of the surface and groundwater hydrology (hy-
drological water balance and its interaction with climate variations, reservoirs and dams,
linking with groundwater simulation models); (c) incorporation of water quality (mea-
surements or simulations using basic equations or linking with water quality software);
(d) descriptions of socio-economic factors (engineering basic economic or comprehensive
economic analyses); (e) scenario analyses—development and management of different al-
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ternative scenarios (what-if scenarios, forecasts, extremes, warning systems, BMPs), exactly
as described in the “programmes of measures” stage of FILLM; (f) the ability to evaluate the
scenarios (as mentioned earlier, using cost approaches, optimisation or MCA); and, finally,
(g) the ability to undertake risk assessments or uncertainty analyses for specific factors.

Decision-making for FILLM incorporates the natural, environmental and socio-economic
development dimensions in a way that provides sustainable and socially acceptable so-
lutions. Practically, the decision-making has been up to engineers so far and, again using
ISWRM as an example, the most common approaches (but not the only ones) for selecting
or evaluating BMPs are as follows.

• Cost–Benefit Analysis

Once the efficiency of a project has been checked and the factors affecting the design
are controlled, deterministic methods are applied, aiming to evaluate the alternatives based
on the most economical way. The difference between each scenario’s costs and benefits is
the evaluation criterion [58].

• Optimisation

An objective criterion is selected and the optimal solution to the problem results from
its minimisation or maximisation, subject to the constraints of the problem, which usually
express the physical, technical, economic, environmental or even political commitments of
the problem. There are many techniques depending on the relations of the variables and
constraints involved; however, their application is not always easy for all types of problems
and simplifying assumptions are often required. This is usually the reason why multi-
objective optimisation problems [59] rarely adopt multi-disciplinary problem combinations
but are focused on a specific issue [60].

• Multicriteria Analysis

ISWRM problems must satisfy many criteria, so often there is no optimum solution
because it can be optimum for one criterion while others may have a better solution. The
multi-dimensionality of decisions and the uncertainty accompanying those problems re-
quire the introduction of additional criteria that objectively represent the problems’ scopes.
Multicriteria decision analysis is the process used to set criteria and their importance for
a problem’s solution. MCA imitates the processes humans follow to decide (matching
criteria, weighting importance or comparing alternatives) and converts them into mathe-
matical models to provide an objective and structured approach (compared to the DM’s
judgement) [45]. This concept allows the evaluation of policies with uncertain success
and risks, making it a useful tool for WRM decisions (see software in [61]), which are still
developing [62].

6. Challenges and Current Difficulties

No approach or model is perfect and without any limitations. Engaging all the key
stakeholders, keeping them involved, maintaining efficient communication and having
accurate and reliable DSS simulations is difficult to achieve in a comprehensive and user-
friendly way.

Regarding stakeholder engagement, the will for education and the sense of their
potential power and influence is essential. Other “technical” details, e.g., the optimum
number of participants, the experiments for communicating the problems, needs, visions
and solutions, or continuous motivation and an objective approach based on a common
vision, follow based on the above and the analyst’s skills.

Regarding the integrated DSS approach, all its steps include a trade-off between
integration, data detail, time, accuracy, user-friendliness and comprehensiveness to stake-
holders and DMs. To give a quick example, Alamanos et al. [63] developed two versions of
a DSS based on hydro-economic modelling for multi-objective agricultural water resources
planning: Version1 is preliminary with limited data, including assumptions and low spatial
resolution, and Version2 is a complete version with detailed data, allowing more simulation
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steps instead of assumptions, and high spatial resolution. Dilemmas between two such
approaches often concern modellers. The results and performance of the two versions were
compared with criteria referring to:

• desired general modelling aspects: number of parameters, quantitative variables,
qualitative variables, steps allowing stakeholder involvement, simplicity, accuracy,
reliability (validation potential), development time, data collection time, input level
(data requirements), reasonable computational power, no need of technical/expert
support, plausibility of assumptions, management scenarios (alternative options),
simulation of future conditions, extension with hydrological variables and extension
with socio-economic variables;

• other model-specific parameters estimated/ evaluated, such as water demand, avail-
ability and balance, economic profits, water value, water quality, usefulness in the
present situation and in the future and comprehensiveness to decision-makers.

The results showed that it is not easy to lean towards any approach or modelling deci-
sion (e.g., which assumptions to follow, which parameters to include or omit, etc.), given
also that there are no specific instructions or generally applicable guidelines. However,
the comparison proved that even simple models and DSSs with just basic outputs provide
significant insights and are highly informative, so any application is encouraged.

The coupling of many complex processes that are subject to different scales, units, time-
steps and assumptions is still a challenge in mathematical modelling and data collection
and mining. Thus, the main existing restrictions are related to the conversion of the
data into common measures, modelling simplifications (assumptions on hydrological,
hydrogeological, qualitative, hydraulic and economic analyses, linearisation of nonlinear
processes, externalities) and the involvement of stakeholders in certain process stages [64].
Subsequently, these DSSs are mainly used for academic purposes and less in practice.

Applying DSSs to the AFU’s FILLM approach, as analysed systematically above,
highlights the potential for wider application of such tools. While the FILLM is used
here as an example of such a potential wider application, the role of the AFU would be
important because interdisciplinary efforts and commitment are required in order to tackle
the limitations mentioned above.

7. Future Trends, Generalisation and Customisation

The FILLM was initiated as a framework that stands between stakeholder engagement
and integrated modelling, balancing many competitive and complex challenges. A stake-
holder platform (in our example, the AFU) plays a crucial role in engaging and analysing
stakeholders, while modelling efforts are still developing. The catchment is the scale of its
application, although it is restricted to river basin or sub-catchment applications.

When generalising the application of the FILLM, data limitations are often an issue,
so the importance of monitoring and securing the necessary investments, even in research-
oriented projects, must be a priority. Achieving satisfactory accuracy and simplicity
to ensure that a DSS is practically usable requires continuous monitoring–modelling–
engagement and the evaluation of results. Ideally, every catchment should be monitored as
a pilot case and continuously receive stakeholder feedback.

Another difficulty arises when the tools narrow the applicability of methods, which
seems to pave the way for future modelling approaches. For example, as shown in Table A1,
socio-economic aspects appear in only a few cases. This is one of the main reasons that
the concept of hydro-economic modelling was expanded as a DSS tool [65,66]. Most of the
reviewed hydro-economic models suggest that when the natural–environmental system
is simulated, the expression of its components–activities (e.g., demand and supply node
relations) as optimisation equations (e.g., minimisation of costs or maximisation of benefits
resulting from each activity, subject to the according constraints) is a way of incorporating
more socio-economic factors.

Also, in the future there will be an increasing interest in combining the integration of
modelling with environmental impact assessment, life-cycle assessment and economically
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oriented approaches, such as agent-based modelling and equilibrium models (partial or
general). Concepts such as web-based DSSs, integration with other models and improve-
ment of the representation of existing DSSs’ modules are leading to open coding. This
will make the software more editable, allowing process modifications, different scenario
explorations and even participatory processes. Furthermore, the use of artificial intelligence
is a trend for improving data storage, data conversion in different patterns, simulations,
calibrations and uncertainty issues. The above insights can be justified by the features of
the most recent custom-made DSSs, which show a trend for the inclusion of more elements
than commercial software, combining them with other specific factors to cover gaps or
integrate more aspects, depending on the studied problems.

Droubi et al. [67] coupled WEAP with MODFLOW and Weng et al. [68] developed
a scenario-based DSS combining MCA and multi-objective optimisation. The idea of com-
paring problems with known, documented cases from an ad-hoc database [69] was im-
plemented by Awad et al. [70] with an online database for the Mediterranean Basin.
Panagopoulos et al. [71] developed a new DSS methodology for the optimal BMP placing to
minimise diffuse surface water pollution using SWAT and genetic algorithms for economic
and multiple environmental objectives. Coelho et al. [72] presented a DSS combining MCA,
GIS, fuzzy set theory and dynamic programming to optimise criteria-selected solutions.
Anzaldi et al. [73] presented a knowledge-based DSS that makes use of decisional knowl-
edge to improve daily operations and find new WRM strategies. Nikolic and Simonovic [74]
presented a combination of environmental and socio-economic processes modelling and an
agent-based spatially explicit model. Safavi et al. [75] combined expert knowledge-based
modelling and WEAP. Alamanos et al. [76,77] developed a methodology for estimating the
full cost of irrigation water and incorporated it into a DSS combining hydro-economic mod-
elling and different MCA techniques and their evaluation. Al-Jawad et al. [60] presented a
novel integrated DSS using a many-objective optimisation algorithm with auto-adaptive
constraints. Mitraka et al. [78] developed the DiAS DSS (combining remote sensing meth-
ods and image processing and classification techniques) to monitor and manage disasters
in agriculture from integrated mapping data. Haro-Monteagudo et al. [79] combined SWAT
and Aquatool under climate change and management scenarios.

Custom-made DSSs include data that the developers trust, are based on their own
assumptions and sense of how the system works and perform desirable uncertainty or
sensitivity analyses. Stakeholder analysis is included in some parts and is recognised as a vital
part in future applications from the early stages of the process. In order to integrate more
factors, researchers focus on model linking, simulation completeness and improvements
under data limitations, as well as stakeholder training and the will to stay engaged.

The current study showed many examples to prove that the theory exists and that
the tools are adapting to the needs of each case. Thus, the future goal should be to bring
them out of the academic circles, initially with educational forms. The role of universities,
according to the needs of each country, is crucial. Public partnerships are increasing
internationally (and this is encouraging) as more key stakeholders realise the potential
positive effects of ISWRM (also referred to with the term “water stewardship” in that
context) for both their efficiency and environmental sustainability. Although the interests
may be competitive when it comes to ISWRM planning and the model building faces
difficulties, the FILLM has provided a vision itself for achieving better environmental and
socio-economic outcomes; time is needed to reach the results. The successful application of
any integrated plan needs stakeholder support and the proper scientific tools. A take-away
message for future efforts is that both sides need to be committed, and the FILLM has the
potential to serve as the common vision.

8. Conclusions

The above sections described the theoretical principles and the practical aspects for
the application of the FILLM, including the stakeholder analysis, the necessary expertise
required for each stage and the tools needed to frame the quantitative analyses. The next
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steps will be to implement the above for a pilot catchment and then expand the application
to more cases. Consistency in the selection of tools and overall supervision are required.

Regarding the stakeholder analysis
The international experience has proved that a group of around 30 people from all

fields (similar to the AFU’s members’ backgrounds) is an ideal case. This facilitates working
with them on the common vision, preferences for measures and the feedback on each stage.
If the participants are fewer, the process is underrated and not very efficient. If they are too
many, the process will be more like announcing to them the findings rather than working
with them. Of course, representatives from the government and the local authorities are
key stakeholders to be included too. It is then easier to spread the efficient practices (e.g., if
some stakeholders that are regarded as “successful” in their fields follow a new practice or
change their behaviour, the others are more likely to follow them—“herding behaviour”).

Regarding modelling
Some impacts (e.g., on water conservation, sustainable drainage, emission reduction,

energy savings and job creation) should ideally be quantified through simulations with
appropriate hydrologic/techno-economic/economic/environmental models. However,
models cannot simulate everything, their results cannot be blindly trusted (especially for
the longer term) and model-based evidence does not always translate to realistic policy
measures. There are hidden costs not captured by the models or different priorities of
DMs and stakeholders. That is why the modellers also need stakeholder input, even if
qualitative, which can then be quantified with MCA or other methods and combined with
model results.

Regarding broader policy considerations
River basin management plans to implement the Water Framework Directive are

based on the same conceptual framework and seek the goals described here in the broader
context. The focus so far has been on cooperation, the applicability of complex methods
and the lack of a practical guide through interdisciplinary topics.

Each country is free to choose the ways and the methods for achieving the Sustainable
Development Goals and not every member state starts from the same point. Therefore,
the FILLM must be adapted to national/regional circumstances. That is why the previous
section discussed its “customisation”. The challenge is to provide useful input for poli-
cymakers to follow the path that seems more beneficial for a country. This enables the
achievement of realistic and important goals–steps based on solid bases, rather than trying
to cover requirements or overly ambitious goals based on hurried and sloppy movements.
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Appendix A

Table A1. Common DSS applications in integrated and sustainable water resources management (ISWRM).

DSS Reference/
Developer Main Purpose Mapping Surface

Water Groundwater Water
Quality Hydropower Water

Demand
Social/

Economic
Factors

Optimisation Linking with
Other Models 1

CADSWES tools
(RiverWare,

RiverSmart, Demand
Input Tool, etc.)

[80]

Hydrology planning and
management tools for

complex and
detailed simulations

Node-based Yes No Yes Yes
Description
of diversion

requirements
No/no Yes (linear) *

Iras [81] Interactive river–aquifer
system and water quality Node-based Yes Yes Yes No Yes No/no No *

Integrated Quantity
and Quality

Model (IQQM)
[82]

Representation of river
systems, no

scenario analysis
Node-based Yes No Yes No Yes No/no No *

Waterware [83]

Assessment of
exploitation limits and

scenarios according
to legislations

GIS-based Yes Yes Yes No Yes No/no Yes ***

AquaTool [84]

Hydrological plans and
management of water
resources, providing

risk assessments

Node-based Yes Yes Yes Yes Yes No/no
Yes (linear

and
nonlinear)

**

REALM [85]
Development of a

modelling system for
water supply systems

Node-based Yes Yes No No Yes No/yes Yes (linear) *

Mulino [86,87]

Integrating WFD1

objectives and
environmental impacts,

with geo-spatial
information and MCA

GIS-based No No No No No Yes/no No -

MODSIM [88]
Solid mathematical

background for
distributing system flows

Node-based Yes Yes
(MOD-FLOW)

Yes
(QUAL-2E) Yes Yes No/yes Yes (linear) **

Basins [89]

A tool for watershed
characterisation (land

use, soil, pollutant loads
and their transport)

GIS-based Yes Yes Yes No No No/no No **

Ribasim [90]

Representation of
watersheds’ behaviour

under hydrologic
conditions and

evaluating measures

Node-based Yes
No (needs

linking with
SEA-WAT)

Yes No Yes No/no No *
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Table A1. Cont.

DSS Reference/
Developer Main Purpose Mapping Surface

Water Groundwater Water
Quality Hydropower Water

Demand
Social/

Economic
Factors

Optimisation Linking with
Other Models 1

DSS for Water
Resources Planning

Based on
Environmental Balance

[91]

Description, evaluation
and assessment of water

systems, considering
legislation

GIS-based No No Yes No Yes Yes/yes No *

A Spatial DSS for the
Evaluation of Water
Demand and Supply

Management Schemes
[92]

Development of a unified
software package for

describing networks of
water sources and users

GIS-based Yes Yes No No No No/no No -

EnSIS [93]
Surveillance and

information system
based on GIS

GIS-based No No Yes No Yes No/no No **

WEAP [94,95]

Water balance model,
assessing the

performance of
management scenarios

Node-based Yes Yes Yes Yes Yes No/yes Yes ***

WaterStrategyMan [96]

DSS for WFD1

requirements, emphasis
on economic principles

(e.g., cost recovery,
pricing policies)

GIS-based Yes Yes Yes Yes Yes Yes/yes No -

Hydronomeas [97]
Integrated system

simulation and
optimisation

Node-based Yes Yes No Yes Yes No/yes Yes (linear) *

WARGI [98]
Water resources system,

simulation of many
hydrological scenarios.

GIS-based Yes Yes No Yes Yes No/no

Yes (linear or
quadratic or

mathematical
programming)

*

MIKE Hydro Basin [99]

Simulation of surface,
groundwater, water

quality, water demand
and optimisation of

the system

GIS-based
Yes (linked
with MIKE

SHE)
Yes Yes Yes Yes No/no Yes (excel

solver) **

1 Water Framework Directive (European Commission, 2000). Linking ranking scale: * = poor, ** = moderate, *** = very good.
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