
����������
�������

Citation: Cho, H.; Liuzzo, L.

Editorial for Special Issue:

“Multi-Source Data Assimilation for

the Improvement of Hydrological

Modeling Predictions”. Hydrology

2022, 9, 4. https://doi.org/10.3390/

hydrology9010004

Received: 30 November 2021

Accepted: 22 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Editorial

Editorial for Special Issue: “Multi-Source Data Assimilation for
the Improvement of Hydrological Modeling Predictions”

Huidae Cho 1,* and Lorena Liuzzo 2,*

1 Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA
2 Facoltà di Ingegneria ed Architettura, Università degli Studi di Enna Kore, 94100 Enna, Italy
* Correspondence: hcho@ung.edu (H.C.); lorena.liuzzo@unikore.it (L.L.)

Physically-based or process-based hydrologic models play a critical role in hydrologic
forecasting. However, it has always been a challenge to estimate measurable physical
parameters or unmeasurable abstract parameters for these models to make acceptable
predictions because of many different sources of uncertainty [1]. The main interest of this
Special Issue is on how to improve hydrological modeling predictions by assimilating data
from multiple sources.

Data assimilation is a procedure in which data observed from a system are mathe-
matically or statistically analyzed and integrated into models to improve their predictive
performance. It has been recognized as a valuable and reliable tool for improving the
predictive performance of hydrological models thanks to recent advances in technologies.
Over the last 30 years, advances in remote sensing and Earth-observation technologies have
enabled the collection of data at local and global scales at different spatial and temporal
resolutions, improving the understanding and prediction of the Earth–ocean–atmosphere
system. In addition, widespread communication infrastructures have made it possible for
citizens to participate in scientific projects where they can contribute data as part of citizen
science programs.

The aim of the Special Issue “Multi-Source Data Assimilation for the Improvement of
Hydrological Modeling Predictions” was to collect contributions in which novel method-
ologies and approaches in the field of data assimilation were explored, with a particular
focus on their advantages and limitations. In this Special Issue, researchers focused on the
assimilation of data from radar [2], gauges [2–4], satellites [5,6], and crowdsourcing [6].
The ensemble Kalman filter (EnKF) was mainly used as a data assimilation tool [3,5,6].
Streamflow [3–5] and flood [2,6] predictions are the main focus of the issue. This issue also
introduces a web application for streamflow services [4].

Jadidoleslam et al. [5] assimilated satellite-based soil moisture estimates including
Soil Moisture Active Passive (SMAP) [7] and Soil Moisture and Ocean Salinity (SMOS) [8]
for real-time streamflow predictions. They used a distributed hydrologic model called the
Hillslope Link Model (HLM) and the same baseline parameter set that was determined a
priori to isolate the impact of three different data assimilation approaches on streamflow
predictions. Their assimilation approaches include (1) hard update (simple replacement)
without accounting for potential observational errors, (2) the EnKF 27 with a zero mean
and a constant error variance of data to incorporate observational and modeling errors, and
(3) the EnKF with time-dependent observational error variances (EnKFV). These approaches
were applied to an agricultural region of the state of Iowa over four years, and they were
used to evaluate streamflow prediction performance using 131 United States Geological
Survey (USGS) gauges. Using the Kling–Gupta Efficiency (KGE) and Peak Difference
Ratio (PDR), they found that the EnKFV, EnKF, and hard update resulted in the most,
intermediate, and least significant improvements, respectively. Overall, they successfully
showed that assimilating satellite-based soil moisture data into streamflow predictions
improved the performance of hydrological modeling.
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Bergeron et al. [3] investigated the importance of metrics chosen for hyper-parameter
calibration in data assimilation methods and their impacts on discharge forecasting. Hyper-
parameters are parameters of data assimilation methods such as the ensemble square root
Kalman filter (EnSRF). They calibrated the EnSRF hyper-parameters over two catchments
in Canada using a spatially distributed model called CEQUEAU and a lumped model
called GR4J. They used EnSRF over EnKF because the former method uses the observation
covariance matrix instead of an ensemble of observations and does not make a linear
relationship assumption between observations and model states. Although EnSRF requires
additional computational resources in general, the extra cost becomes negligible when
the amount of data to be assimilated is small. The metrics they considered include the
Nash–Sutcliffe efficiency (NSE), mean absolute flood bias (MAFB), continuous ranked
probability score (CRPS), normalized root mean square ration (NRR), and consistency
diagnostic on innovations (D1). They concluded that the optimal set of hyper-parameters
depended on the selection of the metric, but it was not strongly affected by the hydrologic
model, although their results may not be generalized in all cases.

Annis and Nardi [6] proposed a flood forecasting framework for rapid floodplain
mapping. They used the GFPLAIN DEM-based hydrogeomorphic model for small- and
large-scale flood hazard mapping and forecasting. In their framework, they used three
components, including (1) physical modeling, (2) satellite image analysis, and (3) crowd-
sourced data analysis to update flood model inputs, state variables, and parameters in
real-time and near real-time during flood events. The hydrogeomorphic floodplain data set
was used as a mask for all the three components to reduce computational time and improve
computational efficiency. They discussed ensemble-based data assimilation filtering using
EnKF and particle filtering (PF). This conceptualization of the data assimilation framework
for flood forecasting is expected to provide ancillary information on the extension of critical
areas during flood events and preprocess the computational domain of various flood
detection methods.

Grek and Zhuravlev [2] used weather radar data and ground-based observations of
precipitation and runoff to simulate rainfall-induced floods in small catchments in north-
west Russia where rain gauges are scarce. They used the Soil and Water Assessment Tool
(SWAT) for hydrologic modeling. They adjusted radar data by fitting a linear relationship
between rainfall depths measured at six gauges and derived from radar observations.
Biases in radar-derived rain data were corrected using the residual interpolation method.
They showed that the choice of the calibration period for radar data assimilation affected
the simulation results. They concluded that, in general, gauge data, unadjusted radar
data, and adjusted radar data performed well in that order using NSE. They also briefly
discussed an issue in hydrologic calibration commonly known as “equifinality” [9] or
multiplicity of solutions in their conclusions.

Lozano et al. [4] presented the development of a web application called the Historical
Validation Tool (HVT) for global streamflow services. They used an open-source web
application development framework called the Tethys Platform to build this application.
The web application performs corrections of seasonally adjusted biases and forward biases
on subsequent forecasts using observed hydrological data accessed using web services.
HVT evaluates the performance of historic simulation data, while its bias correction allows
it to improve the performance of the data. It provides the user with access to hydrological
modeling and observation data as a web service. They demonstrated the effectiveness of
their streamflow bias correction method in the use of global model results on a local scale.

As we discussed above, data assimilation involves a wide range of applications
related to modelling uncertainties. Nevertheless, the articles published in this Special Issue
provide a thorough overview of possible implementations involving data assimilation.
Indeed, published contributions cover different data assimilation methods of different
types of data for the improvement of hydrological modeling predictions. This issue also
reviews challenges and limitations in data assimilation and presents a web service for
streamflow forecasting.
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