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Abstract: The main objective of this study is to evaluate the performance of the integrated hydrologi-
cal model, MIKE SHE in a small watershed to analyze the effect of two different precipitation sources
on model outputs (groundwater elevation and surface water flows). The model was calibrated and
validated with observed groundwater elevations and surface water flows measured at the United
States Geological Survey (USGS) gage stations in the basin. The model calibration performance for
surface water flows (R = 0.80, MAE= 0.20 m3/s, BIAS = −0.14 m3/s, NSE = 0.59) and groundwater
elevations (R = 0.74, MAE = 0.45 m, BIAS = 0.08 m, NSE = 0.35) showed that the model was able
to predict hydrological processes based on forcing variables in a small watershed. The analysis did
not show the model with precipitation at the nearer (NOAA-Edwardsville) gauge station has better
performance than the farther gauge station (NOAA-St. Louis). The quantitative analyses for the most
sensitive model output variable suggested that precipitation uncertainties had noticeable impacts
on surface water flows (0.81% to 11.19%), than groundwater elevations (0.06% to 0.07%), with an
average of 6.71% and 0.66%, respectively. Our results showed noticeable differences in simulated
surface water flows in spring (12.9%) and winter (36%) seasons compared to summer (11.4%) and
fall (4.6%) as a result of difference (6% to 18%) in precipitation, which indicated that uncertainties in
precipitation impact simulated surface water flows in a small watershed vary with different seasons.
Our analyses have shown that precipitation affects the simulated hydrological processes and care
should be taken while selecting input datasets (i.e., precipitation) for better hydrological model
performance, specifically for surface water flows.

Keywords: integrated hydrological modeling; groundwater; surface water; MIKE SHE; precipitation
sources; watershed

1. Introduction

Water-resources management has been a challenging task for water managers, hydrol-
ogists, and ecologists to fulfill various demands such as energy, agricultural, industrial,
municipal, flood control, and ecological processes, etc. [1]. For example, water-resource
management has a direct negative impact on the riverine ecosystem, and therefore, ecosys-
tem restoration has focused on restoring ecological flows [2–4].

Hydrological models (e.g., SWAT, DRAINMOD, HEC-HMS, etc.) have been used to
simulate hydrological responses. However, some of these models do not consider direct
interaction with groundwater [5,6]. Stand-alone groundwater models (e.g., MODFLOW)
have been used in past studies to simulate groundwater-flow processes [7]. The integrated
hydrological (surface and groundwater) model MIKE SHE has been successfully tested
in watersheds with different characteristics in the USA [8] and around the world [5,9].
One of the major advantages of MIKE SHE is that it considers a dynamic interaction
between groundwater and surface water flows in streams and rivers. The advantages of
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integrated models are highlighted by various recent studies [9–13]. Since MIKE SHE is a
spatially distributed model (grid-based), it can incorporate spatial variability of physical
and meteorological parameters [8] compared to lumped models such as, for example,
SWAT [14] and HEC-HMS [6].

Hydrological modeling requires meteorological data such as precipitation, wind speed,
atmospheric temperature, and solar radiation to simulate surface water flow, sediment
transport, and water quality [15]. An accurate spatial and temporal representation of pre-
cipitation is crucial to predict hydrological responses and water balance within a watershed
since it is the most significant model input parameter [16–18]. Therefore, both the spatial
and temporal variation of precipitation is very important for better hydrological model
performance and watershed management [19,20]. Rainfall data measured at gauge stations
may not be able to capture accurate spatial variability [21,22]. To lower the effects of such
variation on runoff volume and timing, spatially distributed rainfall data sources can be
used [23]. Meanwhile, continuous monitoring of precipitation and other meteorological
parameters such as wind speed, temperature, solar radiation, and stream runoff is also
crucial to analyze the watershed water balance [24]. Therefore, hydrological monitoring is
important to understand the real effect of precipitation on hydrologic responses, including
groundwater [24–26].

Past studies used different precipitation sources (point and spatially distributed),
e.g., gauges, radar, satellite, etc. [27–31]. A gauge station is a major source of precipitation
data for hydrological analysis [32] and yields better results using multiple rain gauge
stations within the watershed [33]. A study showed that poorly distributed rain gauge sta-
tions impact model results [34], forcing to recalibrate the model with different precipitation
sources [28,35]. National Oceanic and Atmospheric Administration (NOAA) provide the
best rainfall data measurement; however, they are not error-free [36]. Site-specific rainfall
data distribution can cause an error in the hydrological model results [37]. Radar-based and
Climate Forecast System Reanalysis (CFSR) rainfall data have received increasing attention
for hydrologic analyses because of the large area coverage [31,35,38,39].

Over the last couple of decades, various studies have been designed to determine
the effect of precipitation on hydrologic responses. The impacts vary significantly de-
pending on the type of precipitation, hydrologic models, and watershed characteris-
tics [15,16,21,28,31,33,35,40–45]. For example, the sensitivity of spatial precipitation distri-
bution to the surface-runoff response depends on the model scale [42,46]. Lopes [47]
showed that spatial distribution of precipitation had significant effects on the runoff
mechanism, irrespective of scales in the Walnut Gulch watershed, Arizona. Moreover,
Guo et al. [48] found better calibration results with a fine spatial resolution of precipitation
data. Previous studies showed that the hydrological model performance was better with
CFSR data, compared to traditionally observed weather data [43]. Another study showed
that PRISM-based (Parameter-elevation Relationships on Independent Slopes Model) pre-
cipitation provides a better streamflow prediction than CFSR and gauge data within a
watershed [35]. Furthermore, they found better results with NCDC (National Climatic
Data Center) gauge data than for the CFSR, due to the close proximity of NCDC stations
to the watershed boundary. Uncertainties in rainfall result in parametric uncertainty in
a distributed hydrological model and simulated flows [39]. A study showed that the er-
rors due to model parameters are similar or even higher than the errors due to rainfall
uncertainties [49]. The simulated surface water flow is not only affected by the change
in precipitation, but also by evapotranspiration and groundwater contribution [50–53].
These studies indicated that uncertainties in the hydrological model simulated flows due
to change in precipitation spatially and temporally (i.e., months and seasons).

Besides surface water flows, groundwater systems are influenced by change in precip-
itation because they are typically recharged from the ground surface. For example, autumn
and winter precipitation has a noticeable impact on groundwater level than in spring and
summer seasons, where air temperature is driving groundwater fluctuations [50]. Increased
precipitation results in elevated groundwater elevations in some areas, whereas lowered in
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other areas [52]. Another study concluded that groundwater storage changes do not reflect
the long-term trend in precipitation, but the change is due to alteration of evapotranspira-
tion, and reduction in snowmelt [51]. Studies have shown mixed results for correlations
between precipitation and groundwater elevations [50–52].

It is apparent that researchers found the mixed performance of the hydrological model
specifically for surface water, based on different precipitation sources (e.g., gauge stations,
CFSR, NEXRAD, etc.) and their proximity to the watershed. However, the performance of
an integrated hydrological model based on the precipitation measured at different gauge
stations (e.g., NOAA), for predicting groundwater elevations and surface water flows in a
small watershed is lacking. It is unclear if groundwater elevations or surface water flows are
the most sensitive to precipitation. Furthermore, the knowledge about how uncertainties
of precipitation input in the hydrological model impact simulated surface water flows in
different seasons lacking.

This study is focused on changes in groundwater elevations and surface water flows
due to differences in measured precipitation at NOAA-St. Louis and NOAA-Edwardsville
gauges in a small watershed using integrated hydrological model MIKE SHE. Specifically,
we used calibrated model with CFSR based meteorological and precipitation data to quantify,
i. Most sensitive variable (i.e., groundwater elevations or surface water flows). ii. Seasonal
variations of difference in surface water flows with respect to change in precipitation.

2. Materials and Methods
2.1. Study Area

A small watershed (298 km2) (hereafter Canteen-Cahokia Watershed) within the
Canteen-Cahokia Watershed (HUC-10) is considered for this study, which is located about
16 km northeast of downtown city of St. Louis, Missouri, and drains into the Mississippi
River (Figure 1). The watershed comprises 30% agricultural field, mostly plain land with
mild slopes.

2.2. Integrated Hydrological Modeling—MIKE SHE

Integrated hydrological models dynamically couple surface water and groundwater
flow processes at a wide range of spatial scales [28,54]. This study used an integrated
hydrologic modeling system (200 m × 200 m grid size), MIKE SHE to simulate ground-
water and surface water flows (DHI) [55]. The diffusive wave approximation method
was used to simulate the overland flow in the horizontal direction, whereas Richard’s
equation simulates the unsaturated flow along the vertical direction. Water movement in
SZ (saturated zone) was simulated using the Boussinesq equation [56]. Kristensen and
Jensen’s method was applied to describe the evapotranspiration, considering interception
from the canopy, evaporation from the soil, and plants transpiration [57].

MIKE Hydro River is a one-dimensional (1D) river modeling software (Version 2019)
based on the dynamic wave approximation of the Saint Venant equation [58]. The cou-
pling of MIKE SHE and MIKE Hydro River allows an interaction between surface water
hydrodynamics and groundwater flow regimes [59,60]. The Saint Venant diffusive wave
approximation method was used to predict the overland flow. Manning’s number (inverse
of manning’s roughness), initial water depth, and detention storage parameters were con-
sidered for the simulation of overland flows. The channel network alignment for the model
was digitized along the perineal streams in the watershed (Figure 1). The cross-section
geometry along the channels was extracted from a one-meter resolution LiDAR DEM.
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Figure 1. Location of Canteen-Cahokia watershed showing National Oceanic and Atmospheric
Administration (NOAA) precipitation gauges, Climate Forecast System Reanalysis (CFSR) stations,
and USGS groundwater (GW-GC: USGS Groundwater Station# 384656089582001 at Glen Carbon,
Illinois) and surface water gauge stations (SW-GC: USGS surface water flow station# 05588720 at Glen
Carbon, Illinois). SW = surface water, GW = groundwater, GC = Glen Carbon, PB = Pontoon Beach.

2.3. Input Data

The topography of the watershed was represented by a high-resolution (10 m × 10 m)
Digital Elevation Model (DEM). Meteorological data, including on precipitation (discrete),
were based on global weather data CFSR for SWAT (https://globalweather.tamu.edu/)
and NOAA (https://www.ncdc.noaa.gov/cdo-web/). CFSR data are prepared from data-
assimilation techniques utilizing conventional meteorological gauge observations, satellite
irradiances, and advanced atmospheric, oceanic, and surface-modeling components at
~38 km resolution [61].

The meteorological data used for model calibration and validation were based on
CFSR and includes precipitation (mm/day), maximum and minimum temperature (ºC),
solar radiation (MJ/m2/d), wind speed (m/s), and average relative humidity (%). The
reference evapotranspiration (ET0) was calculated based on the Penman-Monteith method
(Zotarelli et al. 2010) using an Excel program [62]. Estimated ET0 (mm/day) was based
on the assumption of evapotranspiration from reference vegetation considering canopy
resistance, aerodynamic resistance, and soil heat flux intensity.

Nine major land use types were considered in our study, which collectively comprised
more than 90% of the total area (i.e., land, bare soil, deciduous forest, evergreen forest,
cultivated crops, hay/pasture, woody wetlands, open water, and herbaceous wetlands).
Although there were 128 STATSGO soil types present in the watershed, only ten major soil
types were considered by merging similar soil types (i.e., silty clay loam, silt loam, silty clay,
sandy loam, urban land, water, clay loam, silt, loam, and sand) [63]. To estimate groundwa-
ter flow through the unsaturated soil zone, water retention and hydraulic conductivity of
soil were considered, which is based on the Van Genuchten method [13,64,65].

https://globalweather.tamu.edu/
https://www.ncdc.noaa.gov/cdo-web/
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The study area has limited measured surface water flows and groundwater availability
for model calibration and validation. Daily averaged surface water data are available from
May 2000 to October 2011 for SW-GC (USGS surface water gage station# 05588720) located
at the Judy Branch Creek in the city of Glen Carbon, IL (watershed area 21.3 km2). Two
USGS gage stations, GW-GC (USGS Groundwater Station# 384656089582001) and GW-PB
(USGS Groundwater Station# 384352090054102) located at the city of Glen Carbon and
Pontoon Beach, IL, respectively were used to calibrate and validate the groundwater model.

2.4. Sensitivity Analysis

The sensitivity analyses of model parameters were performed using the Autocalibra-
tion Function of MIKE SHE [DHI, 55]. The most sensitive parameters for groundwater and
surface water hydrology reported by various previous studies are hydraulic conductivity,
specific yield, initial potential head of aquifer, soil bypass coefficient, manning’s roughness,
evapotranspiration parameters, leakage coefficient, and detention storage [9,11,13,66].

The hydraulic conductivity and bypass constant (which refers to the fraction of rainfall
infiltrates into the soil before water starts to appear as overland/channel flow) were found
sensitive for both groundwater and surface water similar in another study [8]. Other
surface water sensitive parameters were overland and channel manning’s number M
(i.e., the inverse of roughness coefficient), detention storage, ET coefficients (C2 and C3),
groundwater initial potential head, and groundwater leakage coefficients. The groundwater
and surface water sensitive parameters were similar to other studies for lowland watersheds
using the MIKE SHE model [5,8,13,67,68].

2.5. Model Calibration Parameters Optimization

The calibration of MIKE SHE and MIKE Hydro River models are performed simulta-
neously as the change of a parameter in one model can affect another model’s results [58].
Groundwater elevation and surface water flow from April 2005 to March 2009 were used
for the calibration process, whereas from April 2009 to September 2011 for the validation.
However, additional 2 years were added as a model warm-up period before the calibration
and validation periods to avoid the errors because of model instabilities. Final optimized
model parameter values are those which yield the best error statistics.

Autocalibration was performed against daily groundwater elevations at GW-GC and
surface water flows at SW-GC stations. During the calibration processes, the program
changes different groundwater (e.g., hydraulic conductivity, specific yield, initial potential,
soil bypass coefficient) and surface water (e.g., manning’s number M (i.e., the inverse
of roughness coefficient) for both overland and river channel, and detention storage)
parameters and calculate error statistics. The final optimized parameters were within the
ranges reported in other studies using MIKE SHE (Table 1) [5,14,33,58,69–71].

2.6. Model Performance Analysis

To test the best fit of a model, the most commonly used statistical performance in-
dicators, Coefficient of Correlation (R), Nash-Sutcliffe Efficiency (NSE), Mean Absolute
Error (MAE), and Bias (BIAS) were estimated in this study [72]. Simulated and measured
daily groundwater elevations and surface water flows were compared during the calibra-
tion and validation processes to analyze model performance. The R shows the fraction
of deviation between modeled and observed data [73], and ranges from 0 to 1, with 0
being the least favored and 1 being the most favored. The NSE describes the predictive
power of a hydrological model. The higher the value is, the better representation of model
parameters. NSE values less than 0 occur when the observed mean is a better predictor
than the model [73]. BIAS measures the average tendency (of the simulated values larger
or smaller than their observed ones [71]. The MAE measures an average mean discrepancy
between two datasets and is a more natural way of error measurement [74].
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Table 1. Final Optimized Calibrated Parameters for Surface water and Groundwater.

Model Parameters Initial Range Calibrated

MIKE SHE

Overland and Unsaturated Zone

Manning’s M 17 10–40 26.80
Detention Storage (mm) 2 0–10 5.08

Bypass Constant 0.26 0.15–0.9 0.27
Saturated Zone

Horizontal Hydraulic Conductivity (10−6 m/s) 5.6 0.0056–566 96.80
Vertical Hydraulic Conductivity (10−6 m/s) 0.56 56.6 9.68

Specific Yield 0.2 0.2–0.4 0.20
Initial Potential (−m) 5 1–10 6.32

ET Parameters (Kristensen And Jensen)

Canopy Interception (mm) 0.05 0.05–0.4 0.07
C1 0.2 0.05–0.4 0.34
C2 0.2 0.05–0.4 0.06

C3 (mm/day) 20 5–40 6.95
Aroot (/m) 0.3 0.05–0.4 0.31

MIKE Hydro

River and Lakes

Manning’s M 36 10–40 18.45
Leakage Coefficient (10−6) 5.6 0.0056–566 2.30

We further analyzed the model performance by comparing simulated groundwater
elevations and surface water flows based on precipitation measured at two NOAA gauge
stations and CFSR. All three models have the same calibrated parameters and input datasets
except precipitation. We simulated groundwater elevations and surface water flows using
models with three different precipitation sources, a. NOAA-Edwardsville, b. NOAA-
St. Louis, and c. CFSR. We analyzed differences in model outputs due to precipitation
measured at each NOAA gauge station and CFSR. The analysis informs whether NOAA-
Edwardsville or NOAA-St. Louis model performs better (groundwater elevations and
surface water flows) with reference to the CFSR model.

The NOAA gauge stations are located at the city of Edwardsville, IL (hereafter NOAA-
Edwardsville) and St. Louis, MO (hereafter NOAA-St. Louis). The NOAA-Edwardsville
gauge station is located close (less than 1 km) to the watershed boundary, whereas the
NOAA-St. Louis is about 6.5 km far away. R and MAE were estimated using simulated
groundwater elevations and surface water flows (April 2005–January 2007) at four different
random stations (locations) (Figure 1).

2.7. Effect of Precipitation Sources on Groundwater and Surface Water Flows
2.7.1. Sensitive Variable (i.e., Groundwater Elevations or Surface Water Flows)

We quantified the most sensitive variable (i.e., groundwater elevations or surface
water flows) due to the effects of two precipitation sources (i.e., NOAA-St. Louis Vs
NOAA-Edwardsville) by estimating R and MAE. The MAEs were normalized with respect
to the NOAA-Edwardsville simulated average groundwater elevations or surface water
flows at four random stations (Figure 1) and presented in percentages (%). Furthermore,
weighted (by surface water flows or groundwater elevations) averages of MAE and R were
calculated for comparison. The variable with higher MAE (%) and lower R are defined as
the most sensitive.

2.7.2. Seasonal Variations of Difference in Surface Water Flow with Respect to Change
in Precipitation

We analyzed the relationships between the difference in simulated surface water
flows (%) with respect to difference in precipitation measured at NOAA-Edwardsville and
NOAA-St. Louis gauges considering overall and seasonal datasets. Differences (%) in
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precipitation and surface water flows were calculated relative to the NOAA-Edwardsville
gauge precipitation. For the category “All”, we considered entire datasets from April 2005 to
January 2007. For “Season”, datasets were classified into four seasons, Spring (March, April,
and May), Summer (June, July, and August), Fall (September, October, and November),
and Winter (December, January, and February). Later, we calculated weighted-average
surface water flows based on four different random stations for comparison (Figure 1).
The analysis will yield if there is a correlation between differences in precipitation and
simulated surface water flows considering entire datasets and four seasons.

3. Results
3.1. Model Performance
3.1.1. Model Calibration and Validation

R, MAE, BIAS, and NSE between simulated and measured groundwater elevations
at the GW-GC gage station were 0.74, 0.45 m, 0.08 m, and 0.35, respectively (Figure 2 and
Table 2). The average positive BIAS of 0.08 m showed that MIKE SHE underpredicted
groundwater elevations during the calibration period (Table 2). The R, MAE, BIAS, and
NSE were 0.74, 0.39 m, −0.24 m, and 0.14, respectively for groundwater elevations during
the model validation period at the GW-GC gage station. The overall model performance
trend during the validation period was similar to the calibration for groundwater elevations,
except for BIAS and NSE (Table 2). The BIAS (−0.24 m) was negative for the validation
period, which showed overprediction by model, opposite to the outcome from the model
calibration (Figure 2b and Table 2).

Figure 2. Measured and simulated daily groundwater elevations for (a) Calibration and (b) Validation
periods at GW-GC gage station (USGS Groundwater Station# 384656089582001 at the city of Glen
Carbon, IL).

Table 2. Model performance statistics for the model calibration and validation. GW, SW, and GC
stand for Groundwater, surface water, and Glen Carbon, respectively.

Parameters
Calibration Validation

GW-GC SW-GC GW-GC SW-GC

R 0.74 0.80 0.74 0.65
MAE (m, m3/s) 0.45 0.20 0.39 0.22

SD * 0.65 0.44 0.53 0.57
BIAS (m, m3/s) 0.08 −0.14 −0.24 −0.02

NSE 0.35 0.59 0.14 0.42
* Standard deviation of measurement.

The R, MAE, BIAS, and NSE for the observed and measured surface water at the
SW-GC gage station were 0.80, 0.20 m3/s, −0.14 m3/s, and 0.51, respectively (Figure 3a
and Table 2). Unlike for groundwater, negative BIAS (−0.14 m3/s) showed that MIKE SHE
overpredicted surface water flow during the calibration period. The surface water flow
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prediction during the validation period at the SW-GC gage station was R, 0.65, 0.22 m3/s,
−0.02 m3/s, and 0.42 for MAE, BIAS, and NSE, respectively (Figure 3b and Table 2).

Figure 3. Measured and simulated daily surface flow hydrograph at SW-GC gage (USGS surface water
station# 05588720 at the city of Glen Carbon, IL) and CFSR precipitation depths for (a) Calibration
and (b) Validation.

3.1.2. NOAA-Edwardsville Vs NOAA-St. Louis

The weighted average MAEs for groundwater elevations were 0.09 m (0.07 m to
0.11 m) and 0.15 m (0.03 to 0.21 m) for NOAA-Edwardsville and NOAA-St. Louis models,
respectively at all four GW stations. The values reported in parenthesis are a range.
Similarly, weighted average R were 0.78 (0.73 to 0.82) and 0.65 (0.58 to 0.70) for NOAA-
Edwardsville and NOAA-St. Louis precipitation models, respectively (Table 3). The results
showed that the NOAA-Edwardsville model performed better (values close to the CFSR
model) than for NOAA-St. Louis considering average R and MAE.

The weighted average MAE for surface water flows for the NOAA-Edwardsville
and NOAA-St. Louis models were 0.78 m3/s (0.02 to 1.02 m3/s) and 0.68 m3/s (0.02
to 0.91 m3/s), respectively (Table 3). Similarly, weighted average R were 0.64 (0.62 to
0.66) and 0.41 (0.34 to 0.46) for the NOAA-Edwardsville and NOAA-St. Louis models,
respectively. The results showed NOAA-St. Louis model performed better (close to the
CFSR model) than for the NOAA-Edwardsville considering average MAE, whereas the
trend was opposite for R.



Hydrology 2022, 9, 37 9 of 18

Table 3. Difference in model performance statistics between NOAA-Edwardsville Vs CFSR and
NOAA-St. Louis Vs CFSR precipitation models for groundwater elevations and surface water flows
at four random stations.

Groundwater Elevation

NOAA-Edwardsville
Parameters GW1 GW2 GW3 GW4 Average

R 0.80 0.73 0.78 0.82 0.78
MAE (m) 0.09 0.09 0.11 0.07 0.09

NOAA-St. Louis
R 0.70 0.63 0.58 0.68 0.65

MAE (m) 0.03 0.10 0.23 0.21 0.15

Surface Water

NOAA-Edwardsville
Parameters SW1 SW2 SW3 SW4 Average

R 0.66 0.62 0.63 0.64 0.64
MAE (m3/s) 1.02 0.38 0.02 0.03 0.78

NOAA-St. Louis
R 0.46 0.38 0.34 0.45 0.41

MAE (m3/s) 0.91 0.31 0.02 0.02 0.68

3.2. Effect of Precipitation on Groundwater and Surface Water Flows
3.2.1. Sensitive Variable (i.e., Groundwater Elevations or Surface Water Flows)

The weighted average MAE (considering all four stations) for simulated groundwater
elevations and surface water flows were 0.07% (0.06% to 0.08%) and 6.71% (0.81% to 11.19%)
for NOAA-Edwardsville and NOAA-St. Louis models, respectively (Table 4). Similarly,
the average R were 0.78 (0.73 to 0.82) and 0.66 (0.63 to 0.72) for simulated groundwater
elevations and surface water flows, respectively (Table 4). Therefore, differences were
higher for surface water flows considering both MAE and R. Nevertheless, differences
in daily average groundwater and surface water flow between NOAA-Edwardsville and
NOAA-St. Louis models vary at each station (Figures 4 and 5). For example, the difference
in surface water flows varied from −18% to 10% at station 1, whereas −4% to 1% at station 4
(Figure 5). Negative values indicated higher surface water flows or groundwater elevations
for the NOAA-Edwardsville model.

Table 4. MAE (%) and R between NOAA-Edwardsville Vs NOAA-St. Louis models for groundwater
elevations and surface water flows at four random stations. The difference MAE (%) is calculated
relative to the NOAA-Edwardsville model.

Parameters GW/SW1 GW/SW2 GW/SW3 GW/SW4 Average

Groundwater
R 0.80 0.73 0.78 0.82 0.78

MAE (m) 0.07 0.06 0.08 0.06 0.07

Surface Water
R 0.72 0.64 0.65 0.63 0.66

MAE (m3/s) 5.22 9.61 0.81 11.19 6.71

3.2.2. Seasonal Variations of Difference in Surface Water Flow with Respect to Change
in Precipitation

Considering all (April 2005 to April 2007) datasets, the difference in precipitation
between NOAA-Edwardsville and NOAA-St. Louis gauge was 12.6%, whereas the dif-
ference in surface water flows was 19% (Figure 6). Seasonal differences in precipitation
varied between 6% (summer) to 18% (winter), which resulted in the difference in surface
water flow between 4.6% (fall) to 36% (winter) (Figure 6). The difference in surface water
flows was relatively lower in fall (4.6%) and summer (11.4%) compared to spring (12.9%)
and winter (36%). The highest difference for surface water flows was in the winter (36%)
between NOAA-Edwardsville and NOAA-St. Louis models.
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Figure 4. Distribution of difference (%) in simulated daily groundwater elevations at four different
stations for NOAA-Edwardsville and NOAA-St. Louis models.

Figure 5. Distribution of difference in simulated daily surface water flows at four different stations
from NOAA-Edwardsville and NOAA-St. Louis models. (a) Station 1; (b) Station 2; (c) Station 3;
(d) Station 4.
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Figure 6. Difference in precipitation (Precip.) and surface water flows (SWF) considering all (April 2005
to January 2007) and seasonal datasets based on NOAA-Edwardsville and NOAA-St. Louis models.

4. Discussion
4.1. Model Performance

We estimated the model performance statistical indicators R, MAE, BIAS, and NSE to
analyze model performance against measured groundwater elevations and surface water
flows at USGS gauge stations (Figure 1) [75,76]. We observed mixed model performance
based on different statistical model performance indicators. The model performed satisfac-
torily considering MAE, where the values were generally less than half of SD (standard
deviation) of observed flows [76] (Table 2). The model performance was comparable to
past studies considering statistical model performance indicators [77,78]. The model per-
formance was similar during calibration and validation periods (Table 2). In general, the
model overpredicted baseflow during non-rainfall events for both calibration and valida-
tion periods (Figure 3). Nonetheless, based on the criteria suggested by prior researchers
for model performance interpretation, the model performance for a small watershed is
deemed satisfactory [67,75,76].

The model performances were analyzed by removing the days when the measured
precipitation at CFSR and NOAA-Edwardsville gauge stations differed considerably during
calibration and validation periods. Based on our judgement, precipitation measurements
had uncertainties (either in CFSR or NOAA-Edwardsville gauges) during those days. We
removed 34 (2.3%) and 12 (1.3%) data points out of 1461 and 913, respectively during the
calibration and validation processes. Therefore, care should be taken while interpreting
the model performance. It is a common practice to remove poorly performing datasets
during hydrological model results analyses, however, it may change statistics and data
distribution (e.g., mean, SD and range) [79–82].

Furthermore, we calculated the correlation between the measured precipitation (CFSR)
and surface water flows at a USGS SW-GC gauge station (April 2005 to March 2012),
which was relatively low (R = 0.53) (Figure 7a). The differences were evident during high
precipitation and flow events. The lack of good correlations between measured surface
flows and precipitations as well extreme events may cause poor model performance.

This study used CFSR based precipitation for model calibration, which was interpo-
lated on a 38 km grid [35]. Various studies have shown that spatially distributed rainfall
at a fine resolution is required for small scales analyses [40,83]. For example, 2 km grid
rainfall was suggested by Bell and Moore [41] to model a small watershed (i.e., 132 km2

in size).
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Figure 7. Correlations between (a) CFSR based precipitation and surface water flow (USGS gauge
station at Glen Carbon), (b) CFSR and NOAA-Edwardsville precipitation, and (c) CFSR and NOAA-St.
Louis precipitation.

A small watershed may have a steep flow slope (flow change faster), high flow
variations, and flashy hydrographs compared to a moderate and large watershed that
may cause unsatisfactory model performance [46]. Runoff estimation improves as the
watershed size increases, despite low rainfall resolution data [40,84]. Cunha, Mandapaka,
Krajewski, Mantilla and Bradley [31] investigated the impact of the radar-rainfall error
on hydrological model simulated flood magnitude and concluded that uncertainties in
simulated peak flow decrease considerably with larger watersheds. Furthermore, as the
watershed area increases, the peak flow differences at outlets were practically negligible.
The measured surface water flows at the USGS gauge station were comparatively variable
(flashy) than measured precipitation in this study, which is a typical trend for a small
watershed (Figures 3 and 7a). Furthermore, another study showed that the calibration
performance of the model was distinct for two different precipitation datasets (gauge
station and NEXRAD). The NEXRAD data performed better than the gauge station for a
small watershed [28]. Therefore, we speculated that the model performance was affected
by a small drainage area (21.3 km2 at the USGS gauge station) and limited observed data
(single gauge station for groundwater and surface water measurements) availability in this
study. The GW-GC station had 20 and 11 groundwater elevations measurements during
the calibration and validation periods, respectively. Additionally, GW-PB (Figure 1) has
only a total of seven data points, which were used to further verify the model performance
for groundwater elevation predictions [85].

The time step and the grid size used in the model can affect the model perfor-
mances [86–88]. A daily time step was used in this study, but Zhang, Wang, Sun, McNulty,
Zhang, Li, Zhang, Klaghofer and Strauss [67] suggested that the daily (24 hours) time
step may not be sufficient to capture a quick response of precipitation on surface runoff in
overland flow dominant watersheds. The model was not able to predict highly variable
surface water flows at the USGS gauge station as a result of rainfall. Specifically, during
high events, peak flows occur within a few hours (less than 24 hours model time step) in
the Canteen-Cahokia watershed, which comprises low stream lengths and channels [89].

Evapotranspiration (ET) had significant effects on groundwater and surface water
flows [90]. A total of nine different land-use types (developed land, cultivated crops, bare
soil, deciduous forest, evergreen forest, hay/pasture, woody wetlands, open water, and
herbaceous wetlands) were considered in the analysis. An inaccurate representation of
land-use impacts surface runoff, soil moisture, and groundwater recharge spatially and
temporally in a distributed hydrological model [9,65,91,92]. Furthermore, because of lack
of sufficient vegetation parameters (i.e., LAI and RD), temporal vegetation distribution was
assumed to be constant and such a generalization can impact the model performance [93].

Despite some uncertainties in the model, we deemed that the model performance is
acceptable to analyze the effects of precipitation on groundwater and surface water flows
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in a small watershed. Although the calibrated model (with CFSR precipitation) had certain
uncertainties in model parameters, it was consistent across all three models. Therefore, the
model should not noticeably distort the outcome when comparing the effects of different
types of precipitation on hydrological processes.

Precipitation has the most critical influence on hydrological processes [28,39]; therefore,
quality data is warranted for better model performance. The lack of finer spatial resolution
of precipitation, and a high level of sensitivity of precipitation on a smaller spatial scale
watershed influences the performance of the hydrological model [28]. Despite NOAA
gauge network and radar-based precipitation being available for larger areas and different
temporal resolutions (e.g., daily), uncertainties remained, which effect simulated hydro-
logical processes [31,39]. Therefore, our results showed the importance of spatially and
temporally varied high-resolution precipitation and surface water flow measurements for
better model performance in small watersheds specifically to simulate surface water flows.
The model performance is also affected by uncertainties in other datasets such as meteoro-
logical, land-use, soil type, topography, observed surface water flows and groundwater
elevations, and scale (size) of the watershed [16,30,49].

Nonetheless, each of the models can be calibrated using NOAA meteorological and
precipitation data. In that case, the effects of precipitation on groundwater elevations and
surface water flows may have been different [35]. However, there is a fundamental issue
with calibrating the model with different datasets and comparing the results. For example,
calibrations using the two data sources may result in different model parameterizations,
although having the same watershed characteristics. This may cause parameters overly
influential in model results, which is also known as an equifinality [15,39].

We did not find a consistent pattern that the nearer gauge (i.e., NOAA-Edwardsville)
station precipitation model performance is better (close to the CFSR model) than the farther
gauge (i. e., NOAA-St. Louis) considering different statistical model performance indicators
(MAE and R) for groundwater elevations and surface water flows at individual random
stations (Table 3). However, Radcliffe and Mukundan [35], found better results from the
model that has precipitation measured at a nearer gauge station than for the farther one.

CFSR Vs NOAA-Edwardsville (R = 0.31) measured precipitation had a higher correla-
tion than for CFSR Vs NOAA-St. Louis (0.005) (Figure 7b,c). Our results showed a similar
pattern (NOAA-Edwardsville performing better) for simulated groundwater elevations
and surface water considering R (Table 3). However, NOAA-St. Louis model had a lower
average MAE than for the NOAA-Edwardsville, despite NOAA-Edwardsville average
precipitation being closer to the CFSR. The average ± SD (standard deviation) precipita-
tion (April 2005 to January 2007) at CFSR, NOAA-Edwardsville, and NOAA-St. Louis
gauge stations were 2.43 ± 6.34 mm, 2.46 ± 7.33 mm, and 2.17 ± 6.72 mm, respectively.
Nevertheless, we just considered two gauge stations located around the watershed, but
need to analyze results based on multiple gauges farther apart spatially before drawing
any concrete conclusion regarding the model performance based on spatial distances of
gauge stations.

4.2. Effects of Precipitation on Groundwater and Surface Water

An analysis of the most sensitive variable (groundwater elevation or surface water
flow) showed that the effect of precipitation is more considerable in surface water flows
(0.81% to 11.19%), than groundwater elevations (0.06% to 0.08%) (Table 4). Effects vary
noticeably considering individual stations and daily average flows and groundwater
elevations (Figures 4 and 5). Although past studies have shown contradicting results
regarding the relationship between precipitation and groundwater elevations [50–52], our
results showed minimal (0.06% to 0.08%) effects of precipitation on simulated groundwater
elevations. Our results are consistent with Gardner and Heilweil [94], where they concluded
groundwater elevations respond slowly to precipitation.

Our study did not show a systematic change in surface water flows as a result of the
difference in precipitation (Figure 6) but they were season-specific. We found the lowest



Hydrology 2022, 9, 37 14 of 18

difference in surface water flows in summer and fall seasons, which might be due to a
higher evapotranspiration rate resulting in lower flows in rivers [95]. Evapotranspiration
increases with higher atmospheric temperature and impacts surface runoff balance in
river systems. The difference in surface water flow change depends on precipitation,
atmospheric temperature, evapotranspiration as well as groundwater contributions [50–53],
which support our results. Surface water flows changes were relatively less in summer
and fall seasons despite higher differences in precipitation (Figure 6) because of higher
evapotranspiration from the system [95]. Decreasing trends in baseflow within the US
Midwest are attributed to increasing temperatures and evapotranspiration during the
summer months [53].

4.3. Study Application

Our study has shown that care should be taken while selecting input datasets (e.g.,
precipitation) for hydrological model development and forecasting hydrological pro-
cesses [16,39]. Many important factors should be considered before selecting precipitation
data sources for simulating groundwater elevations and surface water flows, for exam-
ple, the spatial and temporal scale of the model, rain gauge data availability, watershed
area, input data quality, and model structure and spatial discretization [28]. Based on our
results, the effects of precipitation uncertainties on simulated surface water flows vary
season by season because of changing atmospheric temperature and evapotranspiration
processes [95]. Our results suggested that high temporal and spatial resolution input data
and the data used for model calibration (groundwater elevation and surface water flows)
would improve hydrological model performance to simulate surface water flows than for
groundwater elevations. The results emphasized the importance of the accurate input
datasets (e.g., precipitation) for reliable model predictions [39,48]. The model developed
in this study can be used to simulate hydrological processes in the future for the Canteen–
Cahokia watershed to analyze impacts on future climate change and land cover changes
due to urbanization on the hydrological process (groundwater elevations and surface
water flows), and subsequent impacts on ecosystems (aquatic and riparian) and urban
flooding [96,97]. This study is focused on a small watershed; therefore, further studies are
required to transfer the findings to other watersheds in different geographic regions and
large watersheds.

5. Conclusions

A spatially distributed MIKE SHE integrated hydrological model was calibrated and
validated with daily averaged measured groundwater elevations and surface water flows.
The calibrated model was used to analyze the effects of different precipitation on simulated
hydrologic processes (i.e., groundwater elevations and surface water flows). The MIKE SHE
model was able to predict surface water flows and groundwater elevations with reasonable
accuracy at daily time steps for a small watershed. The study did not conclusively show
that the model based on precipitation measured at nearer gauge (NOAA-Edwardsville)
performs better than the model based on farther gauge (NOAA-St. Louis) precipitation.

The analyses for the most sensitive model output variable showed that differences
in precipitation had noticeable (0.81% to 11.19%) effect on simulated surface water flows,
whereas it had minimal (0.06% to 0.08%) effects on groundwater elevations. We found
greater differences in simulated surface water flows in spring (12.9%) and winter (36%)
compared to summer (11.4%) and fall (4.6%) due to difference in precipitations (6% to 18%)
measured at NOAA-Edwardsville and NOAA-St. Louis gauges. The study showed that
uncertainties in precipitation on simulated surface water flows vary with the season in a
small watershed.
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