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Abstract: Evapotranspiration (ET) provides important information for hydrological studies, includ-
ing estimating plant water requirements which can be derived from remote sensing data or simulated
using hydrological models. In this study, ET derived from the Moderate Resolution Imaging Spec-
trometer (MODIS) was compared with ET simulated by the calibrated and validated Soil and Water
Assessment Tool (SWAT) model for the Big Sunflower River watershed (BSRW) in Mississippi. The
comparisons were made based on 8-day, 1-month, seasonal, and annual timescales. The coefficients
of variation (COVs) for the 8-day, 1-month, seasonal, and annual ET simulated by SWAT were 0.42,
0.40, 0.32, and 0.04, respectively, whereas the COVs for the ET derived from MODIS were 0.06, 0.12,
0.08, and 0.01 for the respective time scales. Lower COVs for the ET derived from MODIS indicated
lower sensitivity to crop growth in the field. SWAT-simulated ET was the highest during crop grow-
ing season and lowest during dormant season, but MODIS-derived ET did not vary considerably
according to crop growing or harvesting seasons. As MODIS-derived ET accounts for only climatic
conditions and vegetation cover, SWAT-simulated ET is recommended for the short-term estimation
of crop water requirements because it accounts for climatic, land use, soil, and slope conditions.

Keywords: MODIS; evapotranspiration; remote sensing; SWAT; water balance

1. Introduction

About 60% of the water received by the earth’s surface in the form of precipitation
is transferred back to atmosphere through the evaporation process from the soil and wa-
ter surfaces and the transpiration process from plants in the hydrologic cycle [1,2]. This
combined process of soil-moisture/surface-water evaporation and plant transpiration is
referred to as evapotranspiration (ET). ET is an important component of the hydrologic
system as it accounts for moisture lost by both plants and the land surface to the atmo-
sphere [3]. Thus, like precipitation and runoff, ET is also one of the basic driving factors of
the water balance and is a key component of the hydrologic cycle since it has a vital role
in energy–moisture exchanges between the earth and the atmosphere [4–6]. Estimation of
ET is very essential for the evaluation of the water consumption requirements for different
crops and the management of agricultural watersheds. In general, rates of ET are measured
using ground-based measuring devices, such as large-aperture scintillometers [7] and
lysimeters [8]. When such ground-based ET measurements are not available, ET rates are
either estimated from climate and land surface data using modeling techniques or derived
directly from remote sensing data [9]. Since ground-based measuring methods are very cost
intensive and limited to a specific place and time, modeling techniques and remote sensing
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data analysis are the most effective methods for estimating ET at local, regional, or global
levels. Main sources of ET data include global remote sensing data that may be available in
various spatial/temporal resolutions, data derived using different surface energy balance
models, and data derived from simulation by different hydrologic models [10,11]. Remotely
sensed ET mostly depends on soil and land-use type, whereas ET values simulated by
hydrologic models mostly depend on groundwater availability and weather input [12].

The Soil and Water Assessment Tool (SWAT) employs three ET methods, namely
the Penman–Monteith, the Priestley–Taylor, and the Hargreaves methods to calculate
ET. All these methods require different climatologic inputs, such as the maximum and
the minimum air temperature, solar radiation, relative humidity, wind speed, etc. Some
methods require fewer inputs, while others require a greater number of climatic inputs.
Among these methods, the Penman–Monteith method [13] was used in this study. The
SWAT model has been extensively used all around the world in the estimation of ET [12–14].
SWAT was calibrated for ET using remotely sensed ET data obtained from the MODIS and
Global Land Evaporation Amsterdam Model (GLEAM) and validated using soil moisture
data obtained from European Space Agency Climate Change Initiative in Nigeria [15].
Similarly, ET data obtained from GLEAM were used to improve the model performance
for streamflow simulation in one of the gauged basins with some missing data in Kenya
and Tanzania [16]. SWAT was calibrated using area-weighted remotely sensed ET data,
along with observed streamflow, which showed improved ET-based model calibration but
had no effect on streamflow output [12]. Although it is desirable to calibrate the model for
ET, calibration for longer periods using remotely sensed ET data can impose propagated
error on the model output [17]. The previous studies have directly used remotely sensed
ET data, as observed data, for model calibration and validation [12,16,18].

Although remotely sensed ET data are easily accessible to download from various
sources, these data should not be considered true since they have a lot of uncertainties due to
the misinterpretation of the models, types of input, differences in scale and temporal/spatial
resolution, and data coverage [19,20]. For the continental United States, the uncertainty in
ET data due to vegetation fractional cover ranged from around 6% to 31%, that due to the
Leaf Area Index ranged from around 2% to 14%, that due to surface temperature ranged
from around 4% to 34%, and that due to net radiation ranged from around 4% to 18% [21].

Since ET has an important part in maintaining the water balance, hydrologic mod-
els must be calibrated not only for streamflow but also for ET [12]. Higher resolution
remotely sensed data, along with data from monitoring sites, can be helpful in the more
precise evaluation of hydrologic conditions [22]. Remotely sensed ET data has been used
by various researchers around the world to improve discharge simulation, flood forecast-
ing, and agricultural yield simulation [23,24]. However, remotely sensed ET data have
some uncertainties due to fractional vegetative cover, model falsifications, coverage, and
inputs [20]. If these remotely sensed ET data are used without much care, it can lead to
propagated error in model simulations [18]. Therefore, the remotely sensed ET must be
carefully evaluated and compared with other sources before applying them in estimating
water resources. Relative accuracy of the data obtained from different sources should be
extensively explored to improve the understanding of ET estimation. ET estimated by
single and double source models like SEBAL, SEBS, P-TSEB, and S-TSEB using remotely
sensed data were compared to examine their utilities and limitations under a wide range of
land cover conditions, where S-TSEB was found to have the highest accuracy with reference
to SWAT-based ET [25]. Two satellite-based ET (MODIS and AVHRR) were compared with
SWAT-simulated ET for in the watersheds in Ethiopia, which showed that AVHRR ET
better agreed with SWAT-simulated ET than MODIS ET [20]. MODIS ET of various spatial
resolutions were compared with SWAT ET for one of the watersheds in Australia, which
showed that the difference between the MODIS and SWAT ET were 31, 19, 15, 11, and 9%,
respectively, for 1, 4, 9, 16, and 25 km2 spatial resolutions [4].

In this study, ET simulated by SWAT and derived from the MODIS [26] aboard the
National Aeronautics and Space Administration (NASA) Terra satellite are compared.
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MODIS-ET data are available for each 8-day interval. Since ET estimation is also linked
to crop water requirement sand crop growth, it may not be accurate to evaluate the per-
formance of crop growth in the 8-day interval. Thus, evaluation of monthly and yearly
ET needs to be performed to observe the effect of ET on crop growth. Crop yield can be
better analyzed according to season; the evaluation of seasonal ET is therefore beneficial
for the evaluation of ET effects on crop yield. The main goal of the study is to compare
SWAT-estimated ET with MODIS-derived ET for the study area and gain a better under-
standing of the difference between them. Moreover, the goal of the study is to also analyze
the possible causes of these differences. Although the MODIS ET product has been widely
studied and compared with other ET methods, such as energy balance and hydrologic
models, SWAT ET has not been compared with MODIS ET for the different timescales for
this watershed. This study evaluated the hypothesis that SWAT-simulated ET can capture
seasonal variation in comparison to MODIS-derived ET by comparing these two datasets
for the BSRW using statistics such as mean, standard deviation, COV, and coefficient of
variation (R2).

The specific objectives of this study were to: (a) simulate and develop time series for
SWAT-simulated and MODIS-derived ET data for the BSRW sub-basins; (b) compare the ET
estimated by SWAT with ET derived by MODIS for 8-day, 1-month, seasonal, and annual
timescales; and (c) discuss the possible causes of the differences in ET derived from MODIS
and simulated by SWAT.

2. Materials and Methods
2.1. Study Area

The BSRW, located in the northwestern part of Mississippi (Figure 1) and having
drainage area of about 10,500 km2, was selected for this study. The watershed has a plain
topography with maximum slope of 1% in south and 3% in north [27]. The major soil types
found in the watershed were Sharkey, Dowling, Forestdale, Alligator, and Dundee, having
higher percentages of clay and silt. Moreover, about 70% of the watershed area is covered
by agricultural fields with good vegetation that are utilized by modeling algorithms to
estimate ET [28].
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2.2. Climate of the Study

Average annual rainfall received by the watershed area was 1371 mm and the average
annual temperature was 18◦C [29,30]. The watershed received the highest rainfall during
the month of March with an average monthly precipitation of 219 mm and lowest rainfall
during September with average monthly precipitation of 70 mm (Figure 2). The mean
monthly maximum temperature from June to September was very high, in the range
31–33 ◦C, and the mean monthly minimum temperature from November to February was
very low, in the range 0–4 ◦C (Figure 2). Only 30% of annual rainfall occurred during the
period from May to September, which is the growing season for crops in the BSRW.
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Figure 2. Average monthly minimum, maximum, and average temperature, and precipitation in Big
Sunflower River watershed.

2.3. Evapotranspiration Data

MODIS Global Terrestrial Evapotranspiration ET data (MOD16A2) of 1-kilometer
spatial resolution, similar to other studies [2,20,26], was downloaded for 8-day intervals
for the 109.03 million square kilometers of global vegetated land areas [31]. The algorithm
of MOD16 for ET estimation was based on the Penman–Monteith equation using daily
meteorological reanalysis data and with MODIS data products such as vegetation property
dynamics, albedo, and land cover, and the ET value for each pixel was sum of all 8-day
intervals [31]. MODIS 16A2 from 2010 to 2018 was obtained from the USGS-Global Visual-
ization (GLOVIS) portal [32]. Among 300 available global land tiles, tile h10v05 (horizontal
tile: 10 and vertical tile: 5), where BSRW falls, was downloaded.

2.4. Generation of Sub-Basin Wise ET Timeseries

8-day interval ET data from 01/01/2010 to 12/27/2018 for tile h10v05 were used to
generate a time series of 8-day average ET data for each sub-basin of BSRW using a GIS
model builder in ArcGIS 10.7. The 8-day interval MODIS ET data were downloaded and
placed in a folder. The “Iterate Raster” function was applied to pick one ET raster at a time
and provide input to “Zonal Statistics as Table” tool, which also takes input of sub-basin
layer of BSRW to develop average ET data for each BSRW sub-basin. Average ET values
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for each BSRW sub-basin at 8-day intervals were appended in a new database file (.dbf),
which was further processed to obtain time-series average ET data for each sub-basin of
BSRW. A schematic diagram of model to generate sub-basin-wise time-series of average ET
data is given in Figure 3.
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data for the watershed.

2.5. SWAT Model

The SWAT is a watershed scale model which is based on water balance concept that
can predict impact of land management on hydrology and water quality [33,34]. SWAT
can simulate runoff, sediment, nutrient, pesticide, and fecal bacteria loads using inputs
such as topography, soils, land-use/land-cover, weather, fertilizers, manures, point-source
pollutants, and management practices adopted [34]. Spatial inputs, such as Digital Eleva-
tion Model (DEM) data of 30 meters resolution, were obtained from United States Geologic
Survey [35]; soil data (SSURGO) were obtained from USDA Natural Resource Conser-
vation Service [36], and land-use/land-cover data were obtained from USDA National
Agricultural Statistics Service [37]. Similarly, daily time series of weather data, such as
precipitation, maximum and minimum temperature, relative humidity, solar radiation,
and wind speed for six weather stations within BSRW were obtained from NOAA [38].
Major crops cultivated in the BSRW are soybean and cotton [39]. The data on planting and
harvesting, tillage, fertilization, irrigation, and other management operations for cotton
and soybean were obtained from MAFES [40].

2.6. SWAT Model Setup

The sub-watersheds and drainage network for the BSRW were delineated using
DEM in Arc-SWAT interface. BSRW sub-watersheds were further divided into multiple
Hydrologic Response Units (HRU), the smallest unit consisting of similar land use, soil, and
slope for the land use and soil type information. The SCS curve number method was used
for the estimation of surface runoff and Penman–Monteith method was used to estimate
ET considering air temperature, relative humidity, solar radiation, and wind speed [41,42].
Since ET data in SWAT model was predicted using meteorological data obtained from
limited weather stations, their evaluation with remotely sensed ET was necessary.

The crop growth and yield in SWAT was simulated using the plant growth module
based on the concept of Environmental Policy Impact Climate” (EPIC) model [43].The
annual crop schedule, including tillage, plantation, fertilization, irrigation, and harvest for
soybean crop is presented in Table 1.
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Table 1. Annual crop schedules for soybean crops established in the Big Sunflower.

Date Operation

April 26 Tillage
May 6 Planting
June 14 Auto-Irrigation
June 20 Auto-Fertilization

October 20 Harvest and Kill

2.7. SWAT Calibration and Validation
2.7.1. Hydrology

SWAT was calibrated and validated for streamflow at three USGS gauge stations within
the BSRW using flow data obtained from Marigold, Sunflower, and Leland. Sequential
Uncertainty Fitting (SUFI-2) algorithm in SWAT Calibration and Uncertainty Procedures
(SWAT-CUP) [44] was used for streamflow calibration. Observed monthly streamflow data
from January 2012 to December 2015 were used for calibration, and data from January 2016
to December 2018 were used for validation. Nine parameters were used during calibration
(Table 2), out of which CN2, GW_DELAY, SOL_AWC, and CH_N2 were the most sensitive
parameters. More details of procedures for streamflow calibration and validation are
available in previous paper [30].

Table 2. SWAT parameters used for the calibration of Streamflow at Marigold, Sunflower, and Leland
gauge stations.

Parameter Description Minimum Value Maximum Value

CH_N2.RTE Manning’s roughness coefficient for channel 0.2 0.4
CN2.MGT Initial SCS runoff curve number −40% 4%

GWQMN.GW Threshold depth of water in the shallow aquifer for return flow 2376.1 7128.9
SURLAG.BSN Surface runoff lag time 5.3 13.8

ALPHA_BF.GW Base flow alpha factor 0.3 0.7
GW_DELAY.GW Ground water delay 154.8 462.5
SOL_AWC.SOL Available water capacity of soil layer −26% 24%
GW_REVAP.GW Groundwater re-evaporation coefficient 0.021 0.140

ESCO.HRU Soil evaporation compensation factor 37% 112%

2.7.2. Crop Yield

Crop yields are one of the indicators of the amount of moisture and nutrient uptake by
vegetation from the hydrological system. Soybean was one of the major crops cultivated in
the BSRW, and crop yield was calibrated (2008–2018) for BSRW sub-basins using soybean
yield data from Delta Branch Farms in Stoneville and validated (2008–2018) using Dulaney
Farms in Clarksdale. The soybean-yield data were extracted from MAFES [40]. For the
crop yield calibration, four parameters, as shown in Table 3, were adjusted.

Table 3. SWAT parameters used for the calibration of annual crop yield at Delta Branch Farms
in Stoneville.

Parameter Description Calibrated Value Default Range

BIO_E Radiation-use efficiency or Biomass-energy ratio (kg/ha)/(MJ/m2) 30 39 30–39
HVSTI Harvest index 0.35 0.50 0.30–0.50
WSYF Lower limit of harvest index 0.25 0.30 0.25–0.35
BLAI Maximum potential leaf area index 5 6 4–6

2.8. Comparison of SWAT Simulated and MODIS Derived ET

Differences in SWAT-simulated and MODIS-derived ET were mainly evaluated for
the BSRW using coefficient of determination (R2). Apart from this, mean, standard de-
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viations, and COVs for each 8-day, monthly, seasonal, and yearly ET datasets were also
analyzed. For seasonal analysis, only three seasons (spring (15 January–30 April), summer
(1 May–14 September) and fall (15 September–14 January)) were considered, leaving out
winter season because the climate of BSRW is characterized by very short duration of
severe cold weather and the region does not have a winter season at all [38]. Comparison
of long-term average monthly and seasonal ET for both datasets were also performed.

3. Results
3.1. SWAT Calibration and Validation
3.1.1. Streamflow Calibration and Validation

Monthly SWAT calibration (01/2008–12/2012) and validation (01/2013–12/2017) of
streamflow, conducted at three USGS gauge stations (Marigold, Sunflower, and Leland)
within the BSRW, showed that the model performances were reasonable in predicting
streamflow [30,45]. After model calibration, SWAT-simulated streamflow at the outlet of
sub-basins, when compared with the observed flow data at the respective gauging stations,
yielded R2 ranging from 0.73 to 0.79 and NSE ranging from 0.71 to 0.86 (Figure 4) [45].
The SWAT performance was considered as good based on the statistics obtained during
calibration and validation, as per the recommendations from previous SWAT studies [46,47].
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3.1.2. Crop Yield Calibration and Validation

Soybean crop yield during model calibration (2008–2018) at Delta Branch Farms,
Stoneville, showed that the model was capable of simulating crop yield satisfactorily.
The R2 value during model calibration was 0.55 and NSE was 0.45. Similarly, SWAT
model validation (2008–2018) at Dulaney Farms, Clarksdale, showed good agreement
with observed data with R2 of 0.62 and NSE of 0.07 (Figure 5). The gradual increase in
soybean yield was observed, possibly due to the planting of higher yielding soybean
varieties and the adoption of proper management decisions, including but not limited to
the adjustment of planting/harvesting dates, irrigation management, pest management,
and nutrient management.



Hydrology 2022, 9, 103 8 of 14Hydrology 2022, 9, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Comparison of observed vs. simulated annual soybean yield during model calibration and 
validation. 

3.2. Comparison between SWAT-Simulated and MODIS-Derived ET 
3.2.1. Eight-day ET 

Average 8-day ET for the BSRW, as simulated by the SWAT model, was 4.09 mm and 
that obtained from MODIS was 4.75 mm. Standard deviation and COV for SWAT-simu-
lated 8-day ET were 1.72 mm and 0.42, respectively, and MODIS ET for the corresponding 
time period were 0.28 mm and 0.06. The R2 obtained during comparison of 8-day SWAT-
simulated and MODIS-obtained ET was 0.36. Comparison of 8-day SWAT-simulated ET 
and MODIS ET from 1/1/2010 to 12/27/2018 for the BSRW is presented in Figure 6. 

 
Figure 6. Comparison of 8-day SWAT-simulated vs. MODIS evapotranspiration data. 

The maximum value of 8-day ET derived from MODIS was 5.66 mm while that sim-
ulated by SWAT was 8.11 mm. Similarly, the minimum value of MODIS-derived ET was 
4.35 mm and that simulated by SWAT was 0.40 mm. SWAT simulated higher ET than 
MODIS during summer days but lower ET during winter days, possibly because SWAT 
accounts for both daily meteorological data (maximum and minimum air temperature, 
relative humidity, wind speed) and actual land surface conditions (land use, soil, and 

Figure 5. Comparison of observed vs. simulated annual soybean yield during model calibration
and validation.

3.2. Comparison between SWAT-Simulated and MODIS-Derived ET
3.2.1. Eight-Day ET

Average 8-day ET for the BSRW, as simulated by the SWAT model, was 4.09 mm and
that obtained from MODIS was 4.75 mm. Standard deviation and COV for SWAT-simulated
8-day ET were 1.72 mm and 0.42, respectively, and MODIS ET for the corresponding time
period were 0.28 mm and 0.06. The R2 obtained during comparison of 8-day SWAT-
simulated and MODIS-obtained ET was 0.36. Comparison of 8-day SWAT-simulated ET
and MODIS ET from 01/01/2010 to 12/27/2018 for the BSRW is presented in Figure 6.
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Figure 6. Comparison of 8-day SWAT-simulated vs. MODIS evapotranspiration data.

The maximum value of 8-day ET derived from MODIS was 5.66 mm while that
simulated by SWAT was 8.11 mm. Similarly, the minimum value of MODIS-derived ET
was 4.35 mm and that simulated by SWAT was 0.40 mm. SWAT simulated higher ET than
MODIS during summer days but lower ET during winter days, possibly because SWAT
accounts for both daily meteorological data (maximum and minimum air temperature,
relative humidity, wind speed) and actual land surface conditions (land use, soil, and slope)
for daily ET estimation, while MODIS accounts for only climatic data and remotely sensed
vegetation cover data to estimate ET data for each 8-day interval [48].
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3.2.2. Monthly ET

The mean monthly ET for BSRW, as simulated by SWAT, was 15.62 mm and that ob-
tained from MODIS was 18.17 mm. The standard deviation and COV for SWAT-simulated
monthly ET were 6.18 and 0.40, respectively, and that for MODIS-obtained monthly ET were
0.22 and 0.12, respectively. The R2 obtained during comparison of monthly SWAT-simulated
and MODIS-obtained ET was 0.21 (Figure 7).
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Figure 7. Comparison of monthly SWAT-simulated vs. MODIS evapotranspiration data.

The maximum value of MODIS-derived monthly ET was 22 mm (20% greater than
mean monthly ET derived from MODIS) and the minimum value was 13 mm (27% less
than mean monthly ET derived from MODIS). The maximum and minimum values of
SWAT-simulated ET were 28 mm (80% greater than mean monthly ET simulated by SWAT)
and 5 mm (66% less than mean monthly ET simulated by SWAT), respectively.

The long-term average monthly value of SWAT-simulated ET was maximum (23 mm
per month) during June and July and was minimum during January (7 mm per month). The
long-term average monthly value of MODIS ET during June was 21 mm (maximum) and
17 mm in November (minimum). Although the value of both SWAT-simulated and MODIS-
derived ET varied according to months, more variability was seen in SWAT-simulated ET
than in MODIS-derived ET (Figure 8).
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Although the trend of both SWAT-simulated monthly ET and MODIS-derived monthly
ET was similar, more fluctuations were observed for SWAT-simulated ET data. The SWAT
model includes climatic data (maximum and minimum air temperature, relative humidity,
wind speed) and actual land surface conditions (land use, soil, and slope) for ET estimation,
while MODIS includes only climatic data and vegetation data [48].

3.2.3. Seasonal ET

The average value of SWAT-simulated ET for the period of 4 months was 63 mm
and that obtained for MODIS was 73 mm. The standard deviation and COV for SWAT-
simulated ET, averaged for four months, were 20 mm and 0.32, respectively, and that for
MODIS-obtained seasonal ET were 6 mm and 0.08, respectively. The R2 obtained during
comparison of seasonal SWAT-simulated and MODIS-derived ET was 0.86 (Figure 9).
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Figure 9. Comparison of seasonal SWAT-simulated and MODIS evapotranspiration data.

For MODIS, the maximum and minimum values of seasonal ET were 82.3 mm (13%
greater than mean seasonal ET) and 62.6 mm (14% less than mean seasonal ET), respectively.
On the other hand, for SWAT-simulated seasonal ET, the maximum and minimum values
of seasonal ET were 97.8 mm (56% greater than mean seasonal ET) and 43.6 mm (30% less
than mean seasonal ET), respectively.

The long-term average seasonal SWAT-simulated ET was maximum during summer,
with 90 mm/4 months and was minimum during Spring with 47.7 mm. The long-term
average seasonal MODIS ET was also maximum during summer, with 80.9 mm, and
minimum during fall and spring, with 49 mm and 48 mm, respectively. However, the ET
was highest during summer when crops are present on the field and lowest during spring
and fall when fields were mostly fallow. For both the ET datasets, more variability was
seen in SWAT-simulated ET than MODIS ET (Figure 10).

Previous studies on average seasonal ET conducted for 20 stations in the Nile valley
and Nile Delta of Egypt also showed that the highest value of ET (7.5 mm/day) was
observed in summer, and the lowest value of ET (2.3 mm/day) was observed in winter [41].
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3.2.4. Annual ET

The average annual ET for BSRW, as simulated by SWAT, was 187.5 mm and that
obtained from MODIS was 218 mm. The standard deviation and COV for SWAT-simulated
annual ET were 6.87 and 0.04, respectively, and that for MODIS-obtained seasonal ET
were 2.25 and 0.01, respectively. The R2 during comparison of annual SWAT-simulated vs.
MODIS-obtained ET was 0.13 (Figure 11).
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For MODIS, the maximum and minimum values of annual ET were 220.9 mm (1%
greater than mean annual ET) and 214.5 mm (2% less than mean annual ET), respectively.
On the other hand, SWAT-simulated annual maximum and minimum values of ET were
198.8 mm (6% greater than mean annual ET) and 178.3 mm (5% less than mean annual
ET), respectively.

A previous study on average monthly ET, conducted for 20 stations in the Nile valley
and Nile Delta of Egypt, also showed that the highest ET of 9.9 mm/day was observed
in July and the lowest ET of 1.6 mm/day was observed in December [49]. The trend of
seasonal ET for both SWAT-simulated, and MODIS were similar, but more fluctuations
were observed for SWAT-simulated monthly ET data, as seen during the monthly and
8-day analyses. The fluctuation was much lower for annual ET than for 8-day, monthly, or
seasonal ET values.
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4. Discussion

In this study, comparisons of ET data obtained from two different sources, SWAT-
simulated and MODIS, were presented for each 8-day, monthly, seasonal, and annual
timescales. The trends of seasonal ET for both SWAT-simulated ET and that obtained from
MODIS were similar. However, more fluctuations were observed for SWAT-simulated
ET data. The fluctuation for SWAT-simulated ET ranged from −90% to +98% for 8-day,
−66% to +80% for monthly, −30% to +56% for seasonal, and −5% to +6% for annual data.
However, the fluctuation for MODIS ET ranged from −8% to +19% for 8-day, −27% to
+20% for monthly, −13% to +14% for seasonal, and −2% to +1% for annual data. MODIS
ET datasets use sensor-derived parameters such as land surface temperature, leaf area
index, fraction of photosynthetically active radiation, enhanced vegetation index, albedo,
and land cover, and these data may have some uncertainties [20].

The ET estimation is linked with crop growth; it is not practicable to evaluate the
performance of crop growth in each 8-day period or in a month. The MODIS-derived ET
on an annual basis was higher than the SWAT-simulated ET. It is recommended to use
MODIS-derived yearly ET for long-term and seasonal estimations and SWAT-simulated
ET for short-term estimations of crop water requirements. SWAT-simulated ET was the
highest during the crop growing season and the lowest during the dormant season, whereas
MODIS-simulated ET did not vary much according to crop growing or dormant season.
SWAT-simulated ET is more reliable than MODIS-derived ET during the winter season as
SWAT accounts for climatic, land use, soil, and slope conditions, while MODIS accounts for
climatic condition and vegetation cover for ET estimation.

MODIS can provide ET data at higher spatial resolution, whereas SWAT can contin-
uously simulate ET at higher temporal scales. Thus, if MODIS ET is in agreement with
SWAT-simulated ET, both MODIS and SWAT ET can be used in combination for higher spa-
tial resolution [25]. Instead of comparing the SWAT-simulated ET with MODIS-derived ET,
the MODIS ET data can also be useful in further improving the water balance component
and streamflow simulation of SWAT [2]. Accuracy of the model, in terms of both water
and energy balance, can be enhanced by utilizing remotely sensed MODIS ET data during
model calibration [2,18].

Moreover, apart from the methodology for assessing ET data used in this study,
remotely sensed ET data can also be assessed with other methodologies using land use
data, weather data, and hydrological models [20]. The method used in this study, along
with other methods, can be very useful in enhancing our knowledge of the application of
re-mote sensing ET for sustainable water resource management.

5. Conclusions

This study determined that SWAT-simulated ET was able to capture growing and
dormant seasons more accurately than MODIS-derived ET, possibly because SWAT includes
both climatic (maximum and minimum air temperature, relative humidity, wind speed) and
actual land surface conditions (land use, soil, and slope) for ET estimation, while MODIS
includes climatic conditions and remotely sensed vegetation data for ET estimation [40].

The SWAT-simulated ET data showed reasonable variations for all time periods,
as expected and analyzed in this study. MODIS-obtained ET data were determined as
reasonable for the annual time period. This study can be very helpful and applied to
other watersheds, especially in data-scarce regions, to predict crop water requirements and
irrigation scheduling.
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