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Abstract: Quantifying uncertainties in water resource prediction in data-scarce regions is essential for
resource development. We use globally available datasets of precipitation and potential evapotranspi-
ration for the regionalization of model parameters in the data-scarce regions of Ethiopia. A regional
model was developed based on 14 gauged catchments. Three possible parameter sets were tested
for regionalization: (1) the best calibration parameters, (2) the best validation parameter set derived
from behavioral parameters during the validation period, and (3) the stable parameter sets. Weighted
multiple linear regression was applied by assigning more weight to identifiable parameters, using a
novel leave-one-out cross-validation technique for evaluation and uncertainty quantification. The
regionalized parameter sets were applied to the remaining 35 ungauged catchments in the Ethiopian
Rift Valley Lake Basin (RVLB) to provide regional water balance estimations. The monthly calibration
of the gauged catchments resulted in Nash Sutcliffe Efficiencies (NSE) ranging from 0.53 to 0.86. The
regionalization approach provides acceptable regional model performances with a median NSE of
0.63. The results showed that, other than the commonly used best-calibrated parameters, the stable
parameter sets provide the most robust estimates of regionalized parameters. As this approach is
model-independent and the input data used are available globally, it can be applied to any other
data-scarce region.

Keywords: data-scarce region; parameter estimation; uncertainties; ungauged catchment; weighted
regression; water balance

1. Introduction

Global freshwater is particularly stressed by rapidly growing human populations
and all the negative consequences of environmental change. Hydrological quantification
of freshwater resources is crucial to managing and mitigating these impacts and thus
promoting benefits from these resources. As such, there is a growing need for the accurate
monitoring and simulation of water balance components to support and maximize water
resource management practices. In Ethiopia, most of the freshwater lakes are located in the
Great East African Rift Valley, which was formed by volcanic depressions and cracks during
the Pliocene [1]. The region is known for its scarce and limited hydro-climatic data, which
have limited regional understanding of water balance processes. In many developing
regions of the world, hydro-climatic stations are not sufficiently established due to limited
economic and technological development [2]. In the Ethiopian Rift Valley Lake Basin
(RVLB), even the data from the few available gauging networks are of poor quality, contain
gaps, and are subjected to human disturbances. Consequently, the region has remained
one of the least studied in Ethiopia. Due to data scarcity, there is a lack of hydrologic
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simulations using available rainfall-runoff models in poorly managed catchments around
the world. New approaches that use global datasets and quantify the uncertainties of
regionalization would therefore be helpful for these data-scarce regions.

The Prediction for Ungauged Basins (PUB) initiative aims in particular at devel-
oping strategies for better understanding and reduced uncertainty in data-scarce re-
gions [3,4]. Studies have started to focus on ungauged catchment predictions during
the PUB decade [4,5] and in the post-PUB decade [6], including those comparing existing
regionalization approaches for large sample studies [7]. Two general approaches have
been used for predictions in ungauged basins: the first estimates model parameters from
calibrated model parameters based on selected objective functions [8–11]; the second is a
model-independent approach, which uses streamflow signatures to establish constraints
that can describe the physical and climatic characteristics of watersheds [12]. The latter has
been shown to reduce uncertainties that can emerge from the model structural error [13–17].
This approach has shown skill in predicting the expected streamflow in ungauged catch-
ments, especially when going along with the quantification of uncertainties emerging from
observed streamflow data [18]. However, recent work also showed that the information
content of streamflow signatures is limited [19]. A recent study also analyzed the calibra-
tion of the relationship between model parameters and catchment properties, rather than
regionalizing the best-calibrated parameter [20]. So far, however, most of these approaches
have only been applied in data-rich regions of the world. The credibility and validity of
such strategies have yet to be well tested in poorly recorded climatic data regions such
as ours.

Rainfall-runoff models are used to represent the typical physical and climatic prop-
erties of a catchment. The physical representation of the available rainfall-runoff models
may range from parsimonious–spatially lumped to complex physical–spatially distributed
models. The common problem with most rainfall-runoff models is that they require some
sort of parameter estimation to provide robust predictions. Most model parameters are not
directly measurable or linkable to the physical properties of the given catchment because
of model simplifications or disagreements between the model scale and the observation
scale (incommensurability) [21–23]. However, an inherent correlation between the model
parameters and catchment properties can often be assumed [5,7,24,25]. Model parameters
represent the characteristics of the complex catchment system that are difficult to measure
on a small scale. The accurate representation of catchment properties by model parameters
should be evaluated, to some degree, by the selected objective function, which measures the
fit between observed discharge and simulated discharge. However, most of the catchments
are ungauged and their parameter estimations will be subject to uncertainties. Despite the
aforementioned limitations in data-scarce regions, there are some studies that have devel-
oped strategies to derive model parameters at the global scale using various regionalization
approaches [26–28]. In addition, different hydrological models have been employed for
the regionalization studies [6]. Yet, the obtained simulations often show a lack of precision
due to errors emerging from global input data quality and regionalization uncertainty.
Uncertainties would be particularly propagated due to the regionalization method itself
and the human interference in the catchments [28]. Li and Zhang [29] have also found huge
uncertainty from the grid parameter regionalization for regions with rare gauging sites.
Another approach estimates regionalized parameter sets on a global scale by using data
from catchments distributed mainly in temperate regions [30]; their implementation and
validity in the tropics remain questionable because their regionalization procedure does
not include many catchments from this climatic region.

In this study, the applicability of high-resolution global climate data was tested for
deriving parameters of the ungauged catchments through regionalization and demonstrat-
ing a novel leave-one-out spatial cross-validation procedure to quantify regionalization
uncertainties for the region in the RVLB with scarce precipitation data. To reduce the region-
alization uncertainties, the weighted least square regression was applied that accounts for
the errors introduced by unidentifiable model parameters [31]. This brings more advantages
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to the regression model by increasing the representation of catchments with identifiable
parameters. Other than the typical approach of using the best-calibrated parameters of the
gauged catchments, e.g., Wagener and Wheater [10]; Singh et al. [32]; Lane et al. [33], the
idea of using multiple similar parameter sets for regionalization was extended. Previous
studies already considered multiple similar parameter sets for regionalization [34] and
calibrated the relationship between the model parameters and catchment properties [20].
However, to our knowledge, the differences between using the best-calibrated parame-
ter, the best parameter set in the validation period, and the most stable parameter set
considering their performance in the calibration and validation period have not yet been
explored. A spatial split-sample test was used to evaluate the best-calibrated parameter,
the best parameter set in the validation period, and the most stable parameter set consider-
ing their performance in the calibration and validation period for their adequateness for
regionalization. We presented this new approach to quantify uncertainty in regional model
development that can be adapted for data-scared regions. We have also demonstrated the
applicability of global climate datasets for deriving the regional model. Rather than using a
common best-calibrated parameter set to derive the regional model, we compared three
different approaches to find the best regional parameter sets. Although our approach uses
a low number of catchments, we demonstrate acceptable regional simulation performance.
Thus, the objective of this study is to identify the most reliable regional model that can be
derived from the three different best parameter sets. In addition, the study hypothesized
that a parameter set that is stable over time (based on its performance during calibration
and validation) could lead to a more stable spatial extrapolation of the parameters among
the three approaches for deriving the best parameter sets. Due to the limited number of
observations of streamflow data, this approach is implemented to a relatively low number
of 14 gauged catchments with reliable streamflow data to estimate the water balances of
35 ungauged catchments in the RVLB. Repeating the leave-one-out spatial split-sample
test multiple times, the uncertainty was quantified that goes along when regionalizing
parameter sets from a low number of catchments. That way, this study provides useful
directions for regional modeling and uncertainty quantification in under-represented and
data-scarce regions such as the RVLB, where assessments of the impacts of climate variabil-
ity and climate changes are most urgently needed. The remainder of the paper is outlined
as follows: A description of the study area and the datasets used in Section 2; A model
description and the overall parameter estimation and evaluation procedure in Section 3; A
comparison of regionalization results in Section 4; Discussion in Section 5; The summary of
conclusions in Section 6.

2. The Study Area

The RVLB is located in the southern part of the Main Ethiopian Rift Valley and covers
an area of 53,035 km2, providing water supply to a population of more than 15 million
people who live mainly on subsistence agriculture (Figure 1). The RVLB is 84 km wide, and
adjacent to it there are large, discontinuous Miocene-aged normal faults [35,36]. Within
the Main Ethiopian Rift, there are a series of right-stepping, quaternary rift basins, which
have faulted magmatic segments, extending about 20 km wide and 60 km long, that are
embryonic oceanic spreading centers. The central part of the RVLB is formed by a Pliocene-
aged, faulted caldera, caused by a fractured volcano [1]. Existing faults and repeated
ground cracks at the floor of the caldera have increased the permeability of the rock.
Within the basin, several small-to-medium-sized catchments drain into eight freshwater
lakes. For most of these catchments, there is a lack of hydro-climatic data; what data are
available contain gaps and are subject to human interventions. In recent decades, the RVLB
has experienced major droughts and extreme flooding due to rainfall variability, making
prediction difficult [37]. This has resulted in an uncertain analysis of high and low flows,
factors that are important for quantifying the hydrological water balance components in
this region.
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Figure 1. The study basin showing 14 gauged catchments for the regional model development and
35 ungauged catchments that are draining to the respective lakes through the river networks.

The climate is characterized by the range from semi-humid to semi-arid subtropical
climate in the central and southern part of RVLB with a mean annual temperature of
20 ◦C [38]. In the same region, the long-term analysis of annual average precipitation
shows a variation in the range of 951 mm to 1653 mm, and such variations are attributed
to the topographic differences in the region [38]. However, catchments in the northern
part of RVLB are characterized as sub-humid and humid climates, with average annual
precipitation of 1050 mm and temperatures of around 15 ◦C [39,40].

Data and Catchment Properties

The regionalization procedure used precipitation products of Multi-Source Weighted-
Ensemble Precipitation (MSWEP) version 2 and evapotranspiration from the Global Land
Evaporation Amsterdam Model (GLEAM V3) (Table 1). MSWEP products have recently
developed precipitation datasets at a finer scale (0.1◦), which are constructed using different
sets of precipitation data from gauges, monthly satellite data, and re-analysis data on the
global scale. The global MSWEP data have been evaluated and showed better performance
for data-scarce regions including Ethiopia [41]. The data product has been widely applied
for the evaluation of gridded satellite products and regionalization studies in data-scarce
regions [42]. For the discharge data due to monitoring and organization issues, high-quality
streamflow data are only available from 1995 to 2007. The data for the recent period
(2008–2015) are mostly not available for the user, and the available parts are of poor quality.
We, therefore, collect the daily streamflow data for the period from 1995 to 2007 from the
Ministry of Water Irrigation and Energy of Ethiopia (MOWIE) for 14 catchments in the
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RVLB. The 14 catchments provide a sufficient length of data (>10 years) for these simulation
periods. The area of 14 catchments ranges from 144.2 to 4528.2 km2.

Table 1. Variables showing the climatic and physiographic data and their resolutions and periods.

Variable Spatial
Resolution Time Period Temporal

Resolution Source Reference

Precipitation 0.1◦ 1995–2007 Daily MSWEP V2 Beck et al. [41]

Potential
evapotranspiration 0.25◦ 1995–2007 Daily GLEAM v3 Martens et al. [43]

HBV-parameters 0.5◦ - -
www.gloh2o.org

(access date
12 January 2020)

Beck et al. [30]

Elevation 30 m - - SRMT V2.1 https://earthexplorer.usgs.gov
(access date 28 January 2020)

Wetness index
(P/PE) Point scale 1995–2007 Daily MSWEP V2 and

GLEAM v3
Beck et al. [41];

Martens et al. [43]

Streamflow Pont scale 1995–2007 Daily MOWIE -

Catchment properties are common descriptors of the hydrological process and are
frequently applied to estimate model parameters in ungauged catchments. However, there
is no general rule to select suitable properties. The available option should be a selection of
as many catchment descriptors as possible while reducing correlated catchment properties
so as to exclude redundant information and obtain independent variables. In this regard,
the main criteria to select catchment properties is that they are model-independent and can
be used for model predictions to be hydrologically realistic in both gauged and ungauged
catchments [12]. For reliable regionalization, a sufficient number of catchment properties
should be selected. Their selection, in turn, depends on data availability, hydrologic
relevance, and the suitability of the properties. With these considerations, nine catchment
properties were derived from the physical and/or climatic information in both gauged
and ungauged catchments from the RVLB. Due to the lack of local land cover and soil
property data, the catchment properties that need to be derived from those data are not
included in the analysis. Physical catchment properties such as drainage area, drainage
density, mean catchment slope, mean elevation, and catchment index were extracted from
the Digital Elevation Model (DEM). Climatic properties of potential evapotranspiration
and precipitation that usually affect the rainfall-runoff process were extracted from the
global data sets (Table 2 and Table S2). Other physical properties where local information is
not available, such as permeability and porosity, were extracted from the global datasets
prepared by Huscroft et al. [44]. These dominant catchment properties are also widely
applied in the previous regionalization studies using the HBV model structure [7,45,46].

Each parameter in the HBV model has a certain physical interpretation that can be
linked with the selected catchment properties. Previous study has also shown that a
sufficiently large correlation coefficient between catchment property and model parameter
can be a good indicator of the predictive power of the selected catchment properties,
provided there is no collinearity between them [47]. Considering this, nine catchment
properties were carefully selected that will be linked with the physical interpretation of
the calibrated HBV model parameters (see Section 3.1). By undertaking this, catchment
properties that have redundant information and may not be suitable for regionalization
were also removed.

www.gloh2o.org
https://earthexplorer.usgs.gov
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Table 2. Descriptions and values of properties for gauged catchments in the RVLB that were used for the development of the regional model.

Cat No and
Names at the

Gauge
Location

Catchment
Properties

Drainage
Area [km2]

Drainage
Density

[km km−2]

Mean Slope
[%]

Mean
Elevation [m]

Catchment
Index

[m km−1]

Permeability
[log10 m2]

Porosity [-] Wi [-] P [mm]

Description
of properties

Index of
catchment

area

The ratio of
catchment

stream length
to the

drainage area

Mean of the
percentage

slope for each
terrain unit

Index
describing the

mean of
catchment
elevation

Mean of all
inter-nodal
slopes in a
catchment

Index
describing the

nature of
water flow in
the shallow

aquifer

The fraction of
the volume of
voids in the

shallow
aquifer

Wetness index
(Wi) as the ratio of

precipitation (P)
to potential evapo-

transpiration
(PE)

Annual
average

precipitation
(1995–2007)

#01-Bilate@Tena 3821.2 0.075 16.22 2037.1 10.07 −12.194 0.07 0.85 923.6

#02-Gelana@Tore bridge 506.4 0.124 24.17 2084.5 10.39 −12.5 0.09 1.17 1309.1

#03-Gidabo@Measso 2590 0.113 20 1805.4 14.54 −12.248 0.097 0.85 942.07

#04-Gedemso@Langano 241.5 0.67 18.1 2759.3 28.11 −12.5 0.09 0.88 919.19

#05-Woito@Bridge 4528.2 0.07 29.09 1439.5 10.64 −11.433 0.028 1.34 1319.6

#06-Hamassa@Wajifo 534.4 0.34 15.86 1655.5 15.22 −12.306 0.076 0.94 1208

#07-Hare 196.5 0.36 33.08 2343.1 77.67 −12.2 0.076 0.897 1107.5

#08-Katar@Abura 3241.1 0.115 8.7 2601.9 19.99 −12.034 0.064 0.69 779.8

#9-Kulfo@Arbaminch 397.2 0.226 36.39 2249.9 76.55 −12.283 0.08 1.52 1617.8

#10-Meki@Meki village 2033.1 0.111 19.27 2124.4 11.12 −12.155 0.068 0.58 667.2

#11-Gidabo@Bedesa 144.2 0.341 30.18 2149.7 56.74 −12.5 0.09 1.29 1397.7

#12-Katar@Fete 1940.9 0.117 14.49 2668.9 17.78 −12.171 0.075 0.87 991.2

#13-Katar@Timela 205.2 0.65 18.29 2953.5 40.87 −12.371 0.084 0.7 785.6

#14-Gidabo@Aposto 491.8 0.327 21.49 2012.6 26.76 −12.483 0.089 1.18 1300.1
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3. Methods

The concept of the regionalization procedure is shown in Figure 2. Global climatic
forcings of precipitation and potential evapotranspiration were applied for parameter
estimation in the gauged catchments using the HBV hydrologic model. The precipitation
products of the Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2 and
evapotranspiration of the Global Land Evaporation Amsterdam Model (GLEAM V3) were
used for the study. Parameter sets that perform best during calibration and validation
and ones that are stable between calibration and validation (stable parameter sets) were
derived. Using the best parameter sets from calibration, a correlation analysis was con-
ducted with the physical and climatic properties of gauged catchments, which forms the
basis for the regression. By applying the best parameters from the calibration, validation,
and stable sets, three regression models were derived in the leave-one-out procedure and
the one that performed best was selected. The parameters of the ungauged catchment
were estimated by applying the ungauged catchment properties to the regression mod-
els (Figure 2). In addition, the regionalization uncertainty was quantified through the
spatial cross-validation procedure that applies the leave-one-out method (see Section 3.4).
Consequently, the parameters derived from the regression were evaluated by comparing
the discharge observations and simulations of the gauged catchments on their calibration
(1995–2002) and validation periods (2003–2007). Comparing their performances during the
calibration and validation period enables the selection of the best regional models derived
from the parameters estimated from calibration, validation, and stable sets.

Figure 2. Schematic diagram showing the entire procedure applied in this study.
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3.1. Hydrological Model

In this study, a lumped HBV hydrologic model was used [48,49], which has been ap-
plied in a wide range of climatic and physiographic conditions [50,51]. The HBV model has
been tested in various parts of the world and frequently applied in several regionalization
studies due to the simplicity and flexibility of its model structure [24,25,45,52–55].

This study applied the HBV model modified by Zhang and Lindström [51] and
Beck et al. [30]. The model was run at a daily time scale using daily inputs of precipita-
tion and potential evapotranspiration. The lumped HBV model uses effective/average
precipitation in the catchment domain as input. Since the aim of this study is to explore the
possibility of using global precipitation products in data-scare regions, the gridded MSWEP
V2 precipitation data were used. The data have been evaluated with separate gauge-radar
data and have undergone bias correction so that the influence of elevation was indirectly
considered while producing the gridded precipitation data. Due to the absence of snow
processes in the RVLB, the model consisted of routines of soil moisture accounting, runoff
response, and a channel routing procedure, which are controlled by nine model parameters
(Table 3). Three calibrated parameters, β, FC, and LP, control the soil moisture dynamics. β
controls the contribution (dQ) to the runoff response routing and the increase (dP-dQ) in
soil moisture storage (Ssm) and FC is the maximum soil moisture storage in the model as
shown by Equation (1). LP is the value of the soil moisture above which evapotranspiration
(Ea) reaches its potential level (Ep). The actual evaporation from the soil moisture zone
equals the potential evaporation if Ssm/FC is above LP * FC as shown by Equation (2).

dQ
dP

= (
Ssm

FC
)

β

(1)

where dP and dQ are precipitation and runoff [mm d−1].

Ea = EP.min(
Ssm

FC.LP
, 1) (2)

Table 3. HBV parameter ranges for the RVLB and their descriptions, derived from Beck et al. [30].

Parameter Description Global Range (Min to Max)

β [-] Shape coefficient of recharge function 1–6

FC [mm] Maximum water storage in
unsaturated-zone store 50–700

K0 [d−1]
Additional recession coefficient of upper

groundwater store 0.05–0.99

K1 [d−1]
Recession coefficient of upper

groundwater store 0.01–0.8

K2 [d−1]
Recession coefficient of lower

groundwater store 0.001–0.15

LP [-] Soil moisture value above which actual
evaporation reaches potential evaporation 0.3–1

MMAXBAS [d] Length of equilateral triangular
weighting function 1–3

PMAX [mm d−1] Maximum percolation to lower zone 0–6

VUZL [mm] Threshold parameter for extra outflow
from upper zone 0–100

The runoff response function transforms excess water from the soil. This routine
consists of upper and lower reservoirs that distribute the generated runoff over time. The
lower reservoir is a simple linear reservoir representing a contribution to baseflow. It
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also includes the effects of direct precipitation and evaporation over open water bodies
in the basin. The lower reservoir storage, SLZ [mm], is filled by percolation from the
upper reservoir (PMAX), and the outflow from this lower reservoir (Q2) is controlled by
the recession coefficient K2 [d−1]. However, the upper reservoir storage SUZ [mm] is
drained by two recession coefficients, K0 [d−1] and K1 [d−1], draining the quick flow Q0
[mm d−1] and slow flow component Q1 [mm d−1] separated by a threshold VUZL [mm]
(Equations (3)–(5)).

Q0 = K0(SUZ − VUZL) (3)

Q1 = K1(SUZ) (4)

Q2 = K2(SLZ) (5)

If the yield dQ [mm d−1] from the soil moisture routine exceeds the capacity, the
upper reservoir will start to fill. This reservoir models the response during flood periods.
The parameters calibrated from the runoff response function are PMAX, K0, K1, K2, and
VUZL. Finally, the runoff is computed independently for each sub-basin by adding the
contributions from the upper and the lower reservoir. To account for the damping of the
runoff pulse in the river before reaching the basin outlet, a simple routing transformation
is performed. This filter has a triangular distribution of weights with the base length
and is expressed by the parameter MMAXBAS [d]. A detailed description of the model is
shown by Bergstrom [56] and Seibert and Vis [49]. The ranges of the nine model param-
eters are derived from prior knowledge, provided through a global set of HBV model
parameters [30].

3.2. Parameter Estimation in the Gauged Catchments

The study used a uniform random sampling approach to produce simulated stream-
flow ensembles with the HBV model. To obtain reasonable parameter sets, 20,000 combina-
tions of the nine HBV parameters were generated from a uniform random Monte-Carlo
sampling procedure. There is a possibility to use other parameter optimization options.
However, the aim of this study is not only to obtain the best parameter but also a set of
large behavioral parameters that are later used to derive weights in the weighted regression
procedure using the inverse of their coefficient of variation. The random sampling proce-
dure has been effectively used in obtaining behavioral parameters and deriving parameter
uncertainties for the previous regionalization studies [10,25]. Other global optimization
procedures such as Dynamically Dimensioned Search and Shuffled Complex Evolution can
find the best parameter sets [57]; however, the purpose of this study is to find a range of
suitable behavioral parameters in addition to the best parameters. The choice of a uniform
random sample is relatively computationally efficient and easy to implement. Therefore,
the Monte Carlo method was selected to produce a large number of suitable behavioral
parameters from the reduced parameter samples using a minimum 0.5 NSE threshold.

A split sample test [58] is used by splitting the simulation period into the calibration
period (1995–2002) and the validation period (2003–2007) and calculating the Nash Sutcliffe
Efficiency (NSE) [59] for both periods (Equation (6)):

NSE = 1 − ∑n
i=1 (Qobs − Qsim)

2

∑n
i=1
(
Qobs − Q0bs

)2 (6)

where Qobs and Qsim are monthly averages of observed and simulated discharges
[m3 month−1], respectively, while Q0bs is the mean observed discharge over the calibration
or validation periods. Using monthly averages, it is focused on the seasonal, long-term
behavior instead of daily, short-term fluctuations. In order to remove unrealistic parameter
combinations, only parameter sets that produced NSE ≥ 0.5 in the calibration period were
kept. Consequently, different catchments can result in a different number of behavioral
parameter sets. A pre-analysis using NSE on a monthly time scale showed that the model
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performs well for all of the catchments. Comparing the mean and variability of model
performance for the remaining catchments during calibration and validation allows to as-
sess the predictive performance and uncertainty of the selected parameter sets. To prepare
for regionalization, (1) the variability of each model parameter in the reduced parameter
sample after NSE ≥ 0.5 (expressed by their coefficient of variation, CV), and (2) the best
parameter set (largest NSE) of the calibration, NSECAL, and the validation period, NSEVAL,
for each of the catchments were extracted. We derived the behavioral parameter ranges
(parRANGE) during calibration with NSE ≥ 0.5. Using the behavioral parameter sets, we
ran the model for the validation period (2003–2007), and we selected the best validation pa-
rameter sets among the behavioral parameters. Among the behavioral parameter sets, there
may be a best parameter set that performs differently from the best-calibrated parameter
sets in some catchments. In addition, the most stable parameter set for each catchment was
identified, i.e., the parameter set that showed the smallest difference in NSE values between
calibration and validation periods, NSEDIFF. Again, it is considered that the parameter set
with the highest NSE is selected. In this procedure, after sorting the NSEDIFF in ascending
order, only 5% of the parameters with the lowest NSEDIFF were extracted, from which the
parameter set with the highest NSE was selected. In the selection of the stable parameter
sets, parameter sets of the calibration period with the highest NSE that show a minimum
difference with the NSE of the validation period were preferred.

3.3. Parameter Estimation in the Ungauged Catchments

To estimate model parameters for the 35 ungauged catchments, a parameter region-
alization procedure was developed using weighted linear regressions (Equations (7)–(9)),
also known as weighted least squares. This will allow linking the catchment properties
(Table 2) and the estimated model parameters of the gauged catchments (see Section 3.2).
Compared to the ordinary least squares, the weighted linear regression introduces a weight
matrix to account for the unequal variances of observations [10,31]. This brings advantages
in regionalization since the identifiability of a model parameter can vary significantly
between catchments. To obtain a robust regression model, more weights can be put to
the catchments with identifiable parameters. The weighted linear regression is described
as follows:

Y = Xβ + ε (7)

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . . 0

0 0 · · · wn

 (8)

β̂ =
argmin

β ∑n
i=1 εi

2 =
(

XTWX
)−1

XTWY (9)

where Y and X are, respectively, the response variable (estimated model parameters in
this study) and the independent variable (catchment properties in this study). ε is the
error vector and W is a diagonal matrix containing weights. β represents the regression
coefficients vector and is estimated by β̂, which minimizes the weighted sum of errors.
The coefficient of variation (CV), which is the standard deviation divided by the mean
of behavioral parameter sets of a catchment, represents the variability of a parameter.
The smaller the CV, the less variable and more identifiable the parameter. Therefore,
the reciprocal CV of the parameter of interest was used as weights for each catchment.
Normally the weights in a weighted least squares regression are 1/variance. However,
using 1/CV to calculate the weights brings the advantages of comparing the weights
of a catchment for different parameters, because using 1/CV removes the influence of
magnitude and units of a parameter. Additionally, using a weight 1/CV would result in a
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similar result as 1/variance since a parameter introducing a constant (the mean) into the
regression will not change the relative weights to each catchment.

A correlation analysis was performed between the model parameters and catchment
properties to select the independent variables. With this regard, the linear correlation,
Spearman’s rank correlation [60], and the correlation on the log-transformed scale were
applied. For the weighted linear regression, the catchment properties with the strongest
correlation with the model parameter were chosen as the independent variable as shown in
Table S1 (Supplementary Material). The normal scale linear regression model was selected
over the log-transformed ones due to the better performance of the normal correlation
than the log-transformed correlation. There is a possibility to do linear regression on the
log-transformed scale; however, the correlation coefficients are superior on the normal scale
to the log-transformed ones which can provide a better regression model on the normal
scale. Choosing a log transformation reduces the weight of extreme values in predictor and
response variables for large sample studies [15]; however, this may not be the case for the
low catchment numbers. To increase the representation of more identifiable catchments,
a weighted regression was applied on the normal scale. Parameters poorly correlated
with the catchment property and remain unidentifiable throughout the catchments are
rejected from the regression model, and their median value was considered as the best
model instead.

3.4. Evaluation and Uncertainty Estimation of the Regionalization Procedure

A leave-one-out cross-validation method [61] was used for parameter estimation and
for evaluating the prediction skill of the regressions. Leave-one-out is a simple cross-
validation procedure: each regression model is created by taking all the catchments except
one, the evaluation catchment. For large sample training data, this method is more resilient
to irreducible errors [62]. Recently, this technique is applied for regionalization studies
involving the prediction of discharge signatures [15,18,63] and model parameters in the
ungauged catchments [7,8,64]. Thus, for 14 catchments, there are 14 different regression
models and 14 different evaluation catchments. For each of the 14 iterations, the method
produces one regionalized model parameter set for the left-out catchment using the regres-
sion model derived from the remaining 13 catchments and parameter sets. Since it is not
known which parameter sets provide the most stable regionalization method, the proce-
dure was repeated three times using the best parameter sets of (1) the calibration period,
(2) the validation period, and (3) the most stable parameter sets between the calibration and
validation periods. Thus, the quality of the regionalization procedure was evaluated three
times. In order to choose the best of them for the following analyses, the simulations of the
left-out catchments were evaluated for both the calibration (1995–2002) and the validation
(2003–2007) period. In order to quantify the uncertainty of the regionalization procedure, all
the 14 regionalized models were applied that were created for the leave-one-out evaluation
to the ungauged catchments. Hence, an ensemble of 14 predicted streamflow time series is
produced for each ungauged catchment to reflect the regionalization uncertainty.

3.5. Estimation of Regional Resilience of Streamflow to Precipitation Variability

In addition to the simulations at the 14 gauged catchments (and their respective un-
certainty), the regionalization procedure produces simulations, and uncertainty estimates,
of the 35 ungauged catchments, altogether covering a majority of the RVLB area (60.81%).
The regional simulation tool was used to estimate the region’s streamflow resilience to
precipitation variability, which is quantified through streamflow elasticity [65]. The elas-
ticity of streamflow quantifies the sensitivity of a catchment’s streamflow response to the
precipitation changes at the annual scale. Resilient catchments show low streamflow vari-
ability in response to precipitation changes. Elasticity is defined as the ratio between the
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change in the annual aggregated discharge (dQ) and the change in the annual aggregated
precipitation (dP) shown by Equation (10):

εP = median
(

dQP
dPQ

)
(10)

The elasticity values were calculated for each year using the entire ensemble of simu-
lated daily discharge time series at all gauged and ungauged catchments. From this, the
median, wettest, and driest year elasticities were extracted for each catchment, including
their uncertainty expressed by the respective CV resulting from all parameter sets with
NSE ≥ 0.5 for the gauged catchments and the 14 parameter sets obtained through the
leave-one-out cross-validation procedure for the ungauged catchments. The wettest year
elasticity is calculated for the transition from the normal year to the wettest year, and the
driest year elasticity is calculated for the transition from the normal year to the driest year.
Using the median, wettest, and driest year elasticities, it is possible to learn how resilient
a hydrological system is against extreme climatic conditions such that one can evaluate
the corresponding security of the water supply. For instance, if a catchment has a large
streamflow elasticity, there will be a large system change in response to a big change in
precipitation (e.g., the driest year); such a system is not resilient as there would be a huge
change in the water available, thus affecting the security of the water supply.

4. Results
4.1. Estimated Parameters in the Gauged Catchments

The model calibration was performed using a split-sample test for the period 1995–2002,
with a threshold of 0.5 NSE used to determine the behavioral parameter sets. Conse-
quently, the model was run using the behavioral parameter sets for the validation period
(2003–2007). Using the 0.5 NSE threshold, a wide range of behavioral parameter sets were
obtained in all gauged catchments during calibration. The threshold-based separation of be-
havioral and non-behavioral parameter sets was used as a threshold-based approach, which
helps to explicitly state under which minimum performance requirements, i.e., NSE ≥ 0.5,
regionalization by the CV-weighted regression was conducted. Figure 3 shows the monthly
NSE values for the calibration and validation periods, as well as their uncertainty, using be-
havioral parameter sets. For the monthly calibration, the model performance results in NSE
0.53 to 0.86 in the 14 gauged catchments. The maximum NSE values were highly reduced
from the calibration to the validation periods for catchments #07 and #09. Catchments
#01 and #03 show a small decrease in the monthly NSE values from the calibration to the
validation period (Figure 3). In most cases, the monthly model calibration and validation
show a uniform distribution of NSE values, indicating the stability of model parameters.
The NSE values for the stable parameter set show the maximum value (0.80) for catchments
#08 and #13, demonstrating good predictive skills in these catchments. Catchments #04
and #06 show lower parameter stability. The monthly NSE of the validation period was
the highest for most catchments compared to the calibration period. This comes from
the possibility to choose the best parameter from the confined parameter ranges using a
threshold of 0.5 NSE throughout the catchments. The standard deviation of the monthly
NSE values shows the ranges of uncertainty provided by the simulation for the selected
parameter ranges (Table S3). In this regard, catchments #04, #05, and #06 result in the lowest
simulation uncertainty during calibration.
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Figure 3. The ranges of monthly NSE values derived from the confined parameter sets during
calibration and the corresponding NSE ranges during the validation period derived from the confined
parameter sets; and the monthly NSE derived from parameter sets of best calibration, best validation,
and most stable parameter sets for each catchment.

In addition to the uncertainties, Figure 4 shows the identifiability of the model pa-
rameters in the 14 catchments using the Cumulative Distribution Function (CDF). More
deviation from the 1-1 line shows higher identifiability by the parameters. The catchments
with highly identified parameters are shown by the dark gray color on the CDF. Figure S1
shows the variability of the confined model parameters obtained by the calibration, which
is later applied to derive the weights of the regional regression model. The parameters that
are well-identified are highly represented in the regional model by their weight (1/CV).
In this regard, parameters such as β, FC, K2, and LP were well identified in most of the
catchments. Parameter β was highly identified towards the lower values as shown by the
dark gray color (Figure 4) or by the narrow parameter range in catchment #6 (Figure S1).
FC shows identifiability towards higher values in their parameter range for catchment #2.
On the other hand, K2 showed higher sensitivity towards the lower values for catchment
#7. The confined ranges of model parameters (K0, and VUZL) result in a relatively uni-
form distribution in their median values for all catchments. These parameters (K0 and
VUZL) remained insensitive and were later excluded from the regression procedure due
to less information contained in their parameter identifiability. Taking median values for
unidentifiable parameters would be a better model for the regional model [10] (Figure 4,
Figures S2 and S3).
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Figure 4. Cumulative distributions of parameters in the 14 catchments that show the probability
of identifiability for each parameter on their ranges. The ranges between the most identifiable and
poorly identified parameters are indicated through dark gray to light gray colors. The respective
identifiability is also shown by the weight (1/CV) of parameter distribution. Where the dark gray
color shows the catchment number with the most identifiable parameter. Parameters such as K0 and
VUZL are not identified through their parameter ranges, therefore the median of the parameter was
used for the regression model.

4.2. Performance of the Regionalization Procedure

The transferability of the model parameters derived from weighted regression was
evaluated using a leave-one-out cross-validation technique for each of the 14 gauged catch-
ments. Figure 5 shows the results of evaluations for the three regionalized models on both
calibration (1995–2002) and validation periods (2003–2007). Figure 5a,b shows the rela-
tionships between the performances of the monthly NSE of the best parameters estimated
from calibration, validation, and the most stable sets and the corresponding regionalized
parameter while evaluated on the calibration and validation periods. The regional parame-
ter sets derived from the most stable parameters show the best performance in predicting
discharge in the left-out catchments (NSE REGstable in Figure 5c) while evaluated during
the validation period. The results show that 13 out of 14 catchments exceed a 0.25 NSE
value and 10 out of 14 catchments exceed a 0.5 NSE value for the regression model derived
from the most stable parameters during evaluation in the calibration period (1995–2002)
(Figure 5a). Furthermore, the median NSE value of the 14 catchments for the regression
model derived from the most stable parameters (NSE REGstable) is 0.63, compared to 0.50
for the best-calibration ones (NSE REGcal) and 0.57 for the best-validated parameter sets
(NSE REGval) (Figure 5c) for the evaluation during the validation period (2003–2007). To
assess the influence of low flow and high flow scales on the regionalization performance,
the NSE was calculated on the Log transformed scale (logNSE) of observed and simulated
discharge. Table S4 shows the logNSE values during the evaluation of the regression model
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on both the calibration and validation periods. The median NSE values were not improved
on the log scale compared to the normal scale evaluation (Table S4).

Figure 5. Evaluation of the regression procedure on the calibration (1995–2002) and validation
period (2003–2007), showing (a,b) the relationship of the NSE of the best-estimated parameters (from
calibration, validation, and stable parameters set) and the parameters from the regression. The black
and red scatter indicate the best and most poorly performing catchments, respectively. (c) Shows
the performances of best-estimated parameters (from calibration, validation, and stable sets) and
the performance of the three regression models developed using the best parameters of calibration
(REGcal), validation (REGval), and stable sets (REGstable) while evaluated during the calibration
and validation period.

Figure 6 shows the relationships between the best model parameter set obtained from
the most stable parameter and the regression for the 14 catchments. However, these results
should be carefully interpreted for data-scarce regions due to the use of available global
data sets (precipitation and potential evapotranspiration). Parameters K0 and VUZL were
unidentifiable during calibration, and their median values were taken for the regionalized
model. The weighted regression shows acceptable performance in reproducing most of the
parameters. For instance, the weighted regression reproduces well the parameters β, FC,
and K2, whereas the remaining parameters are less reproducible by the regression model.
Table S5 shows the performance of the weighted regression model during the leave-one-out
cross-validation using a coefficient of determination (R2). It is seen that the weighted
regression procedure does not always produce model parameters in their predefined range
(Table 3). For example, the regressed FC of catchment #6 is above the maximum threshold of
700. In such cases, the outlier model parameter is assigned to its maximum value. Among
the remaining parameters, most of them show acceptable correlations. However, some of
them, such as K1 and PMAX, are poorly reflected through the regional regression in a few
catchments. For instance, K1 in catchment #11 is poorly modeled. Therefore, parameter K1
is not identified in catchment #11. The regression model using parameter PMAX is poorly
represented in four catchments (#09, #10, #13, and #14). This shows that for catchments
#09, #10, #13, and #14, the parameter PMAX is not identifiable for the carefully selected
catchment properties. Furthermore, for catchment #09, model parameters FC, and PMAX
were poorly identified. However, the weighted regression procedure sufficiently represents
the parameters in the remaining catchments. The best performing (#08) and most poorly
performing (#09) catchments were also shown by the black and red colors, respectively.
Catchment #08 primarily shows a stable prediction for all parameter-sampling procedures
during calibration, validation, and stable relationships. Identifiable parameters in this
catchment are also reproduced well from the regression model, whereas in catchment
#09 (red scatter), most parameters were poorly identified and poorly reproduced by the
regression model.
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Figure 6. Relationships between best parameters estimated from stable sets and parameters derived
from the regression model. The black scatters (catchment #8) represent the catchment with most
parameters that are highly identified during parameter estimation and its corresponding parameters
during regression. The red scatters (catchment #9) represent a catchment with most parameters
that are poorly identified during parameter estimation and its corresponding parameters during
regression. For unidentifiable parameters (K0 and VUZL), their median value was taken for the
regionalized model.

The reliability of this approach is further evaluated by comparing the observed dis-
charge with the uncertainty interval of the regionalized model while the model is running
for the validation period (Figure 7). The observed discharge for the best-performing catch-
ment (#08) is enveloped by the prediction interval during the low-flow and high-flow
periods. Furthermore, it corresponds highly with the mean of the 14 regionalized simula-
tions (Figure 7a), whereas the observed discharge for the most poorly performing catchment
(#09) is not well captured by the prediction interval nor by the mean of the 14 regionalized
simulations (Figure 7b).
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Figure 7. Prediction interval derived from the 14 regression models using the best parameter sets
from stable parameter sets and uncertainty interval; (a) for best−performing catchment (#08) and
mean of the 14 simulations, and (b) uncertainty interval for most poorly performing catchment (#09)
and mean of the 14 simulations.

4.3. Estimation of Regional Resilience of Streamflow to Precipitation Variability

With the acceptable performance of the regional regression model, it has been applied
for the ungauged catchments over the entire RVLB region. Figure 8 shows the median,
wettest, and driest year elasticities computed from both gauged (all parameter combinations
with NSE ≥ 0.5) and ungauged catchments (all 14 regionalized parameter sets from the
leave-one-out cross-validation). The median elasticity values are fairly distributed in the
basin. However, the highest elasticity is shown in the western part of RVLB (Figure 8a).
For the wettest year, the highest elasticity results from the catchments in the south and
the northeast show less resilience to extreme precipitation (Figure 8b). Relatively low
elasticities result from the driest year, except for a few catchments in the south. This
variation is because catchments in the south, except for some outliers, are mainly dry and
receive a comparatively low amount of precipitation.

The uncertainty of the 14 ensembles derived from the regression was shown using
the CV. It is seen that the median values, as well as the wettest and driest year elasticities,
show low uncertainty in the gauged catchments, indicated by low CVs (Figure 8d–f)
compared to the ungauged regions, whereas the highest CV values are shown for the
median, wettest, and driest years for the ungauged catchments in the southern region.
However, most of the catchments in the central and northern parts show less variability,
which shows low uncertainties for these catchments. The highest and lowest precipitation
will eventually result in different values of elasticities. The differences in the catchment
properties would result in the variability of the CV of the wettest and driest year for
the neighboring catchments (Figure 8e,f). In areas such as the RVLB, the highest yearly
and seasonal precipitation amounts could be interrupted by the seasonal or yearly dry
spells [37]. The response to runoff is low in the driest year, as shown by the low elasticity
values in most of the ungauged catchments (Figure 8c). Comparatively, the driest year CV
in the southern part shows relatively lower values than the wettest year.
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Figure 8. (a–c) Elasticity calculated for the median, wettest, and driest years for both gauged
and ungauged catchments and (d–f) their corresponding simulation uncertainty expressed by the
coefficient of variation CV.

5. Discussion
5.1. Reliability of the Regionalization Approach

The study demonstrates the applicability of a process-based hydrological model at a
regional scale despite data scarcity. The reliability of the entire approach is shown through
a three-step parameter estimation and model evaluation procedure, which enables one to
identify the most reliable setting in the regional model development procedure. Overall,
the stability of the parameters for the calibration and validation periods remained accept-
able. Uncertainty was quantified by parameters sampled from the Monte Carlo random
sampling procedure. The split sample test was applied to select the best parameter from
the calibration and validation periods. Furthermore, the most stable parameter sets were
calculated from the calibration and validation periods, which have also been performed in
previous studies aiming at stable predictions [66]. The temporally stable model parameters
indicate a relatively uniform system response during both calibration and validation and
provide strong justification for the regional extrapolation of model parameters.

Parameters were estimated for the ungauged regions through the weighted regression
procedure. Like previous studies using a similar approach [10], the weighting procedure
increases the representation of identifiable parameters from the catchment in the regression
model. More weight (reciprocal of CV) is assigned to the more identifiable parameters
in a given catchment. Consequently, three regional models were derived using the best
parameter sets obtained from the calibration, validation, and most stable parameter sets
between calibration and validation for the 14 catchments. Figure 6 presents the nine
parameters reproduced by using the most stable parameters, while the remaining two
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regression models (using best calibration and validation) are shown in Figure S2 and
Figure S3, respectively. Comparing the performance (NSE) of these three regression models
(Figure 5c), a regional model derived from using the most stable parameter has shown
superiority over the other two. These procedures increase the reliability of the approach
for the model development. Uncertainty was also quantified through the leave-one-out
spatial cross-validation of parameters. In this approach, every catchment is considered as
an evaluation catchment, while a prediction is formed using the remaining catchments.
Therefore, the 14 catchments produced a 14-regression model in the leave-one-out cross-
validation method that quantifies prediction uncertainty in the ungauged catchments. The
leave-one-out spatial cross-validations also show better performance in the regionalization
studies that use discharge signatures [15,18] and for ungauged catchments parameter
prediction [7,8,65]. This method is more stable and more resilient to irreducible errors for
large sample studies [63]. The leave-one-out cross-validation approach also has a uniformly
low bias and root mean squared error (RMSE) [62]. Therefore, the approach combines three
steps of uncertainty quantification from (1) the parameter sampling, (2) the best parameter
set identification, and (3) the leave-one-out cross-validation in the data-scarce regions.

A scatter plot of monthly NSE values between the parameters estimated (from the
model calibration, validation, and stable sets) and the parameters regionalized from the
regression equations shows the evaluation and reliability check. Figure 5b indicates that
the median NSE of regression from the most stable parameters outperforms the NSE of
parameters obtained from calibration and validation for leave-one-out cross-validation.
Furthermore, it shows most of the scatter points are above the 0.5 NSE limit, indicating a bet-
ter reproduction of parameters while evaluated during the calibration period (1995–2002).
In this regard, the parameters in 71% of the catchments result in an NSE of ≥ 0.5, and
in 93% of the catchments, an NSE of > 0.25, for the regression model derived from the
most stable parameters. The median value of the NSE for the 14 catchments is 0.63 during
evaluation during the validation period (2003–2007); this is a sufficient performance in
regionalization despite the few catchment numbers applied (Figure 5c). Studies showed dif-
ficulties in the regionalization performances for both the model parameters and discharge
signatures [6,15,30,67]. With few training datasets used, the regionalization performances
are acceptable which are derived from the monthly calibrated and validated parameters.
The study focused on the challenges in regionalization in data-limited conditions show-
ing the applicability of global forcing data for the regionalization of data-scarce regions
considering the resulting uncertainties. This approach provides a basis for regional model
estimation and uncertainty quantification for low catchment numbers in the data-scarce
regions. The regionalization of the model parameters with the use of global data products
in the data-scarce region can be expected to result in considerable uncertainty. However,
this approach demonstrated that an acceptable median NSE value can be obtained despite
low catchment numbers. In order to check the influence of low and high flow scales on the
interpretation of the NSE, a more balanced logNSE to the regionalization performance was
applied. Zhang and Post [68] show the influence of log transformation on the low-flow
and high-flow scales. Table S4 shows the evaluation of the regression model on both
the calibration and validation periods for the log-transformed observed and regionalized
discharge. In this regard, the median NSE values have not improved the results any more
than the normal scale NSE evaluation.

Figure 6 shows that more identifiable parameters for the gauged catchments (Figure 4)
are also reproduced well from the regression model. The parameters of catchment #08 (black
scatter) are highly identifiable during parameter estimation and the resulting parameters
from the regression model are highly reproduced, whereas parameters in catchment #09 (red
scatter) were poorly estimated and poorly reproduced by the regression model. Studies also
show the selection of a more identifiable catchment as a donor for parameter regionalization
depends on the score during the parameter calibration and validation [30].

In general, the evaluation indicates that despite ignoring parameter interactions [23,45,69],
the regionalization procedure produces useful predictions of the model parameters in



Hydrology 2022, 9, 150 20 of 27

the ungauged catchments. Plotting the simulated (monthly) time series of the best and
the most poorly performing regional catchments (Figure 7), the study showed that the
uncertainty estimates derived from the leave-one-out cross-validation procedure capture
well the simulation uncertainty for the best-performing catchment #08. On the other hand,
the prediction interval of catchment #09 shows less agreement with observed discharge,
particularly for low flow and high flow, but with the estimated ranges of uncertainty much
closer to the observations. Previous regionalization studies have already shown that some
outlier catchments cannot be captured if they behave very differently from the general
trend [25], as is most probably the case for catchment #09. However, since most regionalized
catchments are with an NSE of ≥ 0.5, there is sufficient reason to believe that the parameters
of most ungauged catchments in the RVLB can be approximated acceptably.

5.2. Parameter Sensitivity and Spatial Variability

It is found that the model parameters have different sensitivities in the gauged catch-
ments (Figure 4). Since the hydrogeology of the region is very heterogeneous, the parame-
ters controlling the underground water flow show high variabilities among the catchments.
Volume-controlling parameters (β, FC, and LP) and the recession coefficient in the lower
reservoir (K2) are readily identifiable in most catchments. However, the insensitivity
of the parameters in some catchments may be due to interactions with other parame-
ters. Abebe et al. [70] show the interaction between parameter K2 and the percolation rate
(PMAX), where the increment of K2 beyond the optimum rate of percolation may not show
any sensitivity. In addition, the insensitivity of model parameters is related to the poor
identifiability of model parameters in the catchments. For instance, parameters such as
K0 and VUZL were poorly identified and remained insensitive for any parameter value
throughout the catchment (Figure 4).

The most identifiable parameters in a catchment result in the highest sensitivity
towards any parameter value. However, parameter insensitivity is due to variations in the
values of catchment properties. This is illustrated by parameter K2, which is a recession
coefficient in the lower reservoir, and it is well identified in catchments #07 towards
the lower parameter value. Catchment #07 is characterized by sloppy catchment with a
high drainage channel slope (catchment index) (Table 2) which facilitates the drainage
of available water by surface runoff. Thus, for the little remaining water in the lower
reservoir, lower values of K2 will become more sensitive. Parameter K1, which is a recession
coefficient from the upper reservoir, is well identified in catchment #05. A lower value
of the recession coefficient results in a relatively low drainage density in catchment #05
(Table 2), which facilitates a relatively higher percolation (PMAX) in the catchment.

The interactions among model parameters may not be the only reason for insensitivity
as it varies in different catchments and their properties. For instance, sloppy catchments in
a small drainage area (#07 and #09) facilitate the conversion of precipitation into runoff,
resulting in less soil moisture in the upper reservoirs in the HBV model. In such cases,
adjustment to a parameter (K1) controlling the water flow might not affect the outflow
conditions. This is also shown by the negative correlation of the slope with K1 (Table S1).
Furthermore, the insensitivity of the parameters in the upper reservoir can be affected by
low precipitation amounts. In low precipitation conditions (such as in catchments #08, #10,
and #13) the resulting soil moisture from the soil profile and the upper reservoir will be
much less, resulting in less runoff. The adjustment of the runoff-controlling parameters
(K0 and VUZL) might not have any influence (remain insensitive) on the resulting runoff.
Parameter K0 only functions when the cumulative precipitation exceeds the threshold of the
VUZL value. Other than climatic properties, the insensitivity of the parameters can result
from the interaction of the parameters, and this influence will be more pronounced for
complex models. Other studies also showed that the insensitivities of the model parameters
could result from the mismatch between the model complexity and the available data used
to parameterize the model [71–74].
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5.3. Estimation of Regional Resilience of Streamflow to Precipitation Variability

In this study, elasticity values for the median, wettest, and driest years and their respec-
tive CVs were calculated (Figure 8). In the regions with higher elasticities (Figure 8a–c), the
catchments respond faster to any change in precipitation promoting fast flow components.
However, for low elasticity values, the streamflow responds slowly to precipitation change.

The CV indicates the uncertainty of prediction for the gauged and ungauged catch-
ments (Figure 8d–f). Most of the catchments located in the southern part of the basin show
a higher CV value in combination with a low resilience of streamflow to precipitation
variability. Prediction variability is higher in the southern part compared to the north, and
there are also few gauged catchments. Therefore, the higher uncertainty in the south may
be attributable to the mixed effects of higher precipitation variability and the remoteness of
the gauged catchments used to establish the regional regression.

The variability in areas of gauged and ungauged catchments used for parameter
estimation and prediction, respectively, reduces with the strength of correlation between
calibrated parameters and catchment properties (Table S1). Other studies also show that
runoff from smaller catchments can have a stronger relationship with local climate and
catchment properties than larger catchments [24,45,75]. In addition, the wettest year shows
higher uncertainty compared to the driest year. However, most of the ungauged catchments
that are located in the northern parts show lower uncertainty, more or less similar to the
gauged catchments. This is because these ungauged catchments are much closer to the
gauged catchments and are hence better represented by the regression model than the
remote ungauged catchments. This is supported by the study of Qi et al. [76] that compared
different regionalization techniques and found the strongest performance using the spatial
proximity under different climate regions. Moreover, most of the streamflow in the north
remains more resilient to precipitation change as it shows lower elasticity values, which
indicate a higher resilience to streamflow in the dry years (Figure 8c). Furthermore, the CV
for the driest year shows a relatively low uncertainty in the northern and eastern parts for
both gauged and ungauged catchments.

The application of this approach to the RVLB shows that the predicted elasticities are
characterized by a wide range of uncertainty for the ungauged catchments in the southern
part. The reasons for such variation in uncertainty could be the fact that the ungauged
catchments in the southern part are mainly dry and receive a comparatively low amount of
rainfall (Table S2). This is different from the wetter, northern part, where most of the gauged
catchments are located. This accords with studies showing a decreasing regionalization
performance from smaller and more arid catchments [77]. Previous work has also shown
that the spatial variability of precipitation can interact with catchment properties to alter
hydrological processes [78]. Thus, higher precipitation variability in the gauged and
ungauged catchments introduces more uncertainty to parameter regionalization. Such
variability in prediction also results from the relative location of an ungauged catchment to
the gauged one where the regional model is developed [79].

This approach shows variability in the resilience of gauged and ungauged regions,
which emerges from parameter uncertainty and climate variability. Over the RVLB, lakes are
particularly stressed by growing water demand, climate variability, and drought [39]. The
reliability of open water resources in low-resilient catchments remains uncertain. Coupled
with the significant reduction in lake sizes and water levels [80], this will negatively affect
water resource availability and ecosystem stability in the future.

5.4. Transferability of the Approach to Other Catchments and Models

This study provides a methodology that accounts for uncertainty throughout all
steps of the regionalization approach. It translates data limitations into the remaining
uncertainties that were found in the regional simulations (expressed, for instance, by the
CV values of the elasticities). The approach is independent of the model and the number
of parameters, but it is expected that a more complex model (with more parameters)
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would struggle more through data limitations and generate larger uncertainties when
applied regionally.

In this study, the identifiability of the model parameters varied across the 14 catch-
ments. This could be from the variation in the catchment properties used for the region-
alization. Van Esse et al. [81] show the performance of conceptual hydrological models
to vary depending on the size of a catchment and the soil moisture state of a catchment.
Yang et al. [73] also showed the regionalized model to be dependent on the complexity
of hydrological models in different climatic regions. In this approach, the variation is
accounted for through regionalization uncertainties by applying the leave-one-out spatial
cross-validation. Thereby, one can have different levels of parameter identifiability in the
transferability of a model parameter from one model component to another. By choos-
ing stable parameter sets for the regional model, one can guarantee the transferability to
another region by the spatially evaluated robust regional model within their uncertainty
range. Nevertheless, model parameter transferability does not always result in success.
The difference in model parameters could derive from the complex relationship between
different model components within the model structures. The transferability of insensitive
parameters (K0, and VUZL) could add bias to the regionalized models, thus taking their
median values from the estimated parameters can be a better model [10]. The stability and
resilience of the model parameters from the regionalization procedure would minimize the
error and bias in parameter transfer within the model component [62]. However, success
in the parameter transfers will be influenced by the dominant catchment properties that
are identified regionally [32]. Despite this, a sufficient correlation between the catchment
property and model parameters can be a good indicator of the predictive power of the
selected catchment properties.

6. Conclusions

The study demonstrated the use of global data products for the regionalization of
model parameters using a small sample of gauged catchments despite data scarcity. The
study applied multiple options for parameter estimation and model evaluation procedures.
Three steps of uncertainty quantification were combined from the parameter sampling, best
parameter sets identification, and leave-one-out cross-validation. The study demonstrated
the validity and reliability of this approach at 14 test catchments with varying catchment
properties. The parameter estimates from the leave-one-out cross-validation using the most
stable parameters have outperformed the parameter estimates from best-calibrated and
best-validated parameter sets.

The study incorporated uncertainties from the leave-one-out cross-validation that can
provide a robust way of uncertainty quantification by generating 14 estimates of plausible
streamflow ensembles and simulation uncertainties. This approach shows variability in the
resilience of gauged and ungauged regions, which emerges from parameter uncertainty
and climate variability. The study showed the uncertainties of elasticities in the gauged
catchments obtained from simulation to be less than that of the uncertainties of elasticities
in the ungauged catchments obtained from regionalization. The study further enables the
quantification of the wettest and driest year elasticities and their uncertainties throughout
the catchments, which provides a basis for the integrated water resource management in
the region. Linking this approach with more observations of catchment properties on a
larger scale can provide a good basis for large-scale water resource management. This
approach can be extended to simulate and quantify the resilience of gauged and ungauged
regions under climate change by quantifying the additional uncertainties emerging from
climate projections.

Overall, this approach provided directions for uncertainty reduction by combining
global input data with local discharge measurements, which result in a refinement of
estimated model parameters for both gauged and ungauged catchments. The acceptable
monthly simulation results obtained in the gauged catchments and the acceptable results
of the spatial split-sample test (with median Nash Sutcliffe efficiencies of 0.63) indicate
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that global products can be used as model inputs to provide reasonable simulations in
data-scarce regions. Small-scale studies that use simple models (few parameter numbers)
show the transferability of the model parameters to ungauged basins [10]. In extension to
this, this approach provides the possibility of identifying parameters of ungauged basins
in data-scarce regions, including a thorough evaluation and uncertainty quantification
procedure. Using well-identified parameters, more reliable regional relationships can be
obtained from the most dominant catchment attributes. In either large or low samples of
catchments, a leave-one-out procedure should always be possible. By applying a specific
hydrological model (HBV) and using a general framework, it can be also easily adapted to
other hydrologic models. This approach demonstrated a way for robust parameter region-
alization through leave-one-out cross-validation that enables the transfer of parameters
across regions. It is proposed for further research that this approach can be applied for pa-
rameter transfer with model structures other than HBV to elaborate its general applicability
in data-scarce regions. As this approach is model-independent and the input data used
are available globally, it can be applied to any other data-scarce region where predictions
of regional water availability are required. Despite the results, caution should always be
taken when considering low catchment numbers as poorly assessed catchment properties
or imprecise forcing data for some of them can greatly bias regional estimates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrology9080150/s1. Table S1 Correlation coefficients (CC)
between catchment properties and model parameters. Table S2 Catchment properties that are derived
for streamflow prediction in the ungauged catchments using the 14 parameter sets obtained by the
weighted regression. Table S3 The maximum NSE on the monthly scale for the best parameters
derived from calibration, validation, and stable sets, and standard deviations (std) of monthly
NSE for calibration and validation. Table S4 Evaluation of the three different regression models
from calibration, validation, and stable sets on both calibration (1995–2002) and validation periods
(2003–2007). NSE was calculated on the Log transformed scale of observed and simulated discharge.
Table S5 R2 of weighted regression performance for the nine HBV parameters during the leave-
one-out cross-validation. Figure S1 Confined ranges of model parameters derived during model
calibration for each catchment. Figure S2 Scatter plots between best parameters estimated from
calibration and parameters derived from the regression model. The black circle (catchment #8)
represents best performing catchment from parameter estimation and its corresponding parameters
from regression. The red circle (catchment #9) represents the most poorly performing catchment
by the regression model. For unidentifiable parameters (K0 and VUZL) their median value was
taken for the regionalized model. Figure S3 Scatter plots between best parameters estimated from
validation and parameters derived from the regression model. The black circle (catchment #8)
represents best performing catchment from parameter estimation and its corresponding parameters
from regression. The red circle (catchment #9) represents the most poorly performing catchment by
the regression model. For unidentifiable parameters (K0 and VUZL) their median value was taken
for the regionalized model.
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