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Abstract: Hydrologic modeling in Nigeria is plagued by non-existent or paucity of hydro-metrological/
morphological records, which has detrimental impacts on sustainable water resource management
and agricultural production. Nowadays, freely accessible remotely sensed products are used as
inputs in hydrologic modeling, especially in regions with deficient observed records. Therefore, it is
appropriate to utilize the fine-resolution spatial coverage offered by these products in a parameter
regionalization method that supports sub-grid variability. This study assessed the transferability of
optimized model parameters from a gauged to an ungauged basin using the mesoscale Hydrologic
Model (mHM)—Multiscale Parameter Regionalization (MPR) technique. The ability of the fifth
generation European Centre for Medium-Range Weather Forecasts Reanalysis product (ERA5),
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Global Precipitation
Climatology Centre (GPCC), and Multi-Source Weighted-Ensemble Precipitation (MSWEP) gridded
rainfall products to simulate observed discharge in three basins was first assessed. Thereafter, the
CHIRPS rainfall product was used in three multi-basin mHM setups. Optimized model parameters
were then transferred to independent basins, and the reproduction of observed discharges was
assessed. Kling–Gupta Efficiency (KGE) scores showed improvements when mHM runs were
performed using optimized parameters in comparison to using default parameters for discharge
simulations. Optimized mHM runs performed reasonably (KGE > 0.4) for all basins and rainfall
products. However, only one basin showed a satisfactory KGE value (KGE = 0.54) when optimized
parameters were transferred to an ungauged basin. This study underscores the utility of the mHM-
MPR tool for parameter transferability during discharge simulation in data-scarce regions.

Keywords: CHIRPS; streamflow; mHM; MPR

1. Introduction

The declining economic conditions in many sub-Saharan African (SSA) countries
have resulted in about 50–60% of their workforce depending on agriculture (subsistence
farming) as a source of livelihood [1]. A nation’s agricultural sector is important for
ensuring food security, mental health, the health of its population, economic stability, and
national development. In Sub-Saharan Africa (SSA), the agriculture production per capita
trend has declined since 1960, resulting in 30% of its population being food insecure [2].
Farming is largely characterized by rain-fed agriculture and is practised majorly at the
subsistence level. Sub-Saharan African countries import wheat, fertilizer, and vegetable oil
from Ukraine and Russia. Unfortunately, the ongoing Ukraine–Russian war has disrupted
food importation, thereby increasing already high food prices and worsening food security
for millions of the population. In the era of increasing global warming, rainfall variability,
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and more frequent hydrologic extremes (flood and drought), the source of livelihood of a
great majority of the population in this region is threatened [3]. These authors noted, in a
study that analyzed rainfall observations over West Africa that the average annual rainfall
during 1970–2009 was below the annual average recorded for the period 1900–1970. Other
studies [4–6] projected significant and extensive impacts of climate change on agriculture
due to reductions in the length of farming seasons, shifts in seasonality, more severe dry
spells, heat stress, and an increase in water-stress risks.

The availability of high-quality rainfall data is essential for water-related research
and to support policy-making [3,7–10]. An analysis of annual rainfall data in Nigeria
for a period of 72 years (1916–1987) showed a decreasing trend over southern, middle
belt, and northern Nigeria [11]. Many studies [12–16] reported significant variability in
rainfall trends in different regions in Nigeria. In recent decades, economic instability, weak
institutions, and inadequate infrastructure have led to a decline in rainfall-monitoring
networks across Nigeria, posing great insecurity to water resource planning and man-
agement [1]. Additionally, the growing Nigerian population, expansion of urban areas,
insufficient water governance, and lack of effective water laws have hindered the effective
implementation of integrated water resources management (IWRM), resulting in more
water-related issues [17,18]. Furthermore, the unavailability of observational hydro-met
data has impeded hydrologic-related research efforts and consequently is increasingly
exposing the population to risks of extreme hydrologic events, hunger, and economic
instability [19].

The emergence of gridded rainfall products at high spatio-temporal resolutions and
the development of distributed hydrological modeling procedures have created possibilities
for water resource modeling in ungauged basins [9,20,21]. Spatial rainfall data provide
homogenous spatial coverage over inaccessible locations and has an advantage over in situ
gauged data. However, the application of remotely-sensed rainfall data for research and
operational hydrology in Nigeria is scarce in published works of literature to date. Many
studies [20,22–28] have shown that gridded rainfall datasets can satisfactorily replicate
observed spatio-temporal characteristics of gauged in situ records although with reported
inconsistencies. Detailed reviews of the characteristics and performance of gridded rainfall
data are found in the literature [29–31]. However, notwithstanding the advances in the
development of gridded rainfall products, they are rarely applied in operational hydrology
due to inherent biases [20,32], hence the need for validation to identify which product suits
a specific region or locality.

Realistic hydrologic simulations and forecasting are constrained largely by hydrologic
model complexity and input-data requirements [33]. The paucity of hydro-meteorological
records in data-scarce regions has hindered hydrologic modelling applications. However,
many studies [34–37] have shown success in utilizing global meteorological datasets for
water balance analysis in sub-Saharan Africa. These freely available datasets have proven to
be suitable alternatives and have aided realistic hydrologic process simulation and a better
understanding of hydrologic systems [38]. However, the utilization of remotely sensed
data has increased model complexity and, consequently, the need for higher computational
power [39], which is not always available in developing countries [40]. Furthermore, fully
distributed hydrologic models exist to cope with available high-resolution inputs, but the
issue of realistic process representation persists [41]. Many authors [39,41,42] noted that
problems of model nonlinearity, scale, uniqueness, uncertainty, and equifinality had not
been satisfactorily addressed by the development of these complex distributed hydrologic
models and their application at the mesoscale. Issues of over-parameterization and equifi-
nality of feasible solutions aid the production of unreliable hydrologic outputs even when a
good fit between observed and simulated discharge is achieved, creating uncertainties [43].
Even when model parameters can be deduced through optimization these values cannot
be transferred to ungauged basins or to other scales other than that used during model
calibration [39,44,45]. It is against the background that the International Association of Hy-
drologic Sciences (IAHS) in 2012 initiated the Scientific decade of Prediction in Ungauged
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Basins (PUB) in their efforts to encourage more hydrologic research aimed toward the
understanding of hydrologic processes, especially in data-scarce basins [46].

Parameterization techniques that are geared toward reducing the number of free
parameters and model complexity have been developed in the past [39,44,47]. For example,
the soil and water assessment tool (SWAT) [48] model employs the hydrologic response
unit (HRU) technique where a certain area of land use, soil, and slope are homogeneously
grouped before model calibration. The hydrologic water balance is then modeled at
the HRU level, as shown in many studies [36,49–54]. However, a major drawback of
this approach is that those model parameters are not directly linked to physical basin
properties [44]. Alternatively, distributed hydrologic models can also be parameterized
using the multiscale parameter regionalization (MPR) method [39]. In this technique, a
distributed hydrologic model can be calibrated by connecting the model parameters to the
basin’s physical characteristics by assuming a priori-defined relationship, e.g., pedotransfer
function [55,56]. Several studies [39,44] reported that the strength of the MPR method lies
in its ability to account for sub-grid variability of soil, land use, and elevation characteristics
to support the transfer of model parameters to other scales or ungauged basins other than
those used during model calibration.

The mesoscale Hydrologic Model (mHM) [39,44] employs the MPR technique to aid
the transferability of parameters to other scales and ungauged basins. Detailed information
on the MPR-mHM is explicitly explained by [39,44]. The mHM model has been successfully
applied in approximately 220 basins in Germany [57], 300 pan-European union basins [58],
the continental United States [59], as well as in South East Asia [60]. In contrast, there have
only been a few applications of the mHM on the African continent at the time of writing
this paper. In a study [1] in a few West African basins, mHM produced satisfactory results.
Additionally, mHM was used to model hydrological processes in the Volta River Basin,
Ghana [61,62]. Application of mHM in any basin within Nigeria has not been undertaken
before or is not evident in scientific published literature. In light of this information
and given the sparse network of hydro-meteorological facilities that exist in Nigeria at
present, this study employs the mHM-MPR technique for hydrologic simulation under
data-scarce conditions. This approach is apt taking into consideration the challenges to
water resources development in Nigeria due to recent modifications in the climate system
and its impact on rain-fed agriculture. Furthermore, the unavailability of in situ input
datasets for realistic hydrologic modeling in Nigeria and the need for the application
of distributed hydrologic models to take advantage of existing high-resolution spatial
datasets will support reliable simulation of hydrologic extremes (flood and droughts). We
believe that the ability of the MPR method to support sub-grid variability and effective
representation of the landscape can address the challenge of estimating reliable hydrologic
model parameters at the mesoscale in Nigeria. This study addresses the following research
questions:

1. What is the performance of gridded rainfall datasets over Nigeria?
2. How does mHM perform across selected basins when forced with different gridded

rainfall datasets?
3. What is the performance of mHM when parameters are transferred from gauged to

ungauged basins?

2. Methods
2.1. Study Area

Nigeria is located between latitude 4◦ N–14◦ N and longitude 4◦ E–15◦ E (Figure 1). It
is bordered in the north by the Sahara desert and in the south by the Atlantic ocean. Its geo-
graphical position gave rise to InterTropical Discontinuity (ITD), which controls the weather
throughout the year. The ITD is the region of lowest atmospheric pressure which separates
the dry northeast trade winds from the Sahara Desert from the wet southwest monsoon
from the Atlantic Ocean [15]. Three major climatic zones subdivided latitudinally as pre-
sented by Omotosho and Abiodun [63] exist in Nigeria: Guinea coast (Latitude 4–8◦ N),
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Savannah (8–11◦ N), and Sahel (11–14◦ N) (Figure 1). Distinct climate characteristics over
these regions are described in an earlier study [9,64].
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Figure 1. Map of Nigeria showing synoptic stations over three distinct climatic regions.

The study basins are the Kaduna (64,848 km2), Hadejia (16,820 km2), and Jamaare
(13,929 km2) River Basin systems, which are located in the semi-arid north–central region
of Nigeria (Figure 2). This region is characterized by sparse vegetation with scattered
shrubs occasioned by frequent droughts and high rainfall variability [16,65]. The majority
of the inhabitants dwelling in the Hadejia–Jamaare river basin are involved in cattle rearing,
irrigated agriculture, cropland farming, and trading as sources of income [16]. During
monsoon periods (April–September), farmers cultivate major crops, including sorghum,
maize, millet, yams, soybean, and irrigated rice in the dry season (October–March). The
Kaduna River is a critical water supply to the metropolis’ inhabitants and for irrigated
agriculture [13]. Both the Hadejia and Jamaare rivers discharge into Lake Chad but take
their sources from both the Kano highlands and Jos Plateau, respectively [65]. Constructions
of large-scale projects (e.g., dams) on these rivers (Shiroro dam on the Kaduna river; Tiga
and Challawa Gorge dams on the Hadejia–Jamaare river system) [13,16,65] have impacted
water flows and subsequently affected the micro-climate within the region. These dams
were not represented during the modeling process due to the lack of a dam/reservoir
component in mHM. The mean annual rainfall cycle over the North–central region of
Nigeria is about 700–800 mm, with a unimodal peak in August. All study basins are
located within the same agro-climatic region and are characterized by karstic geological
formations and sparse vegetation as a result of long periods of dry season and short periods
of monsoon season. The major differences between these basins are varied topography
(Figure 2) and anthropogenic activities on the landscape. Large urban centres characterized
by high human population and economic activities exist majorly within the Kaduna and
Hadejia basins.
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2.2. The mHM-MPR Structure: Description

The mesoscale Hydrologic Model (mHM) is a grid-based, spatially explicit conceptual
hydrologic model forced with hourly or daily precipitation, temperature, and potential
evapotranspiration datasets [39,44]. Its mathematical formulations are based on numerical
approximations of dominant hydrologic processes as found in Hydrologiska Byrans Vat-
tenbalansavdelning (HBV) [67] and Variable Infiltration Capacity (VIC) [68] models. The
major components modeled in mHM include canopy interception, snow accumulation,
soil moisture dynamics, infiltration, surface runoff, evapotranspiration, deep percolation,
baseflow and flow routing, and groundwater storage [33]. In this study, potential evap-
otranspiration (PET) was estimated using temperature information obtained from ERA5
and read into mHM with aspect correction. A six-layer (50 mm, 150 mm, 300 mm, 500 mm,
1000 mm, and 2000 mm) infiltration capacity approach was used to calculate soil moisture
in the root zone. Runoff routing from upper to lower grids through river networks was
generated using the Muskingum–Cunge method. Interested readers can find a detailed
mHM description in the previously published literature [39,44]. mHM code is open source
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and is published in an online repository—git.ufz.de/mHM. Version 5.11.0, accessed on
6 October 2020 was used for this research.

To describe the spatial dynamics of hydrologic processes per grid cell during hy-
drologic simulation, mHM requires 28 parameters (see Appendix A). Three mHM levels
(Level-0, Level-1 and Level-2) are used to represent the spatial variability of state and
input variables. Level-0 has the finest resolution and comprises morphological data such
as elevation, land use, and slope, while Level-2 has the coarsest resolution and contains
meteorological forcing data of precipitation, temperature, and evapotranspiration. Level-1
represents the dominant hydrologic processes and model outputs. Few mHM parameters
(e.g., β2, β4, β9, β11, β12, and β14 (see Appendix A)) are assumed as global parameters
because they do not exhibit spatial variability and, as such, are not regionalized [39].

Estimating each of the 28 mHM parameters for each grid modeling cell through
calibration will result in over-parameterization [69]. To reduce the number of free cali-
brated parameters vis à vis the prediction uncertainty, MPR was employed to translate
high-resolution input data variables into model parameters using transfer functions and
upscaling operators [70]. This is performed in two steps, as reported in Kumar et al. [44].
In the first stage, mHM parameters evaluated at the input data scale (Level-0) are coupled
with basin physical properties (e.g., terrain, soil texture, land cover, geology, etc.) through a
priori established linear or non-linear transfer functions and a set of global parameters. In
the final stage, these high-resolution parameters are upscaled to produce fields of effective
parameters at the required hydrologic modeling spatial scale (Level-1) using upscaling
operators such as arithmetic mean, geometric mean, or harmonic mean. Kumar et al. [69]
summarized these two steps as follows:

βpi(t) = Op
〈

βpj(t) ∀j ∈ i
〉

i

βpj(t) = fp
(
uj(t), γ

)
where p = number of model parameters; uj = v-dimensional predictor vector for cell j at
Level-0, which is contained by cell i at Level-1; Op

〈
βpj(t) ∀j ∈ i

〉
i = upscaling operator ap-

plied for regionalization of the parameter, p; γ = s-dimensional vector of global parameters
to be calibrated; v and s denote the total number of basin predictors and the total number
of free parameters to be calibrated, respectively.

This procedure generates quasi-scale independent parameters which characterize
sub-grid variability. In the end, approximately 64 global parameters (see Appendix B) were
established over the whole modeling domain instead of estimating parameters at each
grid cell independently. The advantage of this approach lies in the reduction of model
complexity and over-parameterization, allowing transferability of model parameters across
catchments, and improving model sub-grid variability and overall hydrologic simulation
performance [39]. A calibration technique was then performed to adjust these parameters
to simulate realistic historical hydrologic variables. Interested readers can find a detailed
description of mHM-MPR in previous studies [39,44,59,71]. The mHM-MPR regionalization
technique is superior to other regionalization schemes through the reduction of dimen-
sionality of parameter space while maintaining sub-grid variability [70]. In a study [39]
to assess the performances of the MPR and the Standard Regionalization (SR) methods
using a distributed hydrologic model, MPR results showed superiority in many aspects.
Furthermore, the MPR method was also tested with other hydrologic models over large
continental domains with satisfactory results [71–73].

2.3. Data and Inputs
2.3.1. Morphological Datasets

Digital elevation model (DEM) data at a resolution of 0.002◦ was obtained from the
Global Multi-resolution Terrain Elevation Data (GMTED2010) [66]. The ArcMap geographi-
cal information system (GIS) was used to process slope, flow direction, aspect, and flow
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accumulation for the study basins. Geological properties at 0.5◦ were obtained from the
Global Lithological Map (GliM) version 1.0 database [74]

2.3.2. Soil Data

Soil information related to physical properties, including soil depth, bulk density,
sand, and clay content, was obtained from SoilGrids database [75] at a resolution of 250 m
for different soil layers and used during the model setup.

2.3.3. Landuse

In the mHM, land use data is aggregated and restricted to three (3) major classes:
coniferous and mixed forest (class 1); impervious areas such as settlements, highways, and
industrial parks (class 2); pervious areas representing fallow lands, agricultural lands, and
pastures (class 3), using information obtained from the European Space Agency (ESA) at
300 m spatial resolution [76]. The monthly gridded leaf area index (LAI) was obtained
from the Global Inventory Modeling and Mapping Studies (GIMMS) at 8 km spatial
resolution [77].

2.3.4. Meteorological Data

Four (4) gridded precipitation products (ERA5 [31], CHIRPS [78], GPCC [79], and
MSWEP [80]) (Table 1) comprising satellite, reanalysis, and gauge datasets were evalu-
ated at the synoptic station scale (grid-to-point analysis) and over three distinct climatic
regions in Nigeria. These products were selected based on their performance in previous
studies [3,9,38] in the West African sub-region. These studies further noted that the GPCC,
for example, satisfactorily captures the high variability that characterizes West African rain-
fall events. This robustness by the GPCC is not surprising as its development incorporates
gauge records obtained from national meteorological agencies. Thermal infrared imagery
and in situ station data are incorporated for the development of CHIRPS gridded observa-
tions. MSWEP was produced by merging in situ gauge, satellite, and reanalysis rainfall
estimates, while ERA5 was developed from historical records using advanced modeling
and data assimilation systems. Daily rainfall data (1983–2013) from 24 synoptic stations
(see Figure 1) were obtained from the Nigeria Meteorological (NiMet) Agency and used
as references to evaluate these gridded datasets at the climatic region scale. The selection
of this period (1983–2013) is a consequence of missing data for many locations. Statistical
metrics such as the Kling–Gupta efficiency (KGE) [81], Pearson correlation coefficient (r),
per cent bias (PBIAS), and root mean square error (RMSE) [82] were used to assess model
performance against in situ gauge observations. The KGE addresses several limitations
of the NSE and is based on the decomposition of NSE into three components (correlation,
variability (α), and bias (β)). KGE values range from −∞ to 1, and KGE = 1 designate
perfect agreement between predictions and observations. Beta (β) is the ratio of the mean
of the predicted values to the observed values and has an ideal value of 1 (i.e., ideal β = 1),
while alpha (α) is the ratio between the standard deviation of the predicted value and
observed values. The ideal value for α = 1. Pearson’s correlation coefficient describes
the degree of collinearity between model-simulated and observed time series records and
ranges from −1 to 1. No relationship exists between predicted and observed data when
r = 0. On the other hand, a perfect positive or negative relationship exists when r = 1 or
−1, respectively. PBIAS quantify the likelihood of predicted values deviating from their
observed counterparts. In this case, PBIAS = 0 indicates accurate model prediction, while
negative and positive values signify model overestimation and underestimation biases,
respectively. RMSE measures the standard deviations of the prediction errors. A smaller
RMSE value designates better model performance.

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2,
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where r is the linear correlation between simulation and observation, α is the flow variability,
and β is the bias ratio.

r =

n
∑
1

(
Oi −O

) (
Si − S

)
√

n
∑
1

(
Oi −O

)2 n
∑
1

(
Si − S

)2
,

PBIAS =

n
∑
1

Oi − Si

n
∑

i=1
Oi

× 100,

RMSE =

√
1
n

n

∑
i=1

(Oi − Si)
2,

where O and S are observed and simulated values, respectively, and i is time steps.

Table 1. Precipitation products evaluated in this study.

Precipitation Product Data Sources Spatial Coverage Spatial Resolution

ERA5 Reanalysis Global 0.25◦

CHIRPS Satellite, gauge, reanalysis 50◦ N–50◦ S 0.05◦

GPCC Gauge 90◦ N–90◦ S 1.0◦

MSWEPv2.2 Satellite, gauge, reanalysis Global 0.1◦

2.3.5. Discharge Data

Daily discharge data for study basins obtained from the database of the World Me-
teorological Organisation German Global Runoff Data Center (GRDC) and Nigerian
Hydrological Services Agency (NHISA) were used for mHM calibrations and valida-
tion (Table 2). GRDC documents river discharge data on behalf of the World Mete-
orological Organization and with the permission of national governments. The prob-
lem of missing data necessitated the use of different periods for each study basin dur-
ing model calibration. The GRDC station No. 1837250 is hereafter named Basin 250,
while GRDC Station No. 1837410 is hereafter named Basin 410 to correspond with the
3-digit Basin 572. We acknowledge the policy guiding the dissemination of GRDC data
as documented on https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_
node.html;jsessionid=D0D2E24F2991D2AE1C9FA4BEF25C995A.live11311/, accessed on
6 October 2020.

Table 2. Daily discharge data.

Basin Name GRDC Station No Period of Coverage Station Name Source

Jamaare 1837250 (250) 1983–1997 Kotagum GRDC

Hadejia 1837410 (410) 1987–1991 Wudil GRDC

Kaduna * 572 1989–1995 Wuya NHISA, Nigeria

* obtained from Nigeria Hydrological Services Agency (NHISA).

2.3.6. Hydrologic Modeling Framework

To guarantee some level of trust in the mHM results in this study, a modeling exper-
iment was developed where the model output (discharge) was assessed for 12 different
simulation runs while varying precipitation datasets (CHIRPS, ERA5, GPCC, and MSWEP)
across 3 river basins and using default model parameters. Due to limited climate data avail-
ability, potential evapotranspiration was computed by applying the Hargreaves–Samani

https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html;jsessionid=D0D2E24F2991D2AE1C9FA4BEF25C995A.live11311/
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html;jsessionid=D0D2E24F2991D2AE1C9FA4BEF25C995A.live11311/
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method [83] driven with ERA5 daily mean temperature and daily temperature ranges
for all model setups. Firstly, hydrologic simulations for each river basin were performed,
forced separately with each gridded precipitation product while using default model pa-
rameter values. Secondly, all model setups were calibrated for discharge simulation using
each gridded precipitation dataset. Performance in discharge simulations for different
model setups (i.e., different precipitation datasets) was assessed using the Kling–Gupta
efficiency [81] metric (Equation (1)). The choice of the KGE method stems from the fact
that it addresses the limitations in NSE and is now the preferred choice for model cal-
ibration and evaluation [84]. Popular optimization algorithms which produce optimal
solutions include shuffled complex evolution [85], adaptive simulation annealing [86],
particle swarm optimization [87], covariance matrix adaptation evolution strategy [88],
and dynamically dimensioned search [89] algorithms. Model optimization was performed
using the Dynamically Dimensioned Search (DDS) algorithm. The DDS algorithm is more
effective and well-suited for computationally intensive hydrologic modeling when com-
pared to the shuffled complex evolution (SCE) optimization method. The DDS provides
an automatic and faster stochastic neighborhood search method for finding the best pa-
rameter combinations within a user-set number of iterations during distributed hydrologic
modeling [89]. Once the most performed gridded dataset is established, it is used in the
next stage of modeling experimentation. Thirdly, a multi-basin mHM setup was developed
by setting up the mHM for three different basin combinations (Basins 250 + 410, Basins
572 + 410, Basins 250 + 572) using only CHIRPS datasets to infer unique model parameter
sets for every basin combination. Lastly, optimized parameter sets obtained from each
of the two-basin combinations were used to simulate discharge in an independent third
basin. This approach is necessary to assess the feasibility of transferring mHM optimized
parameters to a different basin for stream discharge simulation.

3. Results and Discussion
3.1. Gridded Precipitation Rainfall Products Performance

Daily gridded precipitation estimates (1983–2013) were obtained on a grid-to-point
scale using the location of synoptic weather stations, as shown in Figure 1. Taylor di-
agrams depicting time series of daily gauge rainfall in comparison to grid-based prod-
ucts for stations within the Sahel, Savannah, and Guinea coast regions are presented in
Figures 3–5, respectively.

Correlation and RMSE values for some selected synoptic stations within each of the
three climatic zones, as presented in Figure 3 (Sahel), Figure 4 (Savannah) and Figure 5
(Guinea), show varying results without any particular order at daily temporal resolution.
In the Sahel, only GPCC was able to record satisfactory correlation (r > 0.5) and RMSE
(RMSE > 12) for all locations under consideration. This trend was also the same in the
Savannah region with correlation values above 0.6 (i.e., r > 0.6) and lower RMSE values
(RMSE > 9). In the Guinea coast region, an acceptable result (r > 0.9, RMSE > 5) was only
obtained in Lokoja (Figure 5).

Overall, GPCC showed consistent satisfactory performances in comparison to in situ
station data, mostly in the Sahel (Figure 3) and Savannah (Figure 4) regions. Similar
studies [90,91] exhibited the same performance when the GPCC dataset was evaluated
against synoptic stations in Nigeria. These authors attributed the GPCC performances to
the integration of in situ gauge rainfall records in its algorithm during development.

The general performances of the GPCC in many of the locations agree with the results
of Ogunjo et al. [91] in their study to evaluate the performances of three gridded rainfall
products over Nigeria. This performance is largely attributed to the incorporation of in
situ rainfall observations within the GPCC computational algorithm. Other studies [38,92]
showed similar trends concerning the GPCC’s ability to reproduce station records.

The mean annual cycle of all precipitation datasets over each climatic zone was evalu-
ated for both gauge and gridded rainfall data records. Results over the Sahel, Savannah,
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and Guinea coast regions are presented in Figure 6, and the error indices are shown in
Figure 7.
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Figure 3. Taylor diagram of synoptic stations within the Sahel climatic zone.

The annual precipitation cycle of mean monthly rainfall for each of the three climatic
regions implies that all grid-based products could reproduce observed rainfall trends and
peaks, though with a varying magnitude of errors, as seen in Figure 7. This also signifies
that these grid-based products captured the latitudinal oscillations of convective processes
from southern latitudes to northern latitudes well, which characterize the west African
monsoon. Furthermore, rainfall seasonality in all regions was well-reproduced by grid
products under consideration in this study; the unimodal rainfall peak was reproduced in
Sahel and Savannah regions, while bimodal peaks were shown by all grid-based products
in the Guinea coast region. All gridded datasets recorded high KGE (KGE ≥ 0.8) and NSE
values (NSE ≥ 0.8) in all climatic regions but were not presented in this study. Low RMSE
(<10 mm) and bias (±6%) values were recorded by the CHIRPS gridded data in all locations
and showed its ability to reproduce the West African monsoon with low error margins.
The acceptable performance of the CHIRPS dataset in this study is in agreement with other
studies [20,93,94] carried out over the SSA region.

All precipitation products in the Savannah and Guinea coast regions (Figure 6) showed
a nearly similar trend in comparison to in situ observations to those presented for the Sahel
region. Satgé et al. [95] suggested that mismatches between satellite rainfall datasets and
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observations, as is evident in the Sahel and Guinea coast regions (Figure 6), could be
attributed to differences in reporting times for all datasets. In their study [94,95], satellite-
based rainfall products (e.g., CHIRPS, MSWEP) showed overall better performance over
reanalysis products which is in agreement with our findings in this study. In the Sahel,
ERA5 gave RMSE > 25 and PBIAS > 20% (Figure 7) against lower values obtained for
other products.
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3.2. Exploratory and Optimized Model Results

During mHM exploratory runs, discharge simulations were performed using default
model parameters while varying precipitation inputs across the three different study basins.
In all, 12 default model runs were carried out to evaluate simulated discharge results against
observed discharge. The result of exploratory mHM simulations using default parameter
values is shown in Table 3. To assess which gridded precipitation input reproduced gauged
discharge time series, mHM was calibrated for each river basin while varying precipitation
inputs. KGE values during optimized mHM runs are also shown in Table 3.

Discharge simulations in the Jamaare (Basin 250), Hadejia (Basin 410), and Kaduna
(Basin 572) basins using default mHM parameters while varying precipitation inputs, as
presented in Table 3, generally show poor KGE results. Acceptable KGE values, as recom-
mended by Knoben et al. [84], were obtained for discharge simulation in the Jamaare river
basin when forced with CHIRPS (KGE = 0.68437) and MSWEP (KGE = 0.65066). In Hadejia
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and Kaduna river basins, none of the gridded rainfall products showed satisfactory results
except ERA5 in the Hadejia basin (KGE = 0.68170). Using KGE = 0 as a threshold between
good and bad model simulation in this study, negative KGE scores (KGE < 0) obtained
mostly in Hadejia and Kaduna basins designate poor model performance. Additionally,
none of the poor-performing basins provided a KGE value greater than −0.41, and, as
such, this signifies that the result did not improve upon using the mean as reported by
Knoben et al. [84]. Overall, mHM exploratory (using default parameter values) results indi-
cate unacceptable performance in almost all the basins modeled. These poor KGE results
obtained while using default parameters are similar to those obtained in another mHM
application [1] in West African Basins. The study of Poméon et al. [1] and our research share
similarities; both applied mHM in West African Basins, and potential evapotranspiration
data were read in with an aspect-driven correction. Both studies produced poor KGE
values when mHM was driven with GPCC product in all basins using the default model
setup. In this study, default mHM simulation results with regard to each meteo forcing
are vague and unclear. Stream discharge dynamics were mostly captured in the Jamaare
basin. Poor results obtained in the Hadejia and Kaduna basins could be attributed to the
misrepresentation of dams/reservoirs existing in these locations.
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Table 3. KGE results for default and optimized mHM discharge simulations.

Simulation Using Default mHM Parameters Simulation Using Optimized mHM Parameters Forcing

Jamaare
(Basin 250)

Hadejia
(Basin 410)

Kaduna
(Basin 572)

Jamaare
(Basin 250)

Hadejia
(Basin 410)

Kaduna
(Basin 572)

0.68 −1.18 −2.22 0.79 0.66 0.51 CHIRPS
0.06 0.68 −1.78 0.75 0.64 0.44 ERA5
0.65 −0.53 −1.78 0.76 0.74 0.52 MSWEP
0.43 −1.34 −1.50 0.45 0.63 0.49 GPCC

On the other hand, optimized mHM discharge simulations showed significant im-
provements when compared with results from the defaultmHM parameter simulations.
Satisfactory calibrated discharge results were produced by CHIRPS (KGE > 0.5) in all three
basins, with ERA5 in Jamaare (KGE = 0.75) and Hadejia (KGE = 0.64). MSWEP produced a
KGE > 0.5 in the three basins, while GPCC provided a KGE value of = 0.63 in the Hadejia
river basin. In comparison with default mHM parameter simulation, optimized discharge
simulation results (KGE values) showed an increase of 15.85% in Jamaare, 155.62% for
Hadejia, and 123.11% in Kaduna basin when forced with CHIRPS. For ERA5, a decrease of
6.43% was obtained in Hadejia, while an increase of 1155.44% and 124.98% were observed in
Jamaare and Kaduna basins, respectively. These improvements in discharge results, when
compared to that from default mHM runs, were also obtained when optimizations were
performed with MSWEP (17.31–241.1%) and GPCC (4.57–132.64%) forcings in the three
basins. In general, optimized KGE results for all meteorologic products indicate agreement
between simulations and observations. It is clear from this study that the calibrated mHM
model performed well for discharge simulations. This performance is consistent with the
studies of Poméon et al. [1] and Dembélé et al. [20], which showed acceptable discharge sim-
ulations in West Africa basins using optimized model parameter values. In this study, there
was no clear pattern concerning high-performing rainfall products across all basins under
consideration. As presented in Table 3 (for optimized mHM parameters), CHIRPS exhibited
the highest KGE in the Jamaare basin, while MSWEP was best at performing in the Hadejia
and Kaduna basins. Therefore, no particular rainfall products performed best across all
locations. This finding aligns with the studies of Beck et al. [96] and Dembélé et al. [20].
These authors recommend rainfall product performance evaluation to select the most
suitable for a specific location.

Daily hydrographs of simulated discharge against observations at Jamaare (Basin 250),
Hadejia (Basin 410), and Kaduna (Basin 572) forced with the CHIRPS dataset are shown in
Figure 8, respectively. Model performances for the three basins revealed acceptable values,
but simulated peak flows in Hadejia and Kaduna basins were not successfully captured.
These variations could be attributed to the quality of gauged station observations and the
high uncertainties inherent in gridded precipitation records.

Generally, daily hydrographs obtained using optimized parameters forced with the
CHIRPS dataset for Jamaare (Basin 250), Hadejia (Basin 410), and Kaduna (Basin 572) show
acceptable fits between observed and simulated discharge. High correlation values (r > 0.5)
were recorded across the three hydrographs with Basin 250 showing high KGE (KGE = 0.79)
and correlation (r = 0.86) scores. Peak and low simulated flow followed the observed
trend recorded in the Jamaare Basin more satisfactorily than displayed in the Kaduna
and Hadejia basins. The study by Poméon et al. [1] also showed poor trend and peak
flow representations in some of the West African basins under their consideration. These
authors further observed discrepancies in mHM flow simulations in basins located within
the same region. In this study, our hydrographs (Figure 8) also showed that optimized
mHM performs acceptably in the Jamaare basin and poorly in the Hadejia and Kaduna
basins. We agree with Poméon et al. [1] that several factors could be responsible: (1) several
dams/reservoirs which exist within Hadejia and Kaduna basins were not represented
in mHM. The Shiroro dam, located in the Kaduna basin, has a total reservoir capacity
of 7,000,000,000 m3. The Challawa Gorge and Tiga Dams in the Hadejia basin contain
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reservoirs that have a total volume of 930,000,000 m3 and 1,968,000,000 m3, respectively. In
addition to these large dams located in these two basins, many other medium-small size
dams are also existing in this region. Consequently, mHM lack a reservoir component and
does not simulate reservoirs and water abstracted for irrigation or domestic water supply
purposes. (2) Secondly, data gaps and insufficient discharge time series impact model
performance. Generally, improvements in KGE values from uncalibrated to optimized
mHM runs underscore the benefit of the MPR technique for discharge simulation in the
study region.
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3.3. Multi-Basin Optimization

A multi-basin mHM, comprising two basins (Basin 1 and Basin 2) each, was set up.
A total of three different multi-basin combinations (Basins 250 + 410, Basins 572 + 410,
and Basins 250 + 572) were created and forced with the CHIRPS precipitation product.
Each of these model setups was calibrated using KGE as the objective function. Optimized
model parameters were transferred to a different basin which was not considered during
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model parameterization. Model evaluation was performed by assessing mHM capability
in reproducing observed discharge in an independent basin using optimized model values
from the multi-basin setup which is shown in Table 4. KGE values for each of the multi-
basins (Basin 1 and Basin 2) combinations are presented in Table 4.

Table 4. Optimized mHM results (KGE) from multi-basin combinations.

Basin Multi-Basin Combinations Meteo

Basin 250 + Basin 410 Basin 572 + Basin 410 Basin 250 + Basin 572
CHIRPS1 0.33 0.51 −0.03

2 0.64 0.51 0.58

Having calibrated each of the multi-basin mHM setups for discharge simulation, opti-
mized parameter values from Basin 250 + 410 were transferred to Basins 572 for discharge
simulation. Additionally, calibrated mHM parameters from Basins 572 + 410 were used for
flow simulation in Basin 250, while optimized parameters from Basin 250 + 572 were trans-
ferred to Basin 410. KGE results of these discharge simulations are provided in Table 5. Opti-
mized model parameters from basin combination comprising of Basins 250 + 572 produced
accepted KGE values.

Table 5. mHM validation results on independent basins.

Metric Single Basin mHM Simulation Meteo

Basin 572 Basin 250 Basin 410
CHIRPSKGE 0.02 −0.12 0.54

Hydrographs of daily, monthly and annual flow cycle for Basin 410 (Hadejia River
Basin) are shown in Figure 9. Hydrographs for Basin 572 and Basin 250 are not presented
because they exhibited unsatisfactory KGE scores. Final values of optimized global param-
eters for all three basin setups are presented in Appendix B.

Optimized mHM parameters from different multi-basins were transferred to an inde-
pendent basin to evaluate the predictive skill of mHM for discharge simulation in ungauged
basins. KGE values obtained during optimization of multi-basin mHM runs forced with
CHIRPS are shown in Table 3. Results from Table 4 for Basin 410 revealed an acceptable
KGE (KGE = 0.54) when mHM was evaluated using optimized parameters which were
obtained after calibration in Basin 250 + Basin 572. The monthly discharge (Figure 9) show
slight underestimation of observed discharge but with acceptable performance (KGE = 0.61,
r = 0.78). The more desirable agreement exhibited at the monthly temporal resolution is a
result of averaging the daily time series over the simulation period. This is comparable to a
study by Zink et al. [57] At a daily time step, observed and simulated discharge exhibited a
similar trend but with clear peak flow mismatches.

Overall, the feasibility of transferring mHM optimized parameters across different
locations exhibited promising results only in the Hadejia basin. However, our study
could not fully demonstrate the effectiveness of transferring optimized parameter sets
to ungauged basins although these basins exist in the same agro-climatic region. This
observation is also reported by Zelelew and Alfredsen [97]. These authors attributed this
inconsistency to input data uncertainties, parameters interactions and model structure. In
our case, integrating model parameter sets from two basins, which increased the parameter
search space, failed to improve simulation results in Jamaare and Kaduna basins. The
Acceptable KGE score obtained in the Hadejia basin by using an optimized parameter
set from Kaduna and Jamaare could also be attributed to their domain size. The area
of Kaduna basin is about four times (4×) the size of either Jamaare or Hadejia basin.
Therefore, changes in soil, elevation and land use may have also led to inconsistencies in
model performance. mHM does not incorporate a dynamic crop growth component and
recognizes only three land use classes (forest, pervious and impervious). These factors
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could have contributed to the mismatch in peak flow simulations. Furthermore, the poor-
performing basins could be attributed to uncertainties inherent in the individual basins
that constitute the multi-basin setups.
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4. Conclusions

Sparse and non-existent hydro-meteorological gauging networks have hindered hy-
drologic modelling in Nigeria. This has major implications for water and agricultural man-
agement at the mesoscale and at a period when hydrologic extremes (flood and drought)
occasioned by climate variability occur annually in Nigeria. This study evaluates the skill
of mHM for the transferability of model parameters from gauged to ungauged regions.
After evaluating four grid-based precipitation products, the CHIRPS precipitation dataset
was selected as model forcing to evaluate the robustness of the mHM regionalization
scheme in data-sparse basins located in Northern Nigeria. Our results showed acceptable
discharge simulations by using optimized parameters in contrast to default model param-
eters. The CHIRPS datasets produced satisfactory results during default and optimized
mHM discharge simulations. For optimized mHM runs, CHIRPS and MSWEP products
exhibited acceptable performance with KGE > 0.6 across all basins under consideration.
The sub-grid variability at the level in morphological input datasets, which characterizes
the MPR technique is a major factor for satisfactory flow simulation in all basins. However,
this result was not achieved when optimized parameter sets were obtained in a multi-
basin configuration and transferred to an independent basin. Only the Hadejia river basin
showed acceptable results when mHM was evaluated using optimized model parameter
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values from another location. This inconsistency in model performance can be caused by
poor representation of dam/reservoirs, lack of a plant module within the mHM structure
and uncertainties inherent in model inputs.

We agree that there is a need for further mHM studies in Nigeria to exhaustively
investigate the performance of model parameter transferability to ungauged basins. The
paucity of discharge records limited such applicability in this aspect. It will be interesting
to assess mHM hydrologic simulation performance in the same region driven by ground-
measured rainfall data. This approach will reinforce the scientific understanding of the
utility of the model robustness for discharge simulation in Nigeria. In addition, a multi-
variable calibration scheme should be incorporated to constrain the model’s internal state.
This research seeks to encourage and stirs interest within the Nigerian scientific community,
watershed managers and government institutions/policymakers on the feasibility and
applicability of the mHM-MPR scheme to support water resources management and policy-
making in the light of the hydro-meteorological deficits.
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Appendix A

Table A1. List of mHM Parameters and their predictor variables.

Parameters Description MPR Predictor Variable

β1 Thickness of waterfilm on the canopy surface (-) Landcover

β2
Threshold temperature for temperature for phase transition

snow and rain (◦C) -

β3 Degree day factor during rainless days (mm d−1 ◦C) Landcover

β4
Rate of increase of the degree-day factor per unit of

precipitation (mm d−1 ◦C) -

β5
Maximum degree-day factor reached during rainy days

(mm d−1 ◦C) Landcover

β6 Maximum soil moisture content of kth root zone (mm) Soil texture, land cover

β7
Parameter that determines the relative contribution of rain

or snowmelt to runoff (-) Soil texture, land cover

β8
Critical value of soil ice content above which the soil is

practically impermeable Soil texture

β9 Shape factor of the gamma distribution (mm) -

β10
ATI threshold below which unfrozen water content reaches

its minimum (K) Soil texture
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Table A1. Cont.

Parameters Description MPR Predictor Variable

β11 ATI threshold above which no frozen water exist (K) Soil texture
β12 Minimum fraction of unfrozen water content Soil texture

β13
Weighting multiplier to estimate ATI from air

temperature (-) -

β14 Maximum ponding retention in impervious areas (mm) Land cover

β15
Permanent wilting point, estimated as a fraction of max. soil

moisture content (-) Soil texture, land cover

β16
Soil moisture limit above which the actual transpiration is

equated with the PET (-) Soil texture, land cover

β17 Fraction of roots in the first root zone layer (-) Land cover

β18
Maximum holding capacity of the second reservoir

(unsaturated zone) (mm) Soil texture, land cover

β19 Fast-recession constant (d) Slope
β20 Slow-recession constant (d) Soil texture

β21
Exponent that quantifies the degree of nonlinearity of the

cell response (-) Soil texture

β22 Effective percolation rate (d) Soil texture
β23 Baseflow recession rate (d) Geology

β24

Fraction of the groundwater recharge that might be gained
or lost either as deep percolation or as intercatchment
groundwater flow in nonconservative catchments (-)

Geology

β25 Duration of the triangular unit hydrograph (h) Length, slope and landcover along
drainage path within cell

β26 Muskingum travel time parameter (h) Length, slope and landcover of
river reach

β27 Muskingum attenuation parameter (-) Slope of river reach
β28 Aspect correction factor of the PET (-) Aspect

Appendix B

Table A2. Values of optimized global parameters for different multi-basin mHM setup.

Global Parameter Basin 250 + basin 410 Basin 250 + Basin 572 Basin 572 + Basin 410

Canopy Interception Factor 0.2681 0.2028 0.2156
Organic Matter Content (forest) 9.8836 5.0797 6.4115

Organic Matter Content (impervious) 0.9829 0.9182 0.8356
Organic Matter Content (pervious) 4.9552 1.0180 1.0002

PTF_lower66_5_constant 0.7997 0.7729 0.7555
PTF_lower66_5_clay 0.0012 0.0012 0.0012
PTF_lower66_5_Db −0.2504 −0.2551 −0.2642

PTF_higher66_5_constant 0.8001 0.8020 0.8934
PTF_higher66_5_clay −0.0011 −0.0012 −0.0008
PTF_higher66_5_Db −0.3496 −0.3493 −0.3019

PTF_Ks_constant −0.4587 −0.5584 −0.3396
PTF_Ks_sand 0.0096 0.0199 0.0093
PTF_Ks_clay 0.0078 0.0070 0.0097

Root Fraction Coefficient (forest) 0.9021 0.9987 0.9990
Root Fraction Coefficient (impervious) 0.92534 0.9004 0.9497

Root Fraction Coefficient (pervious) 0.0881 0.0011 0.0011
Infiltration Shape Factor 1.0030 1.0048 1.0080

Impervious Storage Capacity 0.0888 0.0322 0.0746
Min Correction Factor PET 1.1272 1.2578 1.2655
Max Correction Factor PET 0.1832 0.1988 0.1960

Aspect Threshold PET 198.1908 197.6042 199.9155
Interflow Storage Capacity Factor 195.1194 194.5852 198.6782
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Table A2. Cont.

Global Parameter Basin 250 + basin 410 Basin 250 + Basin 572 Basin 572 + Basin 410

Interflow Recession (slope) 9.9847 6.7972 2.1313
Fast Interflow Recession (forest) 2.8495 2.8620 2.9520
Slow Interflow Recession (Ks) 5.2018 1.2624 5.7972

Exponent Slow Interflow 0.0532 0.0532 0.0557
Recharge Coefficient 10.5805 22.65960 9.6152

Recharge Factor (karstic) −3.6442 −4.7927 −1.2947
Muskingum Travel Time (constant) 0.3452 0.3474 0.3487

Muskingum Travel Time (river Length) 0.0747 0.0799 0.0798
Muskingum Travel Time (river Slope) 2.0970 2.0374 2.0473
Muskingum Travel Time (impervious) 0.1008 0.0970 0.1066
Muskingum Attenuation (river Slope) 0.0101 0.0464 0.0768

GeoParam(1:) 993.6726 8.4011 974.9530
GeoParam(2:) 997.0097 987.2088 975.3943
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