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Abstract

Zoonotic infections are on the increase
worldwide, but most research into the biologi-
cal, environmental and life science aspects of
these infections has been conducted in separa-
tion. In this review we bring together contem-
porary research in these areas to suggest a
new, symbiotic framework which recognises
the interaction of biological, economic, psy-
chological, and natural and built environmen-
tal drivers in zoonotic infection and transmis-
sion. In doing so, we propose that some con-
temporary debates in zoonotic research could
be resolved using an expanded framework
which explicitly takes into account the combi-
nation of motivated and habitual human
behaviour, environmental and biological con-
straints, and their interactions.

Introduction

Up to three-quarters of emerging infectious
diseases are zoonotic in origin,1 with zoonotic
disease posing a considerable and increasing
threat to global health.2 Pathogen transmission
from both domestic and wild animals can
cause zoonotic outbreaks, and epizootic out-
breaks in the wild can also spill (back) into
domesticated animals resulting in human
exposure.3 Two drivers of zoonotic disease
transmission into and within the human popu-
lation can be identified. The first source is the
occurrence of disease in animals, which may
change with variations in several factors,
including population dynamics of hosts or vec-
tors, and alterations in habitat. A second
source of pressure emerges from variations in
the human population’s composition or behav-
iour, resulting in changing susceptibility.
Despite an increased interest in the human
aspects that underlie infectious disease trans-

mission,4 relatively little is known about how
these factors interact with the environment in
the spread and management of disease
risk.5 We bring together psychological, eco-
nomic, environmental and social contact mod-
elling research in order to better conceptualise
the key factors and dynamics that underpin
both initial zoonotic disease transmission and
wider population spread. We then propose a
new heuristic framework to help guide future
research.

Zoonotic transmission, and the
risk environment

The One health movement has stressed the
close inter-relationship between animal and
human health.6,7 Thus while zoonotic dis-
eases often originate in animals, there exists
a wide range of potential transmission path-
ways for human infection. Some of these
pathogens can be sustained within human
populations alone, others require other
species or environments to survive or propa-
gate, or are simply spread more effectively
there. In addition, several significant
zoonoses are not generally spread by human-
to-human contact but caught (almost exclu-
sively) from animals alone (e.g. West Nile
fever, Japanese encephalitis and rabies). 
There are a wide range of settings in which

human zoonotic infection may occur. In much
of the developing world, proximity to animals
as well as hunting and consumption of wild
bush meat are important disease risk factors.8

In many developed countries, most at risk of
infection are those working with animals or
animal products, such as livestock and poultry
workers (e.g. Zoonotic influenza, Q-fever,
Streptococcosis, Rift valley fever), workers pro-
cessing food (e.g. Campylobacteriosis,
Crimean-Congo haemorrhagic fever), or
employees working outside where they might
have contact with animals or animal matter,
such as forestry workers (e.g. Dobrava-
Belgrade virus infection, human granulocy-
totropic anaplasmosis, tularaemia). Other
groups may also be susceptible. For example,
Vero cytotoxin-producing Escherichia coli 0157
(VTEC) affected almost 100 children visiting
an open farm in Surrey, England.9 Walkers and
other countryside users throughout Europe
face an increasing risk from Lyme Disease,
and may have an increased probability of
acquiring cryptosporidiosis.9 Tables 1 and 2
provide a list of animals that serve as zoonotic
infection reservoirs, and major routes of trans-
mission into humans. Transmission may be bi-
directional,10 further complicating the route of
infection and potentially exacerbating spread.
In addition, further incursions may be possi-

ble. The One Health movement emphasises
the significance of horizon scanning, and
recognises that important diseases can be
potentially established in a wide variety of
locations, rather than where they are currently
found. For example, West Nile Fever, has been
shown to have competent vectors in the UK.11

Disease transmission occurs in a wide
social and cultural environment.7 Major socie-
tal transitions that affect the relationship
between the environment and social and
behavioural factors can have important impli-
cations for disease spread.8 The term risk envi-
ronment describes a combination of economic,
cultural, and psychological factors that can
contribute to disease risks.12 At the macro
level, the risk environment includes large pop-
ulation movements, resulting from both exter-
nal changes (e.g. floods, wars) and internal,
often gradual, societal changes (e.g. industrial-
ization).13,14 It also includes changes in land
use, public health infrastructure, and local,
national and global weather patterns.8 The risk
environment also incorporates further micro-
level factors, including local environmental
conditions (e.g. the use of different materials
which affects the survival of pathogens on sur-
faces), psychological variables (e.g. percep-
tions of animals, individual understandings of
risk), personal estimations of the economic
costs and benefits associated with disease
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risk, and key characteristics of individual and
community networks. We review each of these
below.

Macro level features of the
environment

Human migration
Changes in human demographics play an

important role in the emergence of infectious
diseases, either directly or indirectly by caus-
ing ecological changes. Human migration and
trade, including the transportation of animals,
has the potential to relocate pathogens long
distances and thus introduce an emerging dis-

ease into a hitherto unexposed and therefore
highly susceptible population.15 Large scale
political transitions can also impact on zoonot-
ic disease.14 The fall of communism in Eastern
Europe, for example, and the consequent agri-
cultural and economic reforms, have been
linked to a complex series of factors that acted
independently yet synergistically to increase
tick-borne disease (e.g. decline of agriculture
and regeneration of shrubs leading to increas-
es in transmitting rodents, greater leisure
time contributing to greater exposure to ticks
in forests).16

Land use
As suggested above, land use change and

agriculture have been related to the emer-

gence of new pathogens,17 with the expansion
of the human/economic system into previously
pristine environments providing consequent
exposure to a pool of known and unknown
pathogens.3 Changes in farming practices,
such as movement from rural to peri-urban
and urban areas, are likely to affect pathogen
ecology and its transmissibility to the urban
population.13,17,18 Habitat destruction has
played an important but often complex role in
the spread/emergence of infectious diseases.8

Outbreaks of hantavirus have been linked to
forest clearance in South America.8 The Nipah
virus was transmitted from bats to pigs and
then to humans as a consequence of the
destruction of bat habitats coupled with inten-
sive pig farming practices.19

Review

Table 1. Potential disease reservoirs.

Reservoir species Zoonotic disease examples

Companion animals Cats Toxoplasmosis, Q fever, variant Creutzfeldt-Jakob disease, Capnocytophaga canimorsus, Plague, Bartonellosis
Dogs Q fever, Rabies, Leptospirosis, Capnocytophaga canimorsus

Horses Tuberculosis
Livestock Cattle Q fever, Creutzfeldt-Jacob disease, Crimean-Congo haemorrhagic fever, Tuberculosis, Leptospirosis,

Rift Valley fever, Tuberculosis, Brucellosis
Pigs Toxoplasmosis, Japanese encephalitis, Campylobacteriosis, Tuberculosis, Streptococcosis, Tularaemia, Brucellosis,

Leptospirosis, zoonotic influenza
Sheep/goats Toxoplasmosis, Q fever, Rift Valley fever, Tularaemia, Brucellosis

Deer Q fever, Tuberculosis, Human granulocytotropic anaplasmosis, Leptospirosis
Poultry Poultry/fowl Campylobacteriosis, Chlamydiosis, Salmonellosis, influenza
Wild mammals Badger, Tuberculosis

Raccoons/skunks Rabies
Bats Rabies, Ebola, SARS, Nipah virus

Wild boar Toxoplasmosis, Tuberculosis, Streptococcosis
Wild deer Q fever, Tuberculosis, Human granulocytotropic anaplasmosis

Foxes Q fever, Tularaemia, Echinococcosus, Rabies
Rabbits/hares Q fever, Tularaemia

Rodents Toxoplasmosis, Q fever, Leptospirosis, Dobrava-Belgrade virus, Tularaemia, Plague, Monkeypox
Ground squirrels Plague

Wild birds Birds including waterfowl Influenza, Japanese encephalitis, Q fever, West Nile fever, Eastern equine encephalitis, Chlamydiosis
Aquatic Fish Leptospirosis
Arthropod Insects and arachnids Campylobacteriosis
We exclude vector species which cannot sustain the pathogen in the absence of other hosts.

Table 2. Possible animal to human transmission routes for zoonotic diseases.

Transmission route Zoonotic disease examples

Airborne/respiratory Influenza, Q fever, Tuberculosis 
Physical contact Influenza, Q fever
Bite Rabies, Capnocytophaga canimorsus, Pasturellosis
Faecal matter Influenza, Toxoplasmosis, Salmonellosis, E. coli
Infected carcases (handling) Ebola, Crimean-Congo haemorrhagic fever, Streptococcosis
Food Toxoplasmosis, Campylobacteriosis
Water Leptospirosis, Tularaemia
Arthropod vector (flea, midge, mosquito, tick) Q fever, Crimean-Congo haemorrhagic fever, Lyme disease, West Nile Virus
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Urban planning, infrastructure and
design
The Built Environment - including public

health infrastructure such as sanitation, water
supply, wastewater and solid waste treatment -
is a core defence against pathogens and dis-
ease transmission in most parts of the world.
Many pathogenic microorganisms can contam-
inate water. Leptospirosis, for example, is
caused by contact with the urine of infected
animals or urine-polluted water contaminated
by infected wild animals.20 New methods of
sustainable waste treatment and management
influence potential exposure to pathogens.
Increases in community and industrial com-
posting facilities can release a large quantity
of aerosolised particles into the air.21 Several
zoonotic pathogens such as Mycobacterium
avium, E. coli 0157:H7, Listeria monocytogenes
and Salmonella spp can be detected during the
composting process.22 Moreover, land applica-
tion of bio-solids from animal origins are
known to create various pathways to increase
human exposure to the pathogens.22

Urban planning, architectural layout, occu-
pant density and usage also influences disease
transmission, especially airborne transmis-
sion. A Q-fever outbreak reported in an urban
school in Central Israel occurred far away from
local farms,23 with the air-conditioning system
suspected of contributing to the spread of the
disease. Other urban-engineered environ-
ments associated with zoonotic disease trans-
mission include ventilation and water and
drainage systems. An outbreak of SARS in a
housing campus in Hong Kong, which infected
hundreds of occupants within a few weeks,
was associated with a dysfunctional drainage
system, as well as the proximity of living
spaces.24

The natural environment
Climate, seasonality, and weather events

such as pressure, humidity, and wind speed
and direction, can also influence zoonotic
spread.14 Climate change has increased the
range and number of viruses and bacteria to
which humans may be exposed, as well as
competent vectors and reservoir species.25 In
1989, the largest outbreak of Q-fever (147
cases) was recorded in the UK (West
Midlands),26 the spread of which was attrib-
uted to unusual gale activities. Influenza virus-
es may survive better in winter than in sum-
mer because of the preservation of the viral
coat at low temperature, although the climatic
link between time of year and respiratory dis-
ease outbreaks is often unclear due to season-
al changes in people’s behaviour.27 Seasonal
and weather factors (e.g. rainy seasons, flood-
ing) and natural disasters interact with poor
sanitation and housing environments, which
can bring infected animals, contaminated

water and air into the human environment.
Increased rainfall will also lead to increased
run-off from agricultural land, heightening the
potential for environmental transmission of
zoonotic pathogens from livestock (e.g. E. coli,
hepatitis E virus, Salmonella etc.)

Micro and local level influences
on zoonotic infection 

Interactions between pathogen
characteristics and the local
environment
As outlined above (Table 2), transmission is

likely to occur through different pathways,
leading to varied levels of exposure. The respi-
ratory route of exposure to pathogens can be
divided into wind-borne, dust-borne, droplet-
borne and true airborne transmission.
Airborne particles are very small, less than 5
microns, which allow them to suspend in the
air for a long time. Wind-borne, dust-born and
droplet-borne transmission involve bigger size
particles (>5 microns) and require adequate
air current to keep airborne; otherwise, like
droplet-borne transmission, aerosol spreading
distance is limited to 3 feet.28 Air is generally
considered a largely hostile environment for
microbial life; it has low moisture content and
is lacking in nutrients.28 However, as evident
in recent zoonotic threats, such as SARS out-
breaks and the Swine and Avian Flu pan-
demics, pathogens can successfully infect via
the air. 
Local environmental factors play an impor-

tant part in determining the survival of
pathogens, their physical characteristics and
potential transmission pathways. For example,
droplet release through coughing or sneezing
is influenced by environmental factors such as
temperature and relative humidity, which con-
trol the extent and rate of droplet evapora-
tion.29 The longer the time a pathogen can sur-
vive on a surface, the greater the opportunity
for transmission. Q- fever bacterium is resist-
ant to desiccation, with the survival rate on
environmental surfaces such as clay and wool
shown to be potentially years.23 In a compara-
tive analysis of the survival of influenza virus-
es A and B on hands, non-porous surfaces
(stainless steel and plastic), and porous sur-
faces (e.g. handkerchiefs), viruses survived
longer on non-porous than on porous surfaces
(48 hours compared to 8-12 hours), and could
survive for up to 5 minutes on hands that
touched these surfaces.30

Psychological factors
At present, little work has examined cultural

and normative understandings of human-ani-
mal interactions. Although some work has iden-

tified the human wellbeing and health that may
result from interactions with animals,31 a num-
ber of bacterial, parasitic and viral zoonoses
have been associated with sleeping with, shar-
ing a bed with, kissing or being licked by pets.32

There is also growing evidence of disease risk
associated with the keeping and feeding of non-
traditional exotic or status animals:33 in the UK
a new phage type of Salmonella Typhimurium
(DT 191a) was detected in 2008, linked to the
frozen mice used for reptile food. This means it
is important to understand the psychological
and cultural motivations underlying interac-
tions with animals.
Many interactions with animals are a com-

bination of mindless and ritualised (rather
than consciously motivated) behaviours,
alongside more motivated or long-term
goals.34,35 Stroking a cat may be a habitual, rou-
tine behaviour that meets an affiliative need;
grooming a horse may also express an affilia-
tive need, but also be part of a longer-term eco-
nomic investment. Differences in motivational
behaviour will impact on the efficacy of inter-
ventions aimed at minimising pathogen
spread. Apparently mindless behaviours can be
cued by environment features,35 such as hand-
washing facilities in a petting zoo: longer-term
motivations require attention to specific dis-
ease risks (for example, those associated with
threats to equine health). In some settings,
such as farms, it is also important to consider
broader social representations of particular
animals. These are influenced by culture, the
nature of the zoonotic threat, and the past his-
tory of related diseases. For example, pig farm-
ers in Malaysia did not greatly change their
everyday behaviours during the H1N1 pandem-
ic, seeing this as less of a threat than the pre-
vious Nipah virus.36 Religious and cultural
views on the animal concerned (e.g. pigs and
their products), also tempered reactions to
zoonotic threat.36 Traditional burying rituals,
such as the touching and touching of the dead,
have been implicated in the spread of Ebola.37

Psychological factors also influence reactions
to specific zoonotic threats. Individuals scepti-
cal about the source or trustworthiness of an
official communication may be unwilling to
take appropriate actions.38 A lack of trust in
authorities, low involvement in control post
reporting, and even a sense of guilt can act
against disease reporting.39 Social media (e.g.
Facebook, Twitter) is increasingly being used
by official information providers and those
concerned with co-ordinating crisis
response.40 It is important to understand how
credibility is afforded to such media, as well as
how this information is combined with other
information sources in order to make disease-
relevant decisions. This needs to be fed into
assessments of risk management activities
and their implications for animals, humans
and the environment.18

Review
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Economic factors
Health risks to animals can have significant

economic implications for a society.18 In gener-
al, people value person-to-person, and person-
to-animal contacts, and are willing to accept
some disease risk to gain contact-related bene-
fits. However, economic concerns about the
costs of reporting or particular interventions
can act as major factors in the emergence of
zoonotic diseases.19 Changes in economic
incentives can occur either directly as a conse-
quence of coordinated collective action (e.g. pol-
icy changes) or indirectly as a result in the
change of prevailing environmental conditions
and/or disease dynamics/prevalence (e.g.
changes in the pay-offs associated with a given
course of action).41 Normative economic theory
recognises that decision making about zoonotic
threat is also influenced by group level phenom-
ena.42 During an epidemic individuals may start
to adopt defensive or precautionary practices
that in turn effect the spread of the disease. As
the state of the ecological system changes, the
payoffs associated with each set of action will
change, with individuals adapting by modifying
their behaviour. The significant impact behav-
iours can have on these environment in an iter-
ative way is an example of a Complex Adaptive
System.43 Infectious diseases reflect the dynam-
ics of an adaptive complex system, which
changes its identity in time.44 Characterizing
the adaptive element of human behaviour in an
epidemiological context remains an important
challenge that will enable us to better predict
and understand future outbreaks.5

Social contacts and interactions
Diseases may be transmitted in a number of

different ways, which require different levels
of contact for infection.45 In addition, some
individuals are more vulnerable due to both
inherent immunities and social patterns (e.g.
children), while others are potentially at risk
due to their occupation (e.g. health care work-
ers, animal handlers). 
Three factors determine the rate at which

new infections spread within a given popula-
tion: the contact rate between individuals, the
proportion of contacts between infected and
susceptible individuals, and the probability
that once an appropriate contact has occurred,
the infection will be transmitted.46 The onward
spread of a zoonotic will depend on whether
the disease requires interaction with an ani-
mal at intermediate stages - pets are obviously
more likely to be found in the family home. The
clustering of an information network around
particularly infected individuals can also con-
strain the spread of a pathogen.4 There is
emerging evidence to suggest such clustering
has implications for viable interventions: atti-
tudes to vaccination are influenced by local
community factors, such as schooling.47

Bringing this together: 
combining biology,
environment and behaviour

It is well recognised that both the infec-
tiousness of a disease, and its potential for
wide-scale transmission, will depend on the
biology of the infectious agent (e.g. the path-
ways through which it is spread) and of the
infected humans/animals, the nature of the
surrounding environment, and the social prac-
tices, and behaviours of both individuals and
organisations.13,14 All of these interact in both
initial individual infection and wider spread.
However, the interactions described in many
traditional models fail to allow for the full
interplay between psychological, environmen-
tal and biological factors (e.g. through a recog-
nition of the significance of risk perception).
We suggest a heuristic framework we term the
BEB framework (Biology - Environment -
Behaviour) (Figure 1). This framework incor-
porates both macro and micro level contribu-
tors to infection and transmission, and allows
explicitly for feedback between biological,
environmental and behavioural influences on
infection or transmission. A large number of
possible examples could be used to illustrate
this: in the text below we discuss indicative
cases included in Figure 1. Our specific inclu-
sion of psychological and economic variables
can be seen as complementing the wider One

Health approach to health methodologies, with
its particular focus on interactions between
the environment and human and veterinary
medicine.7 It also belongs aside other initia-
tives calling for an interdisciplinary approach
which specifically consider economic factors
and the consequences of risk management
when responding to zoonotic threats.18

In our framework. the human seed case for
individual infection depends partly on biologi-
cal factors related to the pathogen (e.g. animal-
human transmission routes, infectiousness of
the pathogen), and an individual’s level of
immunity. During transmission individuals act
iteratively, with each onwards transmission a
newly infected individual with the potential to
transmit. However, spread of a pathogen also
includes wider aspects of the environment and
society in which the infection occurs.
Biological factors include other vectors for
transmission (both animal and human), as
well as human-to-human transmission rates
and likely levels of resistance/ immunization
in a given population. This may depend on fac-
tors such as population age profile, and the
percentage of the population with compro-
mised immunity. 
In any environment there will be features

that can intensify or attenuate infection. These
include macro-level factors (e.g. weather, cli-
mate change), and service infrastructures (e.g.
health, waste management services). Micro-
level environmental determinants can include
local infection control measures (such as clean-

Review

Figure 1. Biology, environment, behaviour and their interactions as predictors of zoonot-
ic infection and transmission. Italicised text refers to macro-level examples of behaviour
and environment; non-italic text to micro-level examples.
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ing and ventilation), the composition of poten-
tially contaminable surfaces, and local animal
housing arrangements. Risk perceptions can
lead to modifications in the environment (e.g.
cleaning or increasing ventilation), and intro-
ducing physical barriers (e.g. to prevent chil-
dren touching animals). Changes in both micro
and macro-level environmental features (e.g.
cleaning regimes, climatic change) will also
impact on infection risk.
Turning to behaviour, individuals have their

own risk perceptions and modify their behav-
iour accordingly, for example by wearing pro-
tective clothing while interacting with a poten-
tially infected animal. Some of these behav-
iours (e.g. hand washing) impact further on
(biological) infection risks. Human behaviour
(e.g. contact patterns) is adaptive and will
respond to the perceived progression of a dis-
ease and risks of the infection. Changes in
behaviour (for example, social distancing,
either voluntary or enforced by governmental
authorities, or normative mask wearing) are
also likely to impact on the risks of infection.
At the same time, some biological features of a
pathogen (e.g. drug resistance) may be altered
through public behaviours (e.g. widespread
use, or misuse, of an antibiotic leading to drug
resistance). 
Finally, social behaviour is also likely to

reflect other environmental factors: fear of
unemployment, for example, may lead to
greater risk taking in some communities
when interacting with animals, or the adop-
tion of short cuts during food preparation.
Environmental modifications can lead to the
mindless nudging of individual behaviour
change (such as when moving washbasins
leads to increased handwashing behaviour),
while purposive behavioural interventions
can have significant impacts on the environ-
mental ecology of particular locations (e.g. in
areas marked as off limits during a zoonotic
outbreak). 

Implications

While it is possible to control some zoonotic
diseases by directly targeting reservoir hosts
or vectors (e.g. culling mountain hares, use of
acaricides), changes in a habitat (for example
through vegetation management), may also
induce changes in populations, with potential
impacts on the interface between carriers and
humans. In our framework, macro level factors
include reciprocal interactions between exter-
nal factors (such as climate change) and bio-
logical risk, although these pathways may
occur over some time. Risk representations
and governmental policies are likely to have a
more immediate impact on key behaviour and
environmental modifications, although these

are often underplayed in models of microbial
threat. Our model underlines the significance
of the social construction of biological risk,
including non-rational biases and prejudices
that might influence such perceptions. At the
same time, optimal behavioural interventions
depend partly on environmental conditions,
such as the physical space in which animals
are housed, and an economic environment
that encourages appropriate (but potentially
costly) precautionary measures.

Employing such an approach can shed light
on enduring issues in the biology of zoonotic
threats. One continuing debate concerns the
efficacy of wearing facemasks to prevent
influenza infection in community settings.48

An environmental engineering assessment
can clarify the optimal situations for effective
mask wearing as a barrier against a particular
pathogen (e.g. through aerosol studies of
pathogen spread), but psychological variables
are likely to influence adherence behaviours
(risks might be underestimated, mask wearers
might feel stigmatised leading to poor adher-
ence). Changes in an environmental factor
(for example, temperature) can influence
transmission risk through (non-) adherence to
mask wearing. Similar opportunities arise for
the study of contact patterns and infection.
Such work often provides culturally thin
descriptions of likely transmission patterns.
Research which includes cultural understand-
ings of risk perception, and identifies environ-
mental conditions which affect zoonotic expo-
sure (e.g. indoor vs. outdoor location, in large
vs. confined spaces) can provide new data on
pathogen survival and transmission in differ-
ent interactional settings. In our framework,
changes in one factor (e.g. modifications in
the social facilities shared by farm workers)
can influence behaviour (e.g. hand washing)
and the potential onward transmission of a
pathogen. 
Such work will involve a broad team of

researchers, from different disciplinary
approaches. It is likely to involve the building
of new, more complex models of zoonotic dis-
ease spread, identifying new proxies for
behaviour where necessary. Building an effec-
tive bridge between expert advisers and lay
individuals is often a delicate process, requir-
ing socially sensitive natural scientists and
medically-informed social researchers.
Zoonotic diseases have significant potential to
be a major drain on national resources as well
as posing a genuine threat to public health for
both current and future generations. As their
threat increases, researchers need to develop
bold and elaborate models acknowledging the
interplay between biology, ecological and envi-
ronmental phenomena, and individual and
group perceptions and behaviours. National,
and ideally international, funding resources
will be required to support the development of

such models and their use in effective
responses to the threat of zoonotic disease
transmission.
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