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Abstract: Reducing human vulnerability to chemical hazards in the industrialized city is a 

matter of great urgency. Vulnerability mapping is an alternative approach for providing 

vulnerability-reducing interventions in a region. This study presents a method for mapping 

human vulnerability to chemical hazards by using clustering analysis for effective 

vulnerability reduction. Taking the city of Shanghai as the study area, we measure human 

exposure to chemical hazards by using the proximity model with additionally considering 

the toxicity of hazardous substances, and capture the sensitivity and coping capacity with 

corresponding indicators. We perform an improved k-means clustering approach on the 

basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. 

The sum of squared errors and silhouette coefficient are combined to measure the quality 

of clustering and to determine the optimal clustering number. Clustering result reveals a set 

of six typical human vulnerability patterns that show distinct vulnerability dimension 

combinations. The vulnerability mapping of the study area reflects cluster-specific 

vulnerability characteristics and their spatial distribution. Finally, we suggest specific 

points that can provide new insights in rationally allocating the limited funds for the 

vulnerability reduction of each cluster. 

Keywords: vulnerability mapping; k-means clustering; genetic algorithm; silhouette 

coefficient; industrialized city 
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1. Introduction 

Modern industrialization, specifically industries using or producing harmful substances and 

hazardous chemicals, pose considerable risks to human safety and the environment worldwide [1]. 

Chemical industry plants in industrialized cities are often established in dense urban areas; thus, a 

sizeable number of people are placed at risk. The health and safety of people in these cities have 

aroused increasing public concern. Thus, how to effectively reduce the risks of chemical hazards in an 

industrialized city has been a crucial issue. Corresponding technological support is necessary to 

achieve this objective. 

Vulnerability analysis is a powerful analytical tool for describing the states of susceptibility to 

harm, powerlessness, and marginality of both physical and social systems, as well as for guiding 

normative analysis of actions to enhance well-being through risk reduction [2,3]. This information can 

contribute to understanding better the community and its environmental needs and to enabling the 

prioritization of limited resources in response to hazards [4–6]. Thus, vulnerability analysis is 

increasingly being regarded as a key step towards effective risk reduction and as the promotion of 

disaster resilience [7]. The term “vulnerability” is now a central concept in a variety of research 

contexts and has been used in many different ways [8–12]. 

Generally, vulnerability conveys the idea of susceptibility to damage or harm [13], characterizing 

how impacts are manifested and responded to the harm experienced or to be experienced from such 

impacts [14]. Literature on sustainability science denotes that vulnerability is the degree to which a 

system, a subsystem, or a system component is likely to experience harm due to exposure to a hazard, 

either a perturbation of stress/stressor [15]. This definition implies that vulnerability is the potential 

result of the interaction between a system and its environment. 

Many studies have frequently characterized vulnerability as the interrelation of exposure of a 

system, sensitivity to stress, and the capacity to absorb or cope with the effects of these stressors as the 

potential of the system to decrease the impact of the hazard [2,15–17]. Exposure is defined as the 

degree, duration and/or extent in which a system is in contact with or subject to perturbation [2,18]. 

Sensitivity reflects the degree of a system affected with respect to the impact of the hazard. Coping 

capacity is the ability of a system to cope with or adapt to hazard stress. 

Thus, we describe that vulnerability is the degree and extent of the potential damage from normal 

states or functions as a system or a community responds to the exposure imposed by hazards or stresses. 

Based on this conceptualization, the human vulnerability to chemical hazards in an industrialized city 

is understood to be shaped by the sensitivity and coping capacity of socio-ecological system and the 

exposure of system to chemical hazards generated by the release of chemicals from industry plants. 

This depiction allows the identification of an industrialized city population that is potentially affected 

by chemical hazard. 

The purpose of vulnerability analysis is to reduce the negative effects of hazard, improve adaptation 

planning, unveil social injustices, and provide impetus for mitigation disasters, rather than produce a 

score or rating of the current or future vulnerability of a community [19]. To achieve this intention  

in a region, vulnerability analysis results require applying in spatial planning. Consequently, 

vulnerability mapping is an alternative approach as it enables the representation of vulnerability 
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analysis through spatial rendering of geographically heterogeneous determinants of vulnerability and 

their interactions [20–22]. 

In this paper, we seek to provide an approach for mapping human vulnerability to chemical hazards 

via clustering analysis for effective vulnerability reduction. Conventional vulnerability studies [23–26] 

usually merge vulnerability dimensions into one final value, such that the individual dimensions are 

often not discernable in assessment results. Thus, the contribution of one dimension to the final value 

can be substituted and compensated for by other dimensions. The heterogeneity of vulnerability in an 

area is seldom considered. Areas exhibiting similar assessment results may have distinct vulnerability 

dimensions in space. As a result, vulnerability-reducing interventions cannot be targeted and prioritized 

to mitigate potential losses in an effective manner. 

By contrast, clustering analysis keeps specific vulnerability dimensions transparent. The areas with 

similar characteristics in terms of vulnerability are categorized into the same cluster; that is, areas from 

other clusters have different characteristics in terms of vulnerability. This categorization is beneficial 

to the application of appropriate vulnerability-reducing measures in specific areas. In this study,  

k-means clustering is used because of the suitability of the method in clustering large data sets. 

However, k-means clustering requires the definition of a number of clusters in advance. Moreover, the 

clustering result is sensitive to the selection of initial cluster centers, which may result in the 

convergence of the algorithm to the local optima. To avoid these drawbacks, the genetic algorithm 

(GA) is used to determine good initial centers to attain a globally optimal partition. The sum of 

squared errors (SSE) and the silhouette coefficient are combined to measure the quality of clustering 

and to determine the optimal clustering number (kopt). We categorize the area according to the 

clustering result with kopt as the clustering number. Finally, human vulnerability is mapped by using 

the geographic information system (GIS).  

To illustrate the advantage of the proposed approach, a case study is introduced in Shanghai, China. 

Nonparametric one-way analysis of variance (ANOVA) is performed to further analyze the validity of 

the clustering results by using Kruskal-Wallis test. Since clustering does not generate vulnerability 

ranking, we conduct an additional evaluation of the clusters on the basis of information entropy theory. 

2. Materials and Methods 

2.1. Study Area 

Shanghai, which has a total population of over 23 million as of 2010, is the largest city by 

population in the People’s Republic of China. It sits at the mouth of the Yangtze River in the middle of 

the Chinese coast, between the latitude 30°41′33.07″ to 31°52′4.25″ North and between the longitude 

120°51'12.03″ to 121°58′49.17″ East, covering a total area of approximately 6,340.5 km
2
 (Figure 1). 

The city borders to Jiangsu and Zhejiang Provinces to the west and is bounded to the east by the East 

China Sea. Occupying part of the alluvial plain of the Yangtze River Delta, Shanghai lies generally on 

a flat and low-lying land, with the exception of some hills in its western regions. Its altitude varies 

between 3 to 5 m above mean sea level and increases from east to west. 
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Figure 1. Location of the study area. 

 

Shanghai is an important economic and financial center in China. The great economy achievement 

of the city benefited from the amazingly rapid industrial development, with the automobile, electronic 

and communication equipment, petrochemical, steel product, equipment assembly, and biomedicine 

industries being promoted as the six pillar-industries. The industries in the city are still given 

considerable attention, and industrial production continues to grow rapidly. Though generating much 

economic profit for the city, these industries affect the environment and pose risks to citizens. 

2.2. Quantitative Dimension of Vulnerability 

In this paper, human vulnerability to chemical hazards involves exposure, which is the degree of a 

human community in contact with chemicals, sensitivity, which is the degree of a receptor affected when 

exposed to chemical hazards, and coping ability, which is the ability of a receptor to resist or recover 

from the damage associated with exposure to chemical hazards. Exposure and sensitivity place targets 

in potential dangers, whereas lack of coping ability reflects the inability of targets to respond to hazards. 

2.2.1. Exposure 

Some proximity models are available for measuring human exposure. The simple nature of 

proximity models allows for their wide use in exposure assessment studies with few data requirements. 
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These models are based on the assumption that exposure at locations nearer to emission sources are 

higher compared with locations further from the source. However, some parameters, such as emission 

rate and physicochemical characteristics of the emitted substances, are not considered in these models. 

Zou et al. [27] developed an emission weighted proximity model (EWPM) to calculate the relative 

individual exposure from the traditional proximity model. EWPM considers the emission rate and 

emission time of each source. The formula for calculating exposure values on the basis of EWPM is  

as follows: 

 , , , , , ,
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where Ei,j and Ti,j are the emission rate and emission time of the jth emission source, which the ith 

receptor is exposed to, respectively; Di,j is the distance of the ith receptor to the jth emission source;  

m is the number of emission sources; n is the number of receptors. 

However, this model is only suitable when all sources emit the same hazardous substance. Sources 

in a region may emit different hazardous substances. A source may even emit more than one type of 

hazardous substance. Therefore, we modify Equation (1) by considering the toxicity of each hazardous 

substance, as expressed in the following equation: 
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where c represents a dangerous chemical; LD50(c) is the median lethal dose of chemical c (g/kg), which 

is the dose, given all at once, causing the death of half the members of a group of test animals [28–30]. 

The LD50 is frequently used as a general indicator of the acute toxicity of a substance [31,32], and we 

use this figure to determine toxicity to humans. For the study area, the main corporations or plants 

concerning hazardous chemicals are taken into account to calculate the levels of exposure, which 

directly reflect the potential hazards that humans are exposed to with respect to the vulnerability. 

2.2.2. Sensitivity 

Population density, which provides information on spatial concentration and distribution of people, 

is used to indicate the sensitivity of the study area in this work. Generally, highly dense areas with high 

population concentration show higher vulnerability to hazards compared with lowly dense areas,  

for hazards occurring in areas with denser population will result in greater harm than in less dense 

areas. For instance, a large, severe leakage of hydrogen sulfide that passes through an open field 

presents little danger. By contrast, a relatively weak leakage of the same substance can pose significant 

risks to human life in densely populated areas. In addition, widely available open spaces in lowly 

dense areas can function as refuge bases and as disaster recovery bases in times of emergency. In short, 

the higher the population density and the more compact the area is, the heavier the loss a community 

will suffer when exposed to hazards. Therefore, population density is of great importance in indicating  

the sensitivity of human vulnerability in an area, directly reflecting the degree of damage when 

exposed to hazards. 
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2.2.3. Coping Capacity 

By considering the coping capacity, we screen indices on income, medical service supply, and 

access to social resources, such as hospitals. The gross domestic product (GDP) per capita represents 

the general income of an area. High levels of this feature usually result in the construction of  

high-quality infrastructure, installation and maintenance of early warning systems, modern civil 

protection, and the compensation of costs for reconstruction in disaster-struck areas. With these 

complete infrastructures and high-level emergency management, human vulnerability will be reduced. 

Thus, high value of GDP per capita will result in low vulnerability. 

Hospital beds per 10,000 population can represent the medical treatment level of an area. The value 

of this indicator directly reflects the abilities of an area in rescuing and providing health care for the 

people. A high value of this indicator denotes that the medical treatment level of an area is high, which 

leads to a high level of health care and rescue. As a result, the damage of human by chemicals will be 

relieved, and the vulnerability will be mitigated. 

Access to social resources is critical in resisting chemical hazards. For instance, in a community 

close to evacuation routes and hospitals, social resources are potentially facilitated by and are 

correlated to the distance of the community to the nearest main road. Therefore, this study uses the 

distance to the nearest main road to indicate the access of an area to social resources; that is, the longer 

the distance of an area to the nearest main road, the lower the level of accessibility of an area for 

evacuation and rescue during emergencies. Thus, people in those areas with long distance to the 

nearest main road will be in high risk of damaged, i.e., with high vulnerability. 

The three aforementioned indicators can reflect the coping capacity of an area. These indicators are 

related to the capacity to cope with, resist, and respond to the effects when exposed to chemical 

hazards, significantly affecting human vulnerability. The GDP per capita is an indirect indicator, via 

affecting available social resources in contact with vulnerability. Hospital beds per 10,000 population 

and distance to the nearest main road are direct indicators with respect to vulnerability. The former 

reflect the rescue and health care providing abilities; the latter reflect the access to social resources and 

evacuation abilities. In addition, the negative relationship of GDP per capita and Hospital beds per 

10,000 population with vulnerability is observed; that is, as the GDP per capita or Hospital beds per 

10,000 population is increasing, the vulnerability is decreasing. 

2.3. Genetic k-Means Clustering and Vulnerability Mapping 

To obtain a precise vulnerability distribution in space, a 500 m × 500 m geographical grid is used as 

the basic spatial unit for mapping the vulnerability of Shanghai. Each grid cell is estimated by using 

the values of the five previously described indicators on human vulnerability. The indicators are then 

normalized as follows: 
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where x′i,j and xi,j respectively represent the normalized and original values of the jth indicator of the 

ith grid, and xmin, j and xmax, j respectively represent the minimum and maximum values for the jth 

indicator of all grid cells. Equation (3) is applied to the indicators of exposure, population density, and 

distance to the nearest main road, which show a positive relationship with vulnerability. Equation (4) is 

applied to the indicators of GDP per capita and hospital beds per 10,000 population, which show a 

negative relationship with vulnerability. Each normalized indicator ranges from 0 to 1, where 0 is the 

lowest contribution to human vulnerability and 1 is the highest contribution to human vulnerability. 

Afterwards, the total grid cells of Shanghai are used for cluster analysis, which is performed in the 

five-dimensional data space spanned by indicators. In this paper, the clustering technique used is an 

improved k-means clustering that uses GA-generated initial cluster centers. 

k-means clustering aims to search for the solution of partitioning a data set into k clusters. Data 

objects in the same cluster are similar to each other, and objects from distinct clusters are different 

from each other. This distribution minimizes the SSE of each data object from its cluster center. SSE is 

a commonly used criterion in measuring the quality of clustering. A lower SSE indicates better 

partition quality for partitions with the same k. This criterion is defined as follows: 

2

1

SSE
j i

k

j i

i x C

y c
 

   
(5)  

where yj is the jth object in cluster Ci, and ci is the center of cluster Ci. 

k-means clustering algorithm uses k-seed objects as initial k centers. This clustering algorithm 

consists of three basic operations performed iteratively, namely, data assignment to a cluster, centers 

(cluster mean vector) computation, and SSE convergence test. However, different initial centers may 

lead to different final cluster centers because this clustering algorithm converges to a local minimum. 

In this study, GA is used to obtain the initial centers for k-means clustering to identify reliably and 

efficiently high quality clustering solutions on the basis of the SSE criterion. The derivative-free 

optimization strategy, as a type of population-based evolutionary algorithm, allows GA to always yield 

a global optimum of the objective function. 

The overall procedure of genetic k-means clustering algorithm is shown in Figure 2. The algorithm 

begins with the random initialization of a population and the calculation of the fitness values of the 

population. Each chromosome in the population denotes a set of k cluster centers that use a  

real-number representation. The fitness function of the population is as follows: 

1 SSEf   (6)  

The GA operators, which consist of selection, crossover, and mutation, are repeatedly conducted. 

The fitness values of the population are repeatedly evaluated until the fitness function becomes steady 

in the sense that its value of the best population does not change for several generations. In this case, 

GA is said to be converged. The best population provided by GA convergence will be close to the 

global minimum of the SSE. This best population is then inputted as the initial centers of the k-means 

clustering, thus obtaining the global optimum clustering solution. 
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Figure 2. Over flowchart of genetic k-means clustering. 

 

To determine the optimal clustering number, we introduce the silhouette coefficient to work in 

combination with the SSE criterion because the SSE criterion is sensitive to the number of clusters, k. 

The silhouette coefficient, a popular method of measuring the clustering quality, which combines both 

cohesion and separation [33], is rather independent from the number of clusters, k. For object i, the 

silhouette coefficient is expressed as follows: 

 max ,

i i
i

i i

b a
s

a b


  

(7)  

where ai is the average distance of object i to all other objects in its cluster; for object i and any cluster 

not containing it, calculate the average distance of the object to all the objects in the given cluster, and 

bi is the minimum of such values with respect to all clusters. 

An overall measure of the goodness of clustering can be obtained by calculating the average 

silhouette coefficient of all objects. For one clustering with k categories, the average silhouette 

coefficient of the cluster is taking the average of the silhouette coefficients of objects belonging to the 

clusters; that is: 

1

1 n

k i

i

s s
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   (8)  

where n is the total number of objects in the data set. The value of the silhouette coefficient can vary 

between –1 and 1. A higher value indicates better clustering quality. 

In the study, we conduct genetic k-means clustering analysis of the study area under different  

k values. We plot the curves of the SSE and average silhouette coefficient against the number of 

clusters to analyze the two curves and to identify the optimal number of clusters, kopt. The clustering 
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result with kopt as the number of clusters is then used to categorize the human vulnerability of the study 

area. We place the clustering result into space by using GIS to obtain the vulnerability mapping result. 

2.4. Kruskal-Wallis One-Way ANOVA 

To further analyze the validity of the clustering results, Kruskal-Wallis one-way ANOVA is 

performed to determine whether the clusters are actually different in vulnerability characteristics. Each 

vulnerability indicator is respectively tested whether its variance is partitioned by the different clusters 

identified. Summary statistics and box plots are presented to reveal the test results and explore the 

vulnerability characteristics of clusters. 

2.5. Information Entropy Analysis and Vulnerability Evaluation 

The concept of entropy was first introduced into the information theory by Shannon [34].  

In information theory, entropy is a measure of the disorder degree of a system. The larger values of 

entropy indicate more randomness and thus less information is expressed by data. It can measure the 

extent of useful information with data provided. Therefore, entropy is an objective means of defining 

the weights of vulnerability indicators based on the useful information in the available data. 

For the study area, the ratio of value of the indicator j in grid i is defined as: 
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    (9)  

where x′i,j is the normalized values of the indicator j of the grid i; m is the total number of the grids in 

the study area. 

Then, the information entropy of the indicator j is expressed as: 
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Therefore, the importance of indicator j extracted from the data set is calculated by: 
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where n is the number of the indicators. 

We evaluate the vulnerability of each cluster of the study area by a weighted sum model of the 

indicators, using the importance of the indicator calculated by Equation (11) as the weight; that is: 

1

n

j j

j

V w z


  (12)  

where zj is the mean value of the indicator j of a cluster. 
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3. Results and Discussion 

3.1. Spatial Distribution of the Vulnerability Indicators 

Figure 3 displays the five vulnerability indicators in their spatial distribution. This figure illustrates 

the location-based action of each indicator that influences vulnerability. Exposure presents the degree 

of potential threat of chemical hazard to humans. Here, exposure distribution (Figure 3(a)) shows high 

exposure in the north of Pudong District, center of Minghang District, and south of Jinshan District. 

High exposure is caused by the numerous corporations and plants gathered in these areas, which 

increases the risks in these areas. 

Figure 3. Spatial distribution of indicators of human vulnerability to chemical hazards in 

Shanghai (CNY: Chinese yuan, the currency of China). 

 

Population density provides information on the spatial distribution and number of potentially 

endangered people within the urban. Population distribution (Figure 3(b)) shows high density in the 
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center of Shanghai City, such as Putuo District, Changning District, and Xuhui District, suggesting 

high sensitivity in these areas. 

GDP per capita presents the socioeconomic development level on the spatial distribution in the city. 

Pudong District has the highest GDP per capita, followed by Baoshan District. Chongming County has 

the lowest GDP per capita (Figure 3(c)). 

Hospital beds per 10,000 population represents the health care service on the spatial distribution in 

the city. Like most cities, the centers of Shanghai, which include Huangpu District and Xuhui District 

(Figure 3(d)), have the highest value of this indicator. 

Distance to the nearest main road enables a geospatial assessment of accessibility to social 

resources. The road networks are shown to be well developed in the center of the city (Figure 3(e)). 

However, the road networks are undeveloped in several places far from the city center, particularly in 

Chongming County. The indicators GDP per capital, hospital beds per 10,000 population, and distance 

to the nearest main road enable identification of the coping capacity of an area during and after 

emergencies. 

3.2. Vulnerability Mapping 

We perform genetic k-means clustering analysis with normalized vulnerability indicators of the grid 

cells in the study area. The clustering number should be less than 15 because of the moderate size of 

the study area. To determine the optimal clustering number, we conduct clustering analysis on 2 clusters to 

15 clusters and calculate the SSE and average silhouette coefficient versus the clustering number. 

The optimal clustering number can be found in a data set by looking for the number of clusters at 

which a knee, peak, or dip exists in the plot of the evaluation measure when plotted against the number 

of clusters [33]. Figure 4 shows the plots of the SSE and average silhouette coefficient versus the 

number of clusters for the genetic k-means clustering of the study area. A distinct knee in the SSE and 

a distinct peak in the silhouette coefficient are present when the number of clusters is equal to 6. 

Figure 4. SSE and average silhouette coefficient versus number of clusters. 

 

Generally, a higher average silhouette coefficient indicates better clustering quality. In this view, 

the optimal clustering number of grid cells in the study area should be 2, at which the value of the 

average silhouette coefficient is highest. However, the SSE of this clustering solution (k = 2) is too 

large. At k = 6, the SSE is much lower. In addition, the value of the average silhouette coefficient at  
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k = 6 is also very high, which is just lower than k = 2. Thus, we use the clustering result at k = 6 for 

vulnerability mapping. Thereafter, the spatial distribution of vulnerability mapping is shown in Figure 5. 

Figure 5. Vulnerability mapping of the study area. 

 

The results of Kruskal-Wallis one-way ANOVA of each vulnerability indicator with respect to six 

clusters are shown in Table 1. It shows that all the vulnerability indicators exhibit significant (P < 0.01) 

variation in the 6 clusters, which demonstrate that the vulnerability characteristics of the study area are 

effectively categorized. The box plots of the vulnerability indicators are show in Figure 6. 

Table 1. Kruskal-Wallis one-way ANOVA of vulnerability indicators by six clusters. 

Vulnerability indicators Chi-Square DF Prob > Chi-Square 

Exposure 12,522.2 5 0 

Population density 16,870.7 5 0 

GDP per capita 23,382.7 5 0 

Hospital beds per 10,000 population 21,105.7 5 0 

Distance to the nearest main road 7,058.82 5 0 
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Figure 6. Box plots of vulnerability indicators against clusters. 

 

As shown in Figure 6, the combinations of vulnerability indicators represent typical patterns of 

human vulnerability to chemical hazards. This allows easy discernment of how the six clusters differ in 

each dimension. Clusters 1 and 4 have the lowest population density and the lowest GDP per capita in 

the study area. Note that for GDP per capita and hospital beds per 10,000 population, a larger 

normalized value indicates smaller observed value because of the negative relationship of these  

two indicators with vulnerability. GDP per capita can reflect the socioeconomic development level of 

an area, which is in correlation with the high value of distance to the nearest main road in these  

two clusters. In particular, Cluster 4 has the highest value of distance to the nearest main road in the 

study area. The hospital beds per 10,000 population in Cluster 4 is not the lowest because of the low 

population density of the cluster. Therefore, these two clusters represent low coping capacity in the 

study area. Because of their low ability to respond to chemical hazard, people in these two clusters will 

be potentially in high danger although the exposure of these two clusters is low. 
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Clusters 2, 3, and 5 show the highest exposure and the highest population density in the study area 

(Figures 3(a), 5 and 6). In particular, the population density of Clusters 2 and 5 are much higher 

compared with other clusters. These two clusters are potentially in the highest danger on the basis of 

exposure and population density. Nevertheless, the infrastructure of Clusters 2 and 5 is relatively well 

because these clusters are located in the center of the city, resulting in high coping capacity. Among all 

the clusters, Clusters 2 and 5 have the most developed road networks, as indicated by the proximity of 

these clusters to the nearest main road (Figures 3(e) and 6(e)). Moreover, the hospital beds per 10,000 

population of these two clusters are relatively high although these clusters have the highest population 

density. Additionally, the hospital beds per 10,000 population of Cluster 2 is the highest in the study 

area. Cluster 3 has the highest GDP per capita among all the clusters. 

The exposure, population density, and GDP per capita of Cluster 6 are moderate. Cluster 6 has the 

second lowest hospital beds per 10,000 population, very close to that of Cluster 3, which has the 

lowest hospital beds per 10,000 population. The road networks of Cluster 6 are also not well 

developed. 

The identified vulnerability clusters describe typical indicator combinations, with the specific 

characteristics of vulnerability. Thus, each cluster shows specific causes of vulnerability and opportunities 

to increase the ability to cope with hazard. 

3.3. Human Vulnerability Evaluation and Reduction Points 

According to Equations (10) and (11), information entropies and weights of vulnerability indicators 

are listed in Table 2. The indicators of each cluster are piled by using weighted sum according to 

Equation (12), which is characterized by a column as depicted in Figure 7. The total height of columns 

corresponds to the vulnerability evaluation results of the clusters. 

Table 2. Information entropies and weights of vulnerability indicators. 

Vulnerability indicators Infromation entropy (ej) Weight (wj) 

Exposure 0.9684 0.0997 

Population density 0.8495 0.4746 

GDP per capita 0.9866 0.0421 

Hospital beds per 10,000 population 0.9991 0.0028 

Distance to the nearest main road 0.8793 0.3807 

Figure 7. Weighted indicator value stack column plot of clusters (EP: exposure; PD: 

population density; GPC: GDP per capita; HBP: hospital beds per 10,000 population; 

DTR: distance to the nearest main road). 



Int. J. Environ. Res. Public Health 2013, 10 2592 

 

 

 

Cluster 2 represents the most vulnerable regions according to evaluation results (Figure 7), which  

is mainly contributed by the high population density. Clusters 4 and 5 display the close vulnerability 

values. However, the vulnerability characteristics of these two clusters are significantly different. 

Cluster 4 is mainly contributed by the long distance to the nearest main road, whereas Cluster 5 is 

mainly contributed by the high population density. Clusters 1 and 6 also display close vulnerability 

values. Indicated by Figures 6 and 7, it can be found that Cluster 1 has lower GDP per capita and more 

hospital beds per 10,000 population compared with Cluster 6. These demonstrate that areas exhibiting 

similar evaluation results may have distinct vulnerability dimensions, which we maintained at the 

beginning of the study. 

The variation between vulnerability dimensions in the study area suggests that no single option for 

reducing vulnerability is suitable for all the area. However, vulnerability mapping through clustering 

enables the tailoring of appropriate vulnerability reducing points to apply in different clusters.  

The vulnerability indicators are similar within the same cluster but distinct with the other clusters, 

thereby effectively applying specific vulnerability-reducing interventions. 

Clusters 1 and 4, particularly cluster 4, would require high attention in infrastructure development, 

such as improvement of road networks and social service enhancement. This development will 

increase the ability of people to access social resources, thus improving the ability of people to cope 

with chemical hazards. In addition, more attention should be paid to socioeconomic development.  

The GDP per capita usually reflects the available resources of people to cope with hazards and to 

support social services and high-quality infrastructure. When the coping capacity of these clusters is 

enhanced, the human vulnerability of these two clusters will become significantly low as the exposure 

to chemical hazard is low. 

The areas of Clusters 2 and 5 are in the center of the city, which has the highest population density. 

Although the infrastructure of the areas are well developed and the medical care level of Cluster 2 is 

the best in the study area, automatic monitoring and alarm systems should be set up in these areas to 

reduce human vulnerability as the exposure of these two clusters is high. In addition, a detailed 

evacuation plan should be constituted to ensure a systematic evacuation and transfer of people in case 

of chemical hazard. 

Several special measures should be considered to cope with high exposure in Cluster 3. The medical 

care level of Cluster 3 is insufficient for the population requirement. Apart from enhancing the medical 

care level of this cluster, a professional succor group, which rescues and transfers people injured by 

chemical hazard, should be constituted. 

The medical care level and infrastructure, especially the medical care level, in Cluster 6 need to 

improve. Several open spaces are observed in Cluster 6 given its low population density. Therefore, 



Int. J. Environ. Res. Public Health 2013, 10 2593 

 

 

establishing refuges is a better option to protect people from the effects of moderate exposure. With the 

combination of the aforementioned measures, the human vulnerability of this area would be reduced. 

4. Conclusions  

The vulnerability mapping presented in this paper outlines one way of dealing with  

vulnerability-reducing interventions in an industrialized city. The clustering approach enables the 

discernment of vulnerability dimensions. The toxicity of each hazardous substance during exposure is 

considered to characterize the human vulnerability to chemical hazard of the study area. Therefore, 

proximity depiction of exposure becomes more accurate through this approach. Sensitivity mainly 

considers the spatial concentration and distribution of people, whereas coping capacity mainly 

considers the socioeconomic development level and medical care level of an area. 

Vulnerability mapping through clustering analysis identifies similar characteristics of vulnerability 

within one cluster as well as the differences of one cluster with other clusters. Thus, vulnerability 

mapping facilitates the respective vulnerability-reducing policy applications. k-means clustering 

improved by GA ensures the global optimal clustering solution on the defined k cluster number.  

The SSE and average silhouette coefficient evaluations enable us to measure the quality of clustering 

and to determine the optimal cluster number of vulnerability mapping. 

The human vulnerability of the study area is mapped with six clusters. The results reflect the 

combinations of cluster-specific vulnerability dimensions and spatial distribution. According to the 

specific characteristics of vulnerability in each cluster, we suggest the specific points for vulnerability 

reduction to stimulate new insights on reducing human vulnerability and to respond to the need of 

rationally allocating the limited funds available for vulnerability reduction. 
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