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Abstract: A wide range of infectious diseases may change their geographic range, 

seasonality and incidence due to climate change, but there is limited research exploring 

health vulnerabilities to climate change. In order to address this gap, pan-European 

vulnerability indices were developed for 2035 and 2055, based upon the definition 

vulnerability = impact/adaptive capacity. Future impacts were projected based upon 

changes in temperature and precipitation patterns, whilst adaptive capacity was developed 

from the results of a previous pan-European study. The results were plotted via ArcGIS
TM

 

to EU regional (NUTS2) levels for 2035 and 2055 and ranked according to quintiles.  

The models demonstrate regional variations with respect to projected climate-related 

infectious disease challenges that they will face, and with respect to projected 

vulnerabilities after accounting for regional adaptive capacities. Regions with higher 

adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to 

offset any climate change impacts and are thus generally less vulnerable than areas with 

lower adaptive capacities. The indices developed here provide public health planners with 
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information to guide prioritisation of activities aimed at strengthening regional preparedness 

for the health impacts of climate change. There are, however, many limitations and 

uncertainties when modeling health vulnerabilities. To further advance the field,  

the importance of variables such as coping capacity and governance should be better 

accounted for, and there is the need to systematically collect and analyse the interlinkages 

between the numerous and ever-expanding environmental, socioeconomic, demographic 

and epidemiologic datasets so as to promote the public health capacity to detect, forecast, 

and prepare for the health threats due to climate change. 

Keywords: infectious disease; public health; preparedness; climate change; adaptation; 

adaptive capacity; vulnerability; horizon scanning; Europe 

 

1. Introduction 

A fairly wide range of infectious disease may change their geographic range, seasonality, incidence 

or prevalence with climate and environmental change [1]. For example, the tick species Ixinus ricinus,  

an important vector for tick-borne encephalitis and lyme borreliosis, has spread into higher latitudes [2] 

due in part to warmer temperatures. In Europe the climate is increasingly suitable for the mosquito 

species Aedes albopictus, also due in part to warmer temperatures [3,4]. In southeast Europe,  

high summer temperatures facilitated the transmission of West Nile fever in 2010 [5]; and possible 

outbreaks of food- and water-borne diseases such as salmonella, cryptosporidium, VTEC,  

and campylobacter, in part due to changing temperature and precipitation patterns [6].  

Monitoring and evaluation are essential components of public health and health care programs to 

manage the projected risks of infectious diseases under a changing climate [7]. Current and projected 

health risks due to climate change result from the hazards associated with climate change interacting 

with existing vulnerabilities and with the ability of individuals and communities to cope with the  

risks [8,9]. Indicators of vulnerability therefore need to consider who is exposed at present and in the 

future to particular hazards arising from climate change, including changes in the mean and variability 

of weather values; the susceptibility of exposed individuals and communities; and the capacity of those 

exposed (including the public health and health care institutions whose mandate is to care for those 

exposed) to avoid, prepare for, cope with, and recover from impacts [10]. Public health conceptual 

frameworks for the health risks of climate change [11,12] need to be updated to include all these 

dimensions of risk.  

European national-level expert opinion has been previously used to identify vulnerabilities to the 

risks posed by climate change on infectious disease transmission [13]. In this study, we explore the 

feasibility of developing a quantitative indicator to compare regional vulnerabilities to the health 

effects of climate change, and we evaluate the benefits and limitations of such an approach. 
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2. Methods 

2.1. Definitions of Vulnerability and Adaptive Capacity 

An essential starting point for this study was to identify a working definition of vulnerability, which 

can be conceptually defined as a predisposition or propensity to be adversely affected [14].  

The vulnerability of a population or a location is the summation of all the risk and protective factors that 

collectively determine whether a subpopulation or region experiences adverse health outcomes [15].  

The vulnerability of populations, similar to infectious disease risks, varies across spatial and temporal 

scales in response to changes in economic development, social capital, the demographic structure of a 

population (such as the proportion of elderly people in a population or the degree of urbanisation), 

trade and travel patterns, the prevalence of pre-existing medical conditions, acquired factors  

(such as immunity), and genetic and other factors [10,15–18]. 

The ability to prepare for and cope with the risks of climate change is a function of the status of the 

public health and health care infrastructure, such as the quality of surveillance and control programs, 

social capital, distribution of resources, treatment costs, ability to adapt, education levels, and so on. 

By mediating risk and/or differentially affecting the ability to prepare for or respond to hazards, 

socioeconomic factors play a critical role in determining both vulnerability as well as the risk  

of disease [19].  

Adaptive capacity has been defined by IPCC as “the ability or potential of a system to respond 

successfully to climate variability and change” [20]. There is no a priori agreement about what should 

be the most suitable components of an index for adaptive capacity for the impacts of climate change on 

infectious disease transmission [21]. Few health-related studies have considered critical components of 

adaptive capacity. One study assessed decadal aggregated mortality from climate-related disasters [22]. 

Eleven indicators had a strong association with decadal aggregated mortality, which were grouped into 

four categories: health status; the efficacy of health care systems; governance; and education. Another 

study used a conjoint choice survey of public health and climate change experts at professional 

meetings to assess determinants of the capacity of countries to address the health risks of climate 

change; this information was then used to construct an index of adaptive capacity [23]. The respondents 

viewed per capita income, inequality in the distribution of income, universal health care coverage, and 

high access to information as important determinants.  

An important challenge is to convert the desired variables into an index that can be operationalised. 

One approach for doing so was described by the European Observation Network, Territorial Development 

and Cohesion (ESPON) for modelling vulnerability [24]. ESPON combines estimates of the risk that a 

population may face together with adaptive capacity to develop a more operational (but somewhat less 

holistic) definition of vulnerability than the one described at the beginning of this chapter: 

Vulnerability = Impact / Adaptive Capacity 

The assumption underpinning the reciprocal relationship is that the higher the adaptive capacity  

of a region, the lower its Vulnerability. This definition implies that it is necessary to project the  

impact of climate change on infectious disease transmission as well as adaptive capacity in order to 

assess vulnerability.  
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The ESPON study nevertheless provides a comprehensive and consistent EU-wide attempt to map 

adaptive capacity, with resolution at the NUTS 3 level [24]. Many of the variables in the studies cited 

earlier fit into the ESPON conceptual framework (Table S1). Moreover, ESPON systematically 

attempted to assess societal-wide adaptive capacity through a range of indicators for five dimensions 

(knowledge and awareness, technology, infrastructure, institutions and economic resources) that could 

be further aggregated into three key dimensions (awareness, ability, action) influencing adaptive 

capacity (Figure 1). ESPON used a Delphi elicitation process to combine and weight the factors shown 

in Figure 1 to derive an adaptive capacity index at the European sub-regional (NUTS 3) level 

according to the Eurostat nomenclature of territorial units for statistics [25]. The aggregated 

weightings assigned to the five factors were the physical (weight 0.19), environmental (0.31),  

social (0.16), economic (0.24) and cultural (0.1) impacts of climate change. The inputs for each group 

are identified in Figure 1. For the purposes of the analysis in this study, we averaged the values to 

achieve an adaptive capacity at the regional (subnational) NUTS 2 level of resolution. 

Figure 1. Composition of the adaptive capacity developed by ESPON (
©

 ESPON 2013). 

 

2.2. Study Parameters 

The objective was to develop a regional-level, European-wide index of vulnerability to the 

infectious disease risks of climate change. Rather than assessing present-day vulnerabilities, the index 

was developed for the years 2035 and 2055. The study area consisted of European Union Member 

States at the regional (i.e., subnational) level (NUTS 2). Importantly, the vulnerability index is general 

in nature, rather than being disease-specific, meaning that the creation of the index did not involve 

considering in detail the myriad transmission pathways relevant to the full spectrum of infectious 
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diseases in Europe. The goal was to create a general vulnerability index that could then be combined 

with knowledge of estimated risks for particular infectious diseases to identify specific indicators for 

monitoring key risks associated with climate change.  

2.3. Data Inputs, Transformation and Analysis 

Based on the ESPON definition of vulnerability, the next step was to decide on the data inputs for 

its key components, impact and adaptive capacity. 

2.4. Impacts  

Climate-sensitive diseases can be fairly reasonably expected to undergo significant and/or 

unanticipated shifts in geographic range or seasonality, as well as altered transmission patterns,  

where climatic changes are the greatest. The most reliable climate projections are for temperature and 

precipitation, and although the frequency of extreme events, such as flooding and heavy rainfall 

events, are also relevant to infectious diseases, reliable and high-resolution projections for these 

variables are not as robust [14]. Thus, temperature and precipitation were selected as the two input 

variables for the impact side of the equation. 

Rather than creating outputs from individual climate models and scenarios, this analysis adopted an 

ensemble approach by performing a single analysis using a climate model ensemble that combines a 

set of independent model outputs and scenarios together with the resulting standard deviations.  

Thus, projection of European-wide monthly means for daily temperature (Tmin and Tmax in degrees C) 

and daily precipitation in mm for 2035 and 2055 were available at 10 km resolution from the 

FutureClim datasets produced using a method described elsewhere [26]. A multi model ensemble 

based upon three emission scenarios (A1b, A2, B1) [27] and four earth system models (ECHAM5, 

MIROC3, CNRM and CSIRO3), downscaled to 1km resolution using the same techniques 

commissioned by the Environmental Research Group Oxford and made available to this project and to 

members of the EDENext consortium. 

Two ways of developing the adaptive capacity index were explored. First, a core set of desired 

variables relevant for infectious disease control was selected. Identified indicators were selected based 

upon data availability and validity as proxy values for awareness, ability, and action (Table 1).  

It was decided to base adaptive capacity on present-day data rather than future projections because it is 

much harder to obtain future projections of relevant socioeconomic data than it is for climate data: the 

great uncertainty inherent in any socioeconomic projections would contribute to the multiplication of 

overall model uncertainties [28]. Furthermore, major changes to the European public health landscape 

are more likely to be the consequence of changing political paradigms or other extrinsic factors that 

can neither be predicted nor accurately incorporated into models. 

The data in Table 1 were evaluated for their usefulness as data inputs. One problematic factor was 

that certain potential datasets did not adequately account for regional variability and differential 

healthcare system structures. For example, the number of hospital beds per 100,000 inhabitants  

(at NUTS2 level) was considered but during the ten years between 1998 and 2008, the number of 

hospital beds per 100,000 inhabitants fell in every Member State, except Malta (where the main 

general hospital was reconstructed) whilst, simultaneously, general health levels increased. The largest 
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reductions in the availability of hospital beds were recorded in the three Baltic Member States and in 

Bulgaria. The reduction in hospital bed numbers may reflect, among others, economic constraints, 

increased efficiency through the use of technical resources (for example, imaging equipment),  

a general shift from inpatient to outpatient operations, and shorter periods spent in hospital following 

an operation [25]. In other words, the number of hospital beds can be inversely correlated with the 

level of healthcare, and thus it is not possible from the available data to tease out the benefit of the 

availability of hospital capacity in terms of its healthcare value. 

Table 1. Sample datasets for consideration as components of adaptive capacity. 

Component of 

vulnerability 
Desired variable Proxy variable 

Spatial 

resolution 

Adaptive 

capacity: 

awareness 

Individuals with 

limited 

understanding of 

aetiology of 

infectious disease 

 

Education: literacy rate 

 

NUTS2 

 

Adaptive 

capacity: ability 

Status of health care 

 

 

 

 

Individuals 

susceptible to 

infectious disease 

Health care personnel per 

100,000 population 

Life expectancy at birth 

Under 5 mortality rate 

 

% population <5 years of age 

% population >65 years of age 

NUTS2 

 

 

 

NUTS2 

NUTS2 

Adaptive 

capacity: action 

Income 

 

Funding of 

healthcare system 

Gross Domestic Product 

(GDP) per capita 

 

Projected changes in health 

care spending as: 

% GDP 

% total health expenditure 

% of total government 

spending 

NUTS 2 

 

 

 

 

COUNTRY 

COUNTRY 

COUNTRY 

Similarly, the number of medical staff or physicians is a poor reflection of medical care as access to 

modern drugs, treatment techniques, surveillance systems and equipment all play a major role.  

In another example, infant mortality rates have reduced and life expectancies have increased across the 

EU27 between 1998 and 2008 [25]. Life expectancy at birth is a projection based on models and 

predictions (see, for example, improvements for Eastern European countries). Under-5 mortality is 

monitored, but improvements are more expected to be due to medical, technical and infrastructure than 

to any climatic changes. 

Such limitations demonstrate the types of challenges in identifying proxy variables for adaptive 

capacity directly related to the health sector. Working with broader socioeconomic measures, 

meanwhile, weakens analytical sensitivity. Despite this, the decision was made to interrogate adaptive 
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capacity broadly, without relying too heavily on overly narrowly focused datasets. Thus, the decision 

was made to deploy the ESPON adaptive capacity dataset (
©

 ESPON Database) [24]. The final datasets 

incorporated in the vulnerability index are described in Table 2. 

Table 2. Datasets used in the final vulnerability index. 

Component of 

Adaptive Capacity 
Desired Variable Proxy Variable 

Spatial 

Resolution 

Hazard Climate variability 

and change in 2035 

and 2055 

Average temperature 

 

Average precipitation 

NUTS2 

 

 

NUTS2 

Adaptive capacity: 

overall 

Adaptive capacity 

index for Europe 

(general) 

ESPON adaptive 

capacity index 

NUTS 2 

2.5. Development of the Vulnerability Index 

The vulnerability index (VI) for an EU Member State region   in year t was defined as: 

 It r    
  t r

  t      
   
 Pt r

  Pt    
   ACr 

where:  

   ACr is the reciprocal of the adaptive capacity as described by ESPON [24] normalized to 

average to 1 over all regions; 

   t          -                   -           

   t          -                   -          

 MinP, MaxP, MinT, and MaxT are the monthly projected precipitation and temperature 

extremes respectively; and 

   t      and    
      are the   t and     variables averaged over all values at NUTS2 level within the 

EU27 in year t. 

Note that the index considers the extremes as a change relative to the average     or     that is 

projected, i.e.,:  

   

         
 and 

 Pt

 Pt      
 

The choice of using ratios of differences was made to avoid two problems. An alternative might 

have been to develop the index: 

 IAlt  t     t    Pt   ACr 

where   is some constant to weight the relative importance of the two physical properties which would 

have to be subjectively assigned. Moreover, the index should work independent of the scale of the 

variables. The Celsius scale for temperature is arbitrary and 0 °C is just one point on a continuum, 

whereas zero is the absolute minimum for precipitation. The true ‘zero’ for temperature is at −273 °C, 
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so variations in the range of roughly −20 °C to +40 °C would register as a smaller difference to    in 

the Kelvin scale.  

Another option could have been: 

 IAlt  t      t     Pt   ACr 

but, again, this would require assigning an arbitrary weighting (the factor  ) between the two physical 

properties. 

An implied assumption is that within a Member State all members of the population have equal 

access to the same level of healthcare. This, of course, is not true but is a necessary simplifying 

assumption. Note that this index does not take into account of the number of people residing in a 

particular NUTS2 region. 

2.6. Assessment of Indices 

To assess the key drivers of the impact indices, a Spearman rank correlation test was run.  

This non-parametric test was used because it is has no implied assumption about the correlation 

structure between variables.  he scale runs from −1 to 1, with 0 in the middle equating to no rank 

correlation. The larger the absolute value of the rank correlation, the greater the influence that an input 

variable has on the rank of the output. 

2.7. Mapping Approach 

The index results for the impact and vulnerability indices were plotted via ArcGIS
TM

 to EU NUTS2 

levels for 2035 and 2055. Impact indices and overall vulnerability indices were plotted for both time 

periods to assist visualisation of the role of adaptive capacity. The results are presented according to a 

relative ranking based on quintiles, which enabled a clearer visual discrimination between classes so as 

to facilitate a relative comparison between regions.  

3. Results 

For all maps, red indicates the quintile with the highest projected impact and vulnerabilities,  

and green the quintile with the lowest projected impacts and overall vulnerabilities. All indices are thus 

relative, not absolute.  

The normalised reciprocal of the adaptive capacity index, derived from EPSON and ranked in 

quintiles, is presented in Figure 2. Given the definition of vulnerability used in this study  

(vulnerability = impact/adaptive capacity), this index represents the baseline for this study,  

for no future impacts are projected in this model. The regional-level adaptive capacity in Figure 2 

shows that the highest adaptive capacities (and thus lowest baseline vulnerabilities) are concentrated in 

Scandinavia, south-east England, and central Europe. Conversely, the lowest adaptive capacities  

(and thus highest baseline vulnerabilities) are concentrated in southern and eastern Europe. 
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Figure 2. Normalised reciprocal of ESPON Adaptive Capacity index. 

 

The final impact and vulnerability indices for 2035 and 2055 are presented in Figures 3 and 4, 

respectively. The top panels for these figures show the relative influence of temperature and 

precipitation change across Europe (impact indices alone), whereas the bottom panels include the 

adaptive capacity index from Figure 2 to provide the final vulnerability indices.  

For the impact indices for 2035 and 2055 (Figures 3a and 4a), regions to the red side of the scale are 

projected to encounter the largest climate-related infectious disease problems, because they will be the 

ones facing the largest changes in temperature and/or precipitation, which in turn can be expected to 

affect the introduction, establishment and transmission of infectious diseases. Both figures present a 

broad spatial heterogeneity across Europe. The reasons behind differences in projected impacts can 

differ. Even in regions with higher projected impacts, such as many in Spain and the UK, the reasons 

can differ. The relative contribution of changing temperature and precipitation affects different 

countries, as shown in Figure 5, which presents the average fractional contribution that precipitation 

and temperature have per Member State in the impact indices for 2035. For example, temperature and 

precipitation contribute equally to the projected impacts in Spain, whereas precipitation accounts for a 

greater role in the UK impact index (slightly more than 70%). It must furthermore be noted here that 

the results presented in Figure 5 must be interpreted in the context of absolute values; the large role 

that precipitation plays in the impact for Cyprus (CY) or Spain (ES), for example, is a significant 

decrease in precipitation, whilst in Ireland (IE) and the UK impacts driven by a substantial increase in 

precipitation. The findings from the Spearman rank correlation (Table 3) furthermore note that 

precipitation is overall the most influential variable. However, the relative importance of precipitation 

and temperature on the impact indices is regionally dependent.  
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Figure 3. Vulnerability Index projected for 2035: (a) Impact Index; (b)Vulnerability Index. 

 

(a) 

 

 

(b) 
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Table 3. Rank correlation of input variables with the Simple Impact Index by year. 

Rank correlations with 

Impact Index 
2035 2055 

                0.49 0.45 

                0.80 0.81 

                0.41 0.40 

                −0.03 −0.06 

Figures 3b and 4b show the overall vulnerability indices for 2035 and 2055, respectively.  

In comparison to Figures 3a and 4a, the overall vulnerability indices demonstrate the effect of adaptive 

capacity in either mitigating or exacerbating vulnerabilities. For both 2035 and 2055, the adaptive 

capacity of some regions helps to mitigate the impacts from climate change. For example, whereas the 

Norwegian region including Oslo has projected impacts in high impact quintiles in 2035 and 2055,  

its adaptive capacity helps to mitigate this somewhat, leading to a somewhat lower vulnerability 

rankings. Other areas exhibiting similar patterns include southeast England, and numerous regions in 

Norway, Denmark and Sweden, southern Germany and Austria. Conversely, regions in Romania, 

Bulgaria, Greece and southern Italy end up in higher vulnerability index quintiles (Figures 3b and 4b) 

than their respect impact index quintiles (Figures 3a and 4a). This reflects the lower adaptive capacity 

of these areas.  

Figure 4. Vulnerability Index projected for 2055. (a) Impact Index; (b) Vulnerability Index. 

 

(a) 
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Figure 4. Cont. 

 

(b) 

Figure 5. Fractional contribution of the precipitation and temperature components to the 

value of the Simple Impact Index for 2035 (averaged over each EU Member State). 

 
Notes: AT: Austria. BE: Belgium. BG: Bulgaria. CY: Cyprus. CZ: Czech Republic. DE: Germany.  

DK: Denmark. EE: Estonia. ES: Spain. FI: Finland. FR: France. GR: Greece. HU: Hungary. IE: Ireland. IT: 

Italy. LI: Liechtenstein. LT: Lithuania. LU: Luxembourg. LV: Latvia. NL: Netherlands. NO: Norway. PL: 

Poland. PT: Portugal. RO: Romania. SE: Sweden. SI: Slovenia. SK: Slovakia. UK: United Kingdom. 
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It is finally noteworthy that several regions, notably in the Iberian peninsula, the UK and Ireland, 

and southern France, are projected in the higher quintile ranges in both impact and vulnerability 

indices.  he message here is that regardless of these regions’ specific adaptive capacities  they are not 

high enough to offset the rather high level of projected climate changes. 

4. Discussion and Conclusions 

It is important to understand the magnitude and pattern of projected climate changes in order to 

understand how they could impact infectious disease transmission. Yet, without understanding the 

vulnerabilities and coping capacities of the regions undergoing such changes, it is impossible to 

develop a comprehensive understanding of the full nature of the threat and the opportunities for 

interventions to increase resilience. A holistic approach that assesses vulnerabilities in light of both 

projected impacts and adaptive capacities is essential to strategically embark upon necessary climate 

change adaptation and public health preparedness measures. 

The growing area of vulnerability research offers an intriguing avenue for doing so, for it explicitly 

draws attention to socioeconomic and political conditions, the susceptibilities of societies and 

ecological systems to harm, and the ability of these systems to cope with, respond to, and recover from 

climate-driven events [9]. A key outstanding question is which indicators would be most effective to 

further the understanding of how climate change might interact with future vulnerability to promote or 

reduce health risks. Such indicators would ideally account not only for climate change but also the 

many drivers of infectious disease, which include socioeconomic circumstances, demographic factors, 

and policy and governance contexts [18,29,30]. There is a large body of research discussing indictors 

for monitoring temperature, precipitation, and other weather factors as the climate changes, as well as 

the human and natural systems exposed to those changes. Literature on the social dimensions of 

vulnerability, including the social processes that affect vulnerabilities, is also rapidly expanding [31].  

Although there is a robust literature on population susceptibility to infectious disease risks, this 

literature generally does not consider the risks posed by climate change. For example, where studies 

addressed the social and environmental dimensions of vulnerabilities related to infectious disease, such 

as dengue, they consider climate but have yet to address climate change [32,33]. Further, there is very 

limited research on how these susceptibility factors could change under different development and 

climate patterns, and there is limited research on indicators of vulnerability and public health 

preparedness to track whether there is adequate and timely adaptive management to effectively prepare 

for risks. Where data exists, more evaluation of the sensitivity and utility of data is required [34]. 

In order to address this gap, in this study the vulnerability models developed (Figures 3b and 4b) 

consider both the magnitude of climate-driven impacts that a given European region is anticipated to 

face, as well as the region’s ability to respond—its adaptive capacity as assessed by the current 

resources (human, financial, infrastructure, etc.) that a region could be expected to mobilise so as to 

reduce impacts. The vulnerability indices for 2035 and 2055 presented here offer one of the first 

attempts to map pan-European regional vulnerabilities to the impacts of climate change on infectious 

disease. The indices are necessarily broad-brushed, but provide public health planners with an 

overview of some European regions that may likely require additional attention to enhance 

preparedness for climate change.  
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The models presented in this study demonstrate that regions projected to undergo the most 

substantial climate changes but that do not have strong adaptive capacities are particularly vulnerable. 

In some instances, such as in many regions of south-east Europe, high vulnerabilities are driven by low 

underlying adaptive capacities. In others, such as in many areas of southern France, the UK,  

and Ireland, regions may have relatively strong or average levels of adaptive capacity but nonetheless 

be in the highest vulnerability quintile due to the relatively high influence of projected climate changes.  

There are many limitations to this study. The models have not been validated, which is of course a 

longstanding challenge for the climate change impacts community. There is no simple solution for 

validating future-orientated models. One solution could have been “hindcasting”  through which the 

metrics used in the models would be tested through examining how well they performed over the past 

several decades. Unfortunately, however, this sort of validation is not possible due to the lack of 

available, comprehensive and EU-wide datasets that go back so far in time. Another limitation of the 

study is that it looks broadly at relative differences between European regions in order to create a 

preliminary prioritisation of regions to address. The alternative could have been to model absolute 

changes in climate change impacts and/or adaptive capacities, which could be important for specific 

diseases or other health-related aspects that are not driven by relative climatic changes but rather 

climate thresholds or “tipping points”. Moving forward, attention should be placed on developing more 

disease-specific and detailed health indicators of vulnerability, to be able to shed more light on which 

risk groups are most vulnerable; which susceptibilities are likely to be most important; and the 

potential of health systems to prepare for, cope with, and recover from the impacts of climate change. 

With respect to infectious diseases, the development of disease-specific indices could assist more 

focused adaptation activities, through monitoring data more directly relevant to the disease in question. 

Such work represents a next phase in this study.  

Some of the broader limitations of this study allude to the critical challenges facing the health sector as 

it begins to plan and implement options to manage public health vulnerabilities to climate change [35]. 

One is that although the sector has great experience in programme monitoring and evaluation,  

it has limited experience anticipating future health challenges under different climate and development 

pathways. Compared with other sectors, there is much less research from the health sector projecting 

socioeconomic vulnerabilities to climate change under different development pathways. One key issue 

is the lack of a consistent and health-relevant definition of vulnerability. The definition of vulnerability 

used in this study (vulnerability = impact/adaptive capacity) implies that adaptive capacity is one 

component of vulnerability, yet such an approach is not fully consistent with current understandings of 

risk, impact, and vulnerability [10]. The definition used in this study implies that vulnerability is 

similar to “residual impacts”. In other words  it notes the vulnerability remaining after an impact has 

occurred and all possible actions have been taken to avoid, prepare for, and cope with that impact.  

This conceptual model is not consistent with the more holistic manner in which public health  

views vulnerability.  

Thus, although many elements of the ESPON definition of adaptive capacity are similar to those 

typically used in public health [21], the field could be advanced by identifying and combining a wide 

range of data to develop more health-specific indicators. For example, importance of variables such as 

coping capacity and, critically, political will and governance could be considered in future attempts at 

mapping vulnerabilities [21,36]. This is essential, although some regions might have high levels of 
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social and economic capital, leading to good scores on the index of adaptive capacity presented here, 

there is still much adaptation and preparedness work that needs to be done to translate adaptive 

capacity into practice. To borrow an analogy from thermodynamics, adaptive capacity can be seen as 

potential energy, which needs political will, commitment, and robust public health and health care 

institutions to translate it into the kinetic energy required to develop resilient health systems adapted to 

climate change. 

There are in fact myriad relevant health and socioeconomic datasets available that could be 

amenable as indicators for more health-specific definitions of vulnerability—the issue is that very little 

work has been done to evaluate their sensitivity and usefulness under different socioeconomic 

development pathways [34]. The work in this study supports such an observation. Recall that potential 

proxy indicators such as number of hospital beds or number of medical personnel per capita were 

unsuitable for use as indicators because of a range of limitations. An additional challenge related to the 

available data was the varying spatial resolution of datasets; some socioeconomic data are available 

only at the national level, whereas other data are available at regional levels. National data creates 

issues because it necessarily disguises sub-national variation and precludes identification of the most 

and the least vulnerable regions in a country. 

Yet the situation appears to be improving. A new generation of climate scenarios, which were not 

available during the undertaking of this study, is becoming available to the scientific community,  

and these explore a broader range of socioeconomic variables in modelling the risks of climate  

change [33]. These scenarios will replace the IPCC SRES scenarios and enable more detailed 

projections of impacts and vulnerabilities taking into consideration the interactions between climate 

change and other important disease drivers, such as urbanisation, population settlements,  

and demographic changes [34]. Furthering developing the health aspects of these scenarios should be a 

priority research area before applying the new scenarios to develop refined vulnerability indices. 

More generally, there is the need to systematically collect and analyse the interlinkages between the 

numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic 

datasets so as to promote the public health capacity to detect, forecast, and prepare for the health 

threats due to climate change. Health sector engagement with the new climate scenarios will be crucial 

for achieving this aim [37]. So will efforts to foster data and information exchange, such as the 

European Environment and Epidemiological (E3) Network developed by the European Centre for 

Disease Prevention and Control [38], one of many necessary steps towards reducing emerging 

vulnerabilities due to climate change. 
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