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Abstract: Mainly due to its nephrotoxic and osteotoxic potential, uranium (U) increasingly finds
itself in the spotlight of environmental and health-related research. Germany decided on a binding
U guideline value in drinking water of 10 µg/L, valid since 2011. It is yet widely unknown if and
how public health was affected by elevated U concentrations before that. In this ecological study we
summarized available drinking water U data for the German federal state of Bavaria (703 analyses in
total for 553 different municipalities) at county level (for 76 out of 96 Bavarian counties, representing
about 83% of Bavaria’s and about 13% of Germany’s total population) in terms of mean and maximum
U concentration. Bavaria is known to regionally exhibit mainly geogenically elevated groundwater
U with a maximum value of 40 µg/L in the database used here. Public health data were obtained
from federal statistical authorities at county resolution. These included incidence rates of diagnosed
diseases suspected to be potentially associated with chronic U uptake, e.g., diseases of the skeleton,
the liver or the thyroid as well as tumor and genito-urinary diseases. The datasets were analyzed
for interrelations and mutual spatial occurrence using statistical approaches and GIS as well as odds
ratios and relative risks calculations. Weak but significant positive associations between maximum
U concentrations and aggregated ICD-10 diagnose groups for growths/tumors as well as liver diseases
were observed, elevated incidence rates of thyroid diseases seem to occur where mean drinking water
U concentrations exceed 2 µg/L. Here, we discuss obtained results and their implications for potential
impacts of hydrochemistry on public health in southeast Germany.

Keywords: uranium; public health; odds ratio; relative risk; Bavaria; disease; cancer; liver;
thyroid; groundwater

1. Introduction

In recent years, uranium (U) has become a broadly studied heavy metal in the fields of
environmental and health-related research. It is a natural constituent of the earth’s crust and occurs in
all of its rocks, soils and fluids. Uranium mobility and distribution in the environment are governed
by its Eh- and pH-dependent speciation with U(VI) being the mobile form (reduced U(IV) tends to be
immobilized as e.g., the mineral phase uraninite UO2), especially in bicarbonate-containing waters
where stable U(VI)-carbonato-complexes are dominant [1–3]. Large-scale U distribution is controlled
by geology, mainly due to the heavy metal’s incompatible behavior in magmatic differentiation which
leads to elevated U contents in felsic magmatites like granites and pegmatites, and associated sediment
basins and finally groundwater. Intermediate U sinks and sources include organic-rich sediments
like fen peats and gleyic soils [4–7] reflecting the element’s affinity towards organic matter sorption.
Inorganic phosphorus fertilizers, former U mining sites, depleted U ammunition, emissions from
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the nuclear industry as well as combustion of coal and other fuels represent potential anthropogenic
U sources [8–13].

Uranium is a heavy metal with both radiotoxic and chemotoxic properties potentially leading
to adverse health effects in exposed populations whereby not only total concentration but also
U speciation/complexation are decisive (e.g., [14,15]). The main U exposure pathway appears to
be uptake via drinking water in most cases indicating that populations supplied with drinking water
from U-rich groundwater resources may exhibit elevated health risks (e.g., [16]) associated with the
nephrotoxic potential of ingested U mainly as it damages the kidney tubular cells [17]. Beside this
geologically caused intake differences via drinking water/soft beverages, food represents an additional
U exposure pathway whereby vegetable foodstuff delivers a slightly higher percentage of the daily
U ingestion than animal products for an average omnivore diet [18]. Moreover, the skeleton is another
target for ingested U absorption in the body. It can affect bone development and maintenance, especially
in young individuals. The accumulation mechanism is mainly the substitution of U for calcium in
the osseous tissue [19]. Most U is excreted rapidly from the body via urine and feces, but about
1−1.5% is assumed to be adsorbed in the gastrointestinal tract in adults. In bones, U retention has
a half-live between 70 and 200 days, 80−90% of deposited U leaves the body after 1.5 years [17,19,20].
As an alpha particle emitter, adsorbed radioactive U may also lead to DNA damage and therefore
carcinogenesis. Wagner et al. [21] found in an ecological study in the U.S. that incidences of several
cancer types including kidney cancer may be enhanced in areas supplied by groundwater with elevated
U concentrations. Earlier studies suggested associations between elevated groundwater U daughter
radionuclide (radium, radon) concentrations with bone, lung, breast and blood cancer [22–25]. On the
other hand, several Finnish studies [26–28] did not find adverse health effects associated to elevated
drinking water U. In answer to these findings, health authorities implemented drinking water guideline
values for U which partly have changed over time. WHO increased its provisional U guideline value
from 15 to 30 µg/L [11] as a reaction to the findings of [28]. In Germany, authorities for the first time
established a fixed U threshold value of 10 µg/L, valid since 2011 [29].

This study examines potential associations between elevated groundwater U concentrations and
public health effects in the German federal state of Bavaria using publicly available hydrochemical
data and the spatial distribution of different diseases incidence data provided by German statistical
authorities. The aim is to test the hypothesis that elevated groundwater U is associated with elevated
incidence rates of diseases of the genito-urinary system, the skeleton, the liver or the thyroid as well
as tumor diseases. Occurrence of high groundwater U is documented in South-East German Bavaria,
elevated concentrations are widespread in the northern part of the state (Franconia). Uranium derives
from the weathering of uraniferous apatite concretions in Triassic aquifer sediments [30]. While Bavaria’s
southern part is generally less affected, localized cases of high groundwater U are mainly associated with
mobilization from organic-rich bog areas, partly triggered by agricultural activity [7]. Using different
datasets and statistical approaches for some parts of Bavaria, Radespiel-Tröger and Meyer [31]
found significantly increased risks of leukemia for men, and kidney and lung cancer for women
when U exposure was elevated. Bavaria produces the majority of its drinking water (86%) from
groundwater [32] (data from 2013).

2. Materials and Methods

2.1. Hydrochemical Data

Drinking water U concentrations were obtained from a freely available internet data resource
provided by the German non-profit organisation “foodwatch” which collected and published
U concentration data for public water supply systems from German health and environmental authorities
obtained between 2000 and 2009. For Bavaria, this dataset includes 703 single U concentration values
from 553 municipalities [33]. The dataset also reflects U distribution in Bavarian groundwater, the by
far most important drinking water source, because of the special highly decentralized drinking water
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supply system consisting of about 2350 municipal water suppliers in the federal state. Analytical detection
limits were between 0.1 and 0.5 µg/L (2 µg/L at one single location). For Bavarian groundwater, federal
authorities report U concentrations >10 µg/L in 7.5% out of 1566 analyzed samples with a maximum
value of 57 µg/L [34].

2.2. Diseases Incidence Rates Data

Numbers on diagnosed cases of selected diseases suspected to be associated with elevated U
exposure as well as population numbers on county level for 2014 were supplied by federal statistical
authorities (Bayerisches Landesamt für Statistik) in summer 2016. Diagnoses originated from hospitals
and were registered for the places of residents of the patients. Information on potential differences
in diagnosing or registration practices between counties and federal states were not documented,
and are therefore not considered in this study. Population data reports about 10.5 million people in
the studied 76 (out of a total of 96) counties in Bavaria representing about 83% of the total Bavarian
population and 13% of Germany’s 81.2 million inhabitants in total. The following ICD-10 coded groups
of diseases were considered in this study: C00-D48 (malignant, benign and other growths/tumors),
E00-E07 (diseases of the thyroid), K70-K77 (diseases of the liver), M80-M99 (osteopathy, chondropathia
and other diseases of the musculoskeletal system), N00-N99 (diseases of the genito-urinary system),
Q00-Q99 (congenital malformation, deformities and chromosome anomalies). Incidence rates for these
ICD codes were also calculated for the overall German population based on publicly available data
from [35] for 2014 as reference values. Health data 5−11 years younger than U exposure data was used
because latency periods are expected to last 10 years to several decades, as concluded from earlier
epidemiological studies on U [36,37].

2.3. Data Processing and Statistical Approaches

Where several U analyses were available for the same location, arithmetic mean values and
maximum values were considered for the applied statistical approaches. For data below analytical
detection limits, the value 0 was assumed. Available U data was georeferenced using the program
ArcGIS 10.1 (Esri, Redlands, CA, USA) by assigning spatial coordinates to the tabulated data which only
offered municipality names. In some cases, only waterworks names were offered, these were assigned
to the respective municipality. Municipalities were then allocated to the different administrative
counties. Uranium data was spatially adapted to county borders to be comparable to diseases diagnose
data. For each county, a mean U concentration was calculated from all allocated municipality U values,
and used for further statistical calculations. Additionally, the maximum U value in each county
was used for comparison. Counties without available U analyses in the database (n = 20) were not
considered leaving a dataset of n = 76 counties, 7 of which (9%) were represented by a single U analysis
(cf. Table S1 in Supplementary Materials). For the medical data, incidence rate values were calculated
for every ICD code group for each county. A total of 461,456 individual cases were included for
Bavaria, patients diagnosed in Bavaria but living outside of the federal state (about 5% of all cases)
were not included.

The program SPSS (IBM, Armonk, NY, USA) was used to calculate Pearson correlation coefficients
to evaluate potential statistical associations between drinking water U concentrations and incidence
rates for the different ICD code groups. Odds ratios (OR) and relative risks (RR) were calculated to
compare the probabilities of county disease incidence rates to be higher than the national average with
and without the population being exposed to a certain level of drinking water U in a given county
(risk factor). The U level was set for two different cases—counties with a maximum U drinking water
concentration of >10 µg/L, and those with a mean U concentration >2 µg/L. The latter is due to
a guideline given by German authorities for bottled water used for the preparation of baby food [16].
It also corresponds to the original WHO guideline for drinking water before it was increased stepwise
to the current value of 30 µg/L [11]. ICD incidence rates calculated for the overall German population
served as reference values. This approach uses a two-by-two frequency table (Table 1).
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Table 1. Odds ratios calculation scheme.

No. of Counties With Risk Factor 3 Without Risk Factor 4

with high incidence 1 a b
with low incidence 2 c d

1 incidence rates above the overall German average; 2 incidence rates below the overall German average; 3 mean
drinking water U > 2 µg/L (resp. max. U > 10 µg/L); 4 mean drinking water U < 2 µg/L (resp. max. U < 10 µg/L).

The following equation was then used for OR calculation: OR = (a/c)/(b/d) = ad/bc. An odds
ratio of 1 means that there is no difference in incidence rates between conditions with and without the
risk factor. OR > 1 suggests an elevated disease incidence rate (on county level) when the risk factor
applies, OR < 1 a lower one.

The relative risk (RR), also referred to as risk ratio, was calculated as the quotient of incidence
rates with and without risk factor, i.e., RR = a/(a + c)/(b/(b + d)). RR expresses the difference in
disease risk between counties with and without the risk factor (mean drinking water U > 2 µg/L or
max. drinking water U > 10 µg/L) with values >1 suggesting an elevated risk at higher U exposure.

95% confidence intervals for OR and RR were calculated after [38].
In epidemiological research, odds ratios are commonly used in case-control studies while relative

risks are often calculated in cohort studies or randomized controlled trials. In this study, both were
calculated for the sake of comparison (also with literature data like [31]), and because our approach
cannot clearly be assigned to one of the mentioned study types.

Using GIS, maps were created to visualize spatial associations between drinking water U and
incidences of the studied ICD-10 coded diseases.

3. Results

The number of diagnosed cases and calculated incidence rates (2014) for the selected ICD-10
coded groups of diseases for the total German population (81.2 million people) are shown in Table 2.

Table 2. Cases and incidence rates in total German population (81.2 million people) 2014.

ICD-10 Code Explanation New Cases Incidence Rate Incidence
Rate/100,000

C00-D48 growths/tumors 1,852,202 0.0228 2281
E00-E07 thyroid diseases 98,166 0.0012 121
K70-K77 liver diseases 87,509 0.0011 108
M80-M99 musculoskeletal diseases 132,771 0.0016 164
N00-N99 genito-urinary diseases 1,044,701 0.0129 1287

Q00-Q99 malformation, deformities and
chromosome anomalies 104,793 0.0013 129

Table S1 in the Supplementary Materials presents U concentration data in drinking water as well
as cases and calculated incidence rates (2014) for the selected ICD-10 coded groups of diseases for
the studied German federal state (data shown by counties). Furthermore, it gives an overview of the
number of municipalities and available U analyses per county.

For Bavaria, the mean U concentration exceeds 2 µg/L in 30 counties (39% of the considered
76 counties), 10 counties (13%) exhibit maximum U values >10 µg/L in this dataset, mainly in the
northern part of the federal state. The overall maximum concentration is 39.9 µg/L. Note that only
one U value was available for some counties (cf. Table S1 in Supplementary Materials). Incidence rates
of the ICD-10 coded groups of diseases C00-D48, E00-E07, K70-K77, M80-M99, N00-N99 and Q00-Q99
exceed the overall German average in 17%, 55%, 26%, 47%, 28% and 18% of the counties, respectively.

Table 3 reports Pearson correlation coefficients for mean and maximum U concentrations per
county with incidence rates.
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Table 3. Pearson correlation coefficients for mean and maximum U concentrations per county with
incidence rates (n = 76).

C00-D48 E00-E07 K70-K77 M80-M99 N00-N99 Q00-Q99

mean U 0.220 0.084 0.242 0.057 0.048 0.055
p 0.06 0.47 0.04 1 0.63 0.68 0.64

max. U 0.302 0.062 0.264 0.064 0.062 0.026
p 0.008 2 0.60 0.02 1 0.58 0.60 0.83

1 p < 0.05; 2 p < 0.01.

Statistically significant positive Pearson correlation (p < 0.05) was observed for Bavarian drinking
water U concentrations (mean and maximum values) with ICD-10 code group K70-K77 (liver diseases),
and for maximum U values with ICD-10 code group C00-D48 (growths/tumors; p < 0.01). Figure 1
visualizes bivariate correlations between maximum U concentrations in drinking water and those ICD
coded groups of diseases incidence rates with detected significant Pearson correlation.
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Results of odds ratio (OR) and relative risk (RR) calculations for the risk factor “mean drinking
water U concentration >2 µg/L” are presented in Table 4.

Table 4. Odds ratio (OR) and relative risk (RR) calculations using mean drinking water U concentration
>2 µg/L as risk factor. 95% CI: 95% confidence intervals (lower and upper limit).

Bavaria C00-D48 E00-E07 K70-K77 M80-M99 N00-N99 Q00-Q99

OR 1.31 3.22 1.78 0.67 1.17 1.15
CI (OR) 0.40; 4.22 1.18; 8.97 0.66; 4.82 0.26; 1.69 0.43; 3.22 0.36; 3.67

RR 1.24 1.56 1.51 0.80 1.12 1.12
CI (RR) 0.48; 3.23 1.11; 2.17 0.76; 2.99 0.47; 1.37 0.55; 2.29 0.44; 2.85

Table 5 shows OR and RR results for the risk factor “maximum drinking water U concentration
>10 µg/L” for the federal state.

Table 5. Odds ratio (OR) and relative risk (RR) calculations using maximum drinking water U
concentration >10 µg/L as risk factor. 95% CI: 95% confidence intervals (lower and upper limit).

Bavaria C00-D48 E00-E07 K70-K77 M80-M99 N00-N99 Q00-Q99

OR 4.22 2.07 3.40 0.43 1.14 0.45
CI (OR) 1.15; 15.5 0.57; 7.51 1.00; 11.6 0.12; 1.56 0.31; 4.23 0.07; 3.13

RR 2.93 1.89 2.20 0.60 1.10 0.51
CI (RR) 1.23; 7.02 0.60; 5.93 1.11; 4.36 0.25; 1.44 0.43; 2.76 0.09; 2.85

OR and RR show statistically insignificant values <1 or close to unity for M80-M99, N00-N99 and
Q00-Q99 for both applied risk factors, i.e., nearly indifferent incidence numbers in the considered groups
of musculoskeletal and genito-urinary diseases as well as malformations. For the growths/tumors
(C00-D48) and the liver diseases (K70-K77) groups, slightly elevated (but statistically insignificant)
values >1 were calculated for the “mean drinking water U > 2 µg/L” risk factor, but statistically
significant ORs of 4.22 and 3.40, respectively, when the occurrence of maximum concentrations >10 µg/L
is taken into account. Calculated significant RRs (2.93 and 2.20) exhibit a similar pattern for these
groups. Inversely, the ICD-10 group E00-E07 (thyroid diseases) has significant OR and RR > 1 for the
mean >2 µg/L risk factor (significant on the 95% level), but statistically insignificant values >1 for the
max. >10 µg/L risk factor.

Figure 2 presents a map of Bavaria indicating the spatial correspondence of drinking water
U concentrations and incidence rates of C00-D48.

The Bavarian distribution of drinking water U concentrations (Figure 2) reflects the aforementioned
tendency to higher values in the northern part of the federal state due to geological reasons (cf. Chapter 1).
Two areas, one in the northernmost part, one in the central north, are especially affected by elevated
concentrations. Higher C00-D48 incidence rates also appear to occur predominantly in the northern
counties of Bavaria. Although there is definitely no striking spatial correlation between these two
parameters, a general north-south gradient appears to exist for both. The same is generally true for
the ICD-10 coded group of liver diseases (K70-K77, not shown) while there is no spatial coincidence
between U concentrations and the studied group of thyroid diseases (E00-E07, not shown).
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4. Discussion

In this study, we found weak but statistically significant positive correlations between drinking
water U concentrations and incidence rates of several groups of diseases for Bavaria: C00-D48
(malignant, benign and other growths/tumors) and K70-K77 (diseases of the liver). These groups,
together with E00-E07 (diseases of the thyroid) also exhibited highest calculated values for odds
ratios and relative risks. Both are elevated and statistically significant for C00-D48 and K70-K77 when
occurrence of a maximum U concentration >10 µg/L in counties of residence is considered as the
risk factor, but not if mean concentrations >2 µg/L U are used. Results—though no differentiation
between types of cancer/growths was considered here—support the findings of [31] who found slightly
increased risks of leukemia, kidney cancer and lung cancer in Bavarian municipalities associated with
increased drinking water U concentrations. These authors documented elevated relative risks for
intermediate (>1 µg/L; RR = 1.12) and high (>5 µg/L; RR = 1.28) U exposure. There also seems to be
a common spatial tendency for both drinking water U and undifferentiated tumor/growth incidence
rates with higher values in the northern part of the federal state. Relatively little is known about
adverse effects of U exposure on the liver [39] report that beside kidney and skeleton, the liver is
a third target organ for U uptake in the human body hosting 16% of the normal adult body burden of
U (90 µg). Existing animal studies provide evidence that U exposure can damage the liver, and human
liver dysfunction was observed upon acute uptake of a high U dose. However, the etiology of both
effects is yet unknown [39].

The thyroid diseases group (E00-E07) showed no statistically significant correlation,
but significantly elevated OR/RR when mean U concentration >2 µg/L was applied as the risk factor.
A spatial pattern, however, was not detected. It is known that radionuclides, especially those emitted
after nuclear disasters, can substantially increase the risk for thyroid cancer since the thyroid gland is
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highly sensitive to the carcinogenic effects of radiation [40]. It remains unclear if observations from the
present study are associated with the effect of U radiotoxicity on the thyroid, future research might
address this question. Neither significant statistical associations nor correlating spatial patterns between
drinking water U concentrations and incidence rates of M80-M99 (osteopathy, chondropathia and other
diseases of the musculoskeletal system), N00-N99 (diseases of the genito-urinary system) and Q00-Q99
(malformation, deformities and chromosome anomalies) were found.

Results obtained in this study must at least partly be considered a look into the past because
U concentration data from earlier than 2011 was used. Drinking water U concentrations will partly have
decreased since then, mainly because of remediation measures taken by water suppliers as a reaction
towards the newly implemented guideline value. Further limitations of this study include: the limited
spatial resolution of the used diseases incidence data; the fact that only groups of diseases, not single
diagnoses were considered; the fact that no potentially important parameters save U concentration in
drinking water were considered (age, diet, sex, socio-economic status, habits like smoking, adipositas,
individual use of tap water, general tap water composition, U intake from food and bottled water etc.);
the relatively inhomogeneous spatial distribution of the used U concentration data; the fact that mean U
values had to be calculated for single locations, and again for single counties (though maximum values were
also considered); precision and analytical detection limits of the used U data, U speciation/complexation,
ecologic design of the study. These limitations should be considered in the interpretation of obtained
results, and may be addressed in future ecological research.

5. Conclusions

In this study, we collected and analyzed data from the German federal state of Bavaria on drinking
water U concentrations and incidence rates of selected groups of diseases potentially associated with
elevated U exposure (tumors/growths, liver, thyroid, musculoskeletal and genito-urinary diseases,
and congenital malformations). Pearson correlation, odds ratios/relative risk calculation and GIS
visualization were used to study potential associations between these parameters.

Areas of drinking water U exceeding the German guideline value of 10 µg/L are documented
for the federal state with a north-south gradient in Bavaria. We found weak but significant positive
correlations between drinking water U concentrations and incidence rates of tumors/growths and
liver diseases. Odds ratios and relative risks for these disease groups showed significantly elevated
values for counties with maximum U drinking water concentrations >10 µg/L, for thyroid diseases
only for counties with mean drinking water U >2 µg/L. The mentioned north-south gradient of
U concentrations was roughly reproduced by the distribution of tumors/growths and liver diseases
incidence rates. No statistical or spatial correlations were found for genito-urinary and musculoskeletal
diseases as well as for congenital malformations.

Our results support an earlier study in Bavaria describing elevated risks for some types of cancer at
high drinking water U exposure. Furthermore, especially the rather unexpected finding that incidence
rates and OR/RR values for liver and thyroid diseases appear to coincide with elevated drinking water
U warrants further research. Future studies should take the temporal development of incidence rates
as a potential response to implemented drinking water guidelines into account.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/8/927/s1, Table S1:
Drinking water U concentrations [µg/L] and incidence rates 2014 in 76 counties of Bavaria (10.5 million people in
total) used in this study.
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