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Abstract: Despite advances in monitoring and modelling of intra-urban variation in multiple
pollutants, few studies have attempted to separate spatial patterns by time of day, or incorporated
organic tracers into spatial monitoring studies. Due to varying emissions sources from diesel and
gasoline vehicular traffic, as well as within-day temporal variation in source mix and intensity
(e.g., rush-hours vs. full-day measures), accurately assessing diesel-related air pollution within
an urban core can be challenging. We allocated 24 sampling sites across downtown Pittsburgh,
Pennsylvania (2.8 km2) to capture fine-scale variation in diesel-related pollutants, and to compare
these patterns by sampling interval (i.e., “rush-hours” vs. “work-week” concentrations), and by
season. Using geographic information system (GIS)-based methods, we allocated sampling sites
to capture spatial variation in key traffic-related pollution sources (i.e., truck, bus, overall traffic
densities). Programmable monitors were used to collect integrated work-week and rush-hour samples
of fine particulate matter (PM2.5), black carbon (BC), trace elements, and diesel-related organics
(polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes), in summer and winter 2014. Land use
regression (LUR) models were created for PM2.5, BC, total elemental carbon (EC), total organic carbon
(OC), elemental (Al, Ca, Fe), and organic constituents (total PAHs, total hopanes), and compared by
sampling interval and season. We hypothesized higher pollution concentrations and greater spatial
contrast in rush-hour, compared to full work-week samples, with variation by season and pollutant.
Rush-hour sampling produced slightly higher total PM2.5 and BC concentrations in both seasons,
compared to work-week sampling, but no evident difference in spatial patterns. We also found
substantial spatial variability in most trace elements and organic compounds, with comparable
spatial patterns using both sampling paradigms. Overall, we found higher concentrations of
traffic-related trace elements and organic compounds in rush-hour samples, and higher concentrations
of coal-related elements (e.g., As, Se) in work-week samples. Mean bus density was the strongest
LUR predictor in most models, in both seasons, under each sampling paradigm. Within each season
and constituent, the bus-related terms explained similar proportions of variance in the rush-hour
and work-week samples. Rush-hour and work-week LUR models explained similar proportions of
spatial variation in pollutants, suggesting that the majority of emissions may be produced during
rush-hour traffic across downtown. Results suggest that rush-hour emissions may predominantly
shape overall spatial variance in diesel-related pollutants.
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1. Introduction

Despite improvements in monitoring and modelling of intra-urban variation in multiple air
pollutants, few studies have attempted to separate spatial patterns by time of day, or to incorporate
organic tracers for key emissions sources [1]. Because diesel particulate matter (DPM) is a likely
carcinogen [2] and is linked to other health outcomes [3–5], more clearly identifying diesel emissions
sources in densely-populated areas can help to identify opportunities to reduce exposures, which may
lead to substantial improvements in population health.

Many studies have captured fine-scale spatial variation in urban air pollution, and successfully
applied land use regression (LUR) and related spatial modelling methods to estimate exposures and
to support identification of key sources [6–8]. Due to logistical and technical limitations related to
deploying a large number of non-programmable monitors simultaneously, however, few studies have
been able to perform spatial sampling specific to key hours of interest (e.g., rush hours, inversion
hours) [9].

Further, although there have been substantial improvements in methods for multi-pollutant
saturation monitoring [10], relatively few spatial studies have incorporated source-specific organic
particle components [11–13], in part due to the greater volatility and instability of these compounds.
To capture diesel-related sources, however—and particularly to attempt to separate multiple diesel
sources (e.g., trucks vs. buses)—multiple organic markers are normally necessary [6,8,9,14,15].

Downtown Pittsburgh (PA, USA) is a compact urban core (~2.8 km2) impacted by a large number
of diesel-related sources (i.e., buses, trucks, diesel-engine barges, construction activity). We monitored
24 spatially-distributed sites, summer and winter, for a wide suite of pollutants (i.e., fine particles
(PM2.5), black carbon (BC), elemental carbon (EC), organic carbon (OC), a suite of polycyclic aromatic
hydrocarbons (PAHs), hopanes, steranes, and trace elements). At each site, paired samplers collected
samples for the full work week (Monday–Friday, 7 a.m.–7 p.m.), or solely during high-diesel hours
(Monday–Friday, 5 a.m.–10 a.m. and 3 p.m.–7 p.m.). We compared spatial variation by sampling
interval and season, and developed season- and interval-specific LUR models. We hypothesized higher
pollution concentrations and greater spatial contrast during rush-hour sampling, with variation by
season and pollutant. This study is the first, to our knowledge, to capture and compare spatial variation
in multiple pollutants, including organic components, during high-diesel vs. other work-week hours.

2. Materials and Methods

We systematically allocated twenty-four (24) air monitoring sites, using previously-developed
geographic information system (GIS)-based methods, to characterize variation in total traffic, buses,
and truck traffic across our small domain [1]. The same sites were sampled in both summer and winter,
and were randomly distributed over four 5-day (Monday through Friday) sampling sessions. At each
site, we collected paired work-week and rush-hour samples for a suite of gasoline- and diesel-related
pollutants. Temporally-adjusted concentrations at each site, for each season, were derived using time
trends observed at two reference monitors (one urban and one rural background site). This study
design is further detailed, and maps of the reference sites provided, in Tunno et al., [1].

2.1. Study Domain

We used GIS to fit a polygon that included downtown Pittsburgh, with a uniform elevation of
roughly 300 m, to encompass vehicular traffic across highways and bridges surrounding the downtown
core, resulting in a sampling domain of roughly 2.8 km2 (Figure 1).
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Figure 1. Downtown Pittsburgh monitoring locations (n = 24) and reference site by class 
dichotomization (total traffic density, truck traffic density, bus route density). Rural upwind reference 
site to the west (~14.5 km) of the study area is not shown. 

2.2. Tracer Selection 

We identified chemical tracers for key pollution sources of interest (i.e., heavy trucks, buses, and 
gasoline vehicles). We collected integrated samples of PM2.5, BC, trace elements, and organic 
compounds (PAHs, hopanes, steranes). We also identified elemental constituents found to be 
associated with diesel emissions in at least two published studies (Al [16,17], Ca [18–20], and Fe 
[20,21]), based on our previous literature search, and included additional elements related to 
vehicular emissions, brake/ tire wear, soil/road dust resuspension, steel-making, and coal [22]. We 
selected organic markers previously identified in diesel exhaust, quantifiable using thermal 
desorption gas-chromatography mass-spectrometry (TD-GC-MS) [15], and relatively lower volatility 
and reactivity relative to other components of diesel exhaust [9]. Additional information on organic 
compound marker selection and quartz filter handling is detailed in Tunno et al. [1]. 

2.3. Sampling Intervals 

Paired samplers ran two (2) program: one to capture full work-week concentrations (Monday 
through Friday, 7 a.m. to 7 p.m.), and one to capture rush-hours (Monday through Friday, 5 a.m. to 
10 a.m. and 3 p.m. to 7 p.m.). These “rush-hours” were identified as the hours with the heaviest bus 

Figure 1. Downtown Pittsburgh monitoring locations (n = 24) and reference site by class
dichotomization (total traffic density, truck traffic density, bus route density). Rural upwind reference
site to the west (~14.5 km) of the study area is not shown.

2.2. Tracer Selection

We identified chemical tracers for key pollution sources of interest (i.e., heavy trucks, buses,
and gasoline vehicles). We collected integrated samples of PM2.5, BC, trace elements, and organic
compounds (PAHs, hopanes, steranes). We also identified elemental constituents found to be associated
with diesel emissions in at least two published studies (Al [16,17], Ca [18–20], and Fe [20,21]), based on
our previous literature search, and included additional elements related to vehicular emissions,
brake/tire wear, soil/road dust resuspension, steel-making, and coal [22]. We selected organic markers
previously identified in diesel exhaust, quantifiable using thermal desorption gas-chromatography
mass-spectrometry (TD-GC-MS) [15], and relatively lower volatility and reactivity relative to other
components of diesel exhaust [9]. Additional information on organic compound marker selection and
quartz filter handling is detailed in Tunno et al. [1].

2.3. Sampling Intervals

Paired samplers ran two (2) programs: one to capture full work-week concentrations (Monday
through Friday, 7 a.m. to 7 p.m.), and one to capture rush-hours (Monday through Friday, 5 a.m. to
10 a.m. and 3 p.m. to 7 p.m.). These “rush-hours” were identified as the hours with the heaviest bus
and truck traffic, based on the Pennsylvania Department of Transportation (PennDOT) hourly traffic
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counts and Allegheny County Port Authority bus schedules for the downtown area. Winter sampling
was performed from 13 January to 7 February, and summer sampling from 7 July to 1 August 2014.

2.4. Instrumentation

We used programmable, portable ambient air sampling units [23] which included Harvard
Impactors (HI) (Air Diagnostics and Engineering, Inc., Harrison, ME, USA) with 37 mm Teflon filters
(PTFE membrane, 2 µm pores, Pall Life Sciences (Port Washington, NY, USA), and HOBO data
loggers for temperature and relative humidity (Onset Computer Corporation, Bourne, MA, USA).
Battery-operated vacuum pumps (SKC, Inc., Eighty-Four, PA, USA) maintained a flow rate of 4 L per
minute (LPM). Particle sampling instruments were housed in weather-tight Pelican boxes.

We adapted these sampling units to collect integrated samples of organic compounds. In separate
weather-tight Pelican boxes, additional PM2.5 samples to analyze for organic compounds were collected
using cyclones (Air Diagnostics and Engineering, Inc., (Harrison, ME, USA)) using 37 mm quartz fiber
filters (Pallflex Tissuquartz non-heat treated filters, Pall Life Sciences), pre-baked at 900 deg F prior
to sampling to remove VOC contamination which may interfere with collection of organic particle
components. All samplers were mounted approximately 3 m above ground, near the human breathing
zone, but sufficiently out-of-reach to avoid tampering. Most importantly, the sampling height was
consistent across all sites, for comparability. Organics samplers were strictly deployed on metal poles,
to avoid contamination by VOCs from treated wooden poles [24].

To enable comparisons of elemental vs. organic, and rush-hour vs. work-week, samples, four
(4) monitors were deployed together. Two sampling units collected PM2.5, BC, and trace elements
on Teflon filters using Harvard Impactors (HIs); two additional units collected organic compounds
using cyclones. One unit of each type was programmed to capture work-week hours, and the other to
capture only rush hours. Because four sampling units could not be placed on the same utility pole
without obstructing each other, we selected, as needed, the closest suitable pole for the HI (Teflon)
samplers, and used the original pole for the cyclone (quartz) samplers.

2.5. Site Selection and Allocation

We aimed to capture the spatial variability in traffic, particularly with regard to diesel- and
gasoline-powered vehicles, by allocating sites using three GIS-based indicators: total traffic density,
total truck density, and bus route frequency, as described in Tunno et al. [1]. To compare rush-hour
and work-week paired samples, we modified the original site allocation to enable paired sampling.
For phase 2, we retained 24 distributed sites from the original 36 sites (66%) for spatial and source
variation (Figure 1). Sites were eliminated (n = 12 sites) based on similarity in temporally-adjusted
organic concentrations with those detected at nearby sampling locations during the Phase 1 summer
and winter campaigns [1], to maximize the retained spatial variation in concentrations across the study
area. We retained two reference sites (one upwind background site, one urban site within the domain).

2.6. Laboratory Analyses:

Using an ultramicrobalance (Mettler Toledo Model XP2U, Columbus, OH, USA), Teflon filters
were pre- and post-weighed in a temperature and relative-humidity controlled glove box (PlasLabs
Model 890 THC, Lansing, MI, USA) to determine total PM2.5 mass. Reflectometry for BC absorbance
was performed using an EEL43M Smokestain Reflectometer (Diffusion Systems, Ltd., London, UK).
Inductively-coupled plasma mass spectrometry (ICP-MS) analyses were conducted for elemental
constituents by the Wisconsin State Laboratory of Hygiene following documented protocols (ESS
INO Method 400.4; EPA Method 1638) [25]. For OC and EC, thermal-optical reflectance was run
by Desert Research Institute (DRI, Reno, NV, USA) [26], and TD-GC-MS was conducted for organic
compounds [27,28].
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2.7. Quality Assurance and Quality Control

Multiple laboratory and field blanks were collected each session to quantify contamination,
on both filter types. Pump flow rates were calibrated to 4.0 LPM, temperature-adjusted based on
average forecasted temperatures for the sampling period, and re-assessed after sampling completion.
All sampling pumps met acceptable pre- and post-collection flow rates, within ± 5% of 4.0 LPM.
A small number of sites (n = 2 for Teflon filters, n = 2 for quartz filters) were re-sampled due to
equipment failure during the scheduled session. Field blanks from the same session were used
to blank-correct all pollutant concentrations. Data completeness was 96 to 100% for interval- and
season-specific sampling campaigns, with no statistical outliers (outside of ±3 standard deviations).
One summer work-week PM2.5 sample was lost due to field equipment error. One additional trace
element sample was lost due to analytic equipment error.

2.8. GIS-Based Source Density Indicators

We examined both rush-hour and work-week data using the GIS-based source covariates and
modifiers reported in Tunno et al. [1]. All covariates were created using ArcInfo Version 10.2 (ESRI,
Redlands, CA, USA). Buffer-based covariates were created for concentric radial buffers surrounding
each monitoring location (25 to 200 m), to assess impacts of sources at various distances on observed
pollutant concentrations. Buffers larger than 200 m were not considered, because these buffers
overlapped between neighboring sites, dampening variance across sites.

2.9. Temporal Adjustment

Using both the rural and urban reference sites, we temporally-adjusted all samples to
account for between-session variability driven by time-varying meteorology or long-range pollutant
transport. We estimated the expected seasonal average concentration at each site by dividing the
observed concentration by the session-specific average concentration from both reference sites, then
multiplied the result by the seasonal average concentration from both reference sites, as detailed in
Shmool et al. [29].

2.10. Statistical Analysis

We calculated descriptive statistics for PM2.5, BC, total EC and OC, trace elements
previously associated with diesel emissions (Al, Ca, Fe), and organic compounds, and compared
temporally-adjusted pollutant concentration distributions across the source indicator strata used for
site selection. We compared pollutant concentrations within sites, by season and by sampling interval
(i.e., rush-hour vs work-week), using paired t-tests. We identified potential statistical outliers (outside
of mean ± 3 standard deviations) within each sampling session. Before LUR modeling, bivariate
source-pollutant correlations were performed to select candidate source terms, and each source
indicator (Table 1) was assessed individually as a predictor of each temporally-adjusted pollutant
concentration. Data analysis and model-building were performed separately for each pollutant by
rush and work-week programs, and for summer and winter seasons.

LUR models were derived, for each of the pollutants described above, using manual forward
step-wise linear regression, predicting raw pollutant concentrations for the summer and winter
seasons, using an adapted version of the modeling approach in Tunno et al. [9]. In model building,
temporal trends in pollutant concentrations were incorporated first into LUR models, using the
session-specific mean reference concentration. Source terms with the strongest univariate correlation
to the temporally-adjusted pollutant were then incorporated, individually in descending order by
strength of the bivariate correlation. Regression models were sequentially fit to assess overall model
improvement at each stage, using the coefficient of determination (R2), and removing non-significant
covariates in order of descending p-value, until all independent terms were significant (p < 0.05).
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Covariates were removed, at any stage, if the variance inflation factor (VIF) became greater than 2.0, to
reduce multicollinearity between variables.

Table 1. Temporally-adjusted winter pollutant concentrations across 24 distributed sites, by sampling
interval. Concentrations which differed significantly between sampling schemes are shown in bold
(p < 0.05).

Pollutant
Rush-Hour Sampling Work-Week Sampling

p-Value between Programs
Mean (SD) Median Mean (SD) Median

PM2.5 (µg/m3) 13.5 (1.63) 13.4 13.2 (1.67) 13.6 0.07
BC (abs) 1.39 (0.58) 1.22 1.25 (0.47) 1.10 0.0001

Total EC (µg/m3) 1.57 (0.74) 1.48 1.43 (0.62) 1.28 0.01
Total OC (µg/m3) 2.29 (0.62) 2.03 2.45 (0.77) 2.37 0.11

Diesel Tracers (ng/m3):

Al 28.3 (14.4) 23.8 27.8 (17.1) 24.0 0.90
Ca 104.1 (77.85) 86.08 86.3 (48.3) 92.0 0.31
Fe 115.8 (49.47) 104.9 109.2 (72.9) 97.4 0.62

Other Tracer Elements (ng/m3):

As 0.13 (0.10) 0.10 0.30 (0.28) 0.24 0.01
Ba 4.72 (2.16) 3.98 4.30 (2.91) 3.73 0.37
Cr 1.26 (0.42) 1.22 1.09 (0.43) 1.15 0.10
Cu 5.05 (2.04) 4.36 4.30 (2.24) 4.15 0.04
K 48.9 (12.19) 49.6 42.7 (16.3) 41.5 0.04

Mg 31.9 (69.20) 14.9 16.9 (11.5) 16.2 0.32
Mn 5.65 (2.30) 5.37 4.55 (2.10) 4.44 0.004
Mo 21.7 (97.61) 1.77 32.3 (106.9) 0.89 0.49
Ni 2.14 (4.21) 0.37 0.69 (0.79) 0.40 0.11
P 4.98 (1.31) 4.92 4.43 (1.47) 4.31 0.08

Pb 2.54 (0.52) 2.54 2.44 (0.90) 2.53 0.56
S 587.4 (110.60) 593.9 568.4 (178.0) 602.8 0.61

Sb 0.94 (0.30) 0.85 0.82 (0.33) 0.83 0.07
Se 0.41 (1.86) 0.75 1.62 (1.50) 1.28 0.03
Sr 0.56 (0.24) 0.51 0.54 (0.28) 0.54 0.66
V 0.22 (0.04) 0.23 0.23 (0.07) 0.23 0.73

Zn 26.9 (9.87) 27.1 19.1 (9.17) 17.8 0.001

PAHs (ng/m3):

Benz(a)anthracene 0.08 (0.04) 0.07 0.07 (0.03) 0.06 0.003
Benzo(a)pyrene 0.03 (0.04) 0.01 0.04 (0.03) 0.03 0.77
Benzo(e)pyrene 0.08 (0.03) 0.08 0.04 (0.01) 0.04 0.01

Benzo(ghi)fluoranthene 0.04 (0.02) 0.04 0.06 (0.02) 0.06 0.14
Benzo(ghi)perylene 0.03 (0.01) 0.03 0.04 (0.03) 0.03 0.11

Chrysene 0.23 (0.07) 0.19 0.19 (0.08) 0.16 <0.0001
Fluoranthene 0.20 (0.07) 0.19 0.20 (0.08) 0.17 0.53

Indeno(1,2,3-cd)pyrene 0.01 (0.002) 0.01 0.01 (0.02) 0 0.98
Pyrene 0.16 (0.05) 0.15 0.17 (0.07) 0.15 0.43

Total PAHs 0.71 (0.21) 0.66 0.72 (0.18) 0.64 0.74

Hopanes (ng/m3):

Total hopanes 0.15 (0.11) 0.12 0.19 (0.11) 0.16 0.05

Total steranes samples were below LOD, using both sampling schemes.

LUR model residuals were mapped to identify systematic spatial variation and locations
poorly predicted by LUR, suggesting the need to identify and incorporate additional covariates.
Semivariograms of residuals were created in GIS, and spatial autocorrelation in residuals was tested
using the Moran’s I statistic.

2.11. Sensitivity Analyses

Covariate selection was sensitivity-tested using scatterplots to assess fit between each significant
predictor and raw pollutant concentrations, to ensure that selected candidate covariates captured
variability across the range of concentrations, and that associations were not reliant on outliers
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or influential points. Tree structures and Random Forest automated methods were performed to
corroborate covariate selection. A scatterplot of each retained term was tested against the residual
of the prior model in the sequential model-building process to check for outliers and overall fit. We
examined model residuals to ensure normality. Backwards elimination, from multivariate linear
models including all source covariates with significant bivariate associations with temporally-adjusted
concentrations, was used to further corroborate model structure and covariate selection. For validation
of LUR predictions, a random 20% of sites (n = 5) were removed from the analysis, and the LUR model
was re-fit and used to predict pollutant concentrations at withheld sites. Analyses were performed in
SAS v 9.4 (SAS Institute Inc., Cary, NC, USA), ArcInfo, v 10.1 (ESRI, Redlands, CA, USA), R statistical
software v 3.1.2, and Excel 2010 (Microsoft, Inc. Redmond, WA, USA).

3. Results

3.1. Summary Statistics and Spatial Patterns

We found no significant differences in total PM2.5 concentrations, either by season or sampling
scheme. Spatial patterning in PM2.5 for each season was similar, with generally higher concentrations
in the center of downtown. Notably, differences in concentrations of PM2.5 were greater across
sites than between seasons. In both seasons, we found higher average PM2.5 concentrations during
rush-hours than over the full work-week (Table 1). There were no apparent spatial differences in PM2.5

or constituent concentrations by sampling scheme or season (Figures 2 and 3, other constituent maps
not shown).
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Figure 3. Paired work-week and rush-hour BC absorbance (in quintiles) across 24 distributed
monitoring sites for summer (top) and winter (bottom) sampling.

3.2. Comparisons between Sampling Schemes

During winter, we found greater concentrations of diesel-related (i.e., BC, EC, benz(a)anthracene,
benzo(e)pyrene, and chrysene) and traffic/road dust-related constituents (e.g., copper, manganese,
potassium, zinc) in rush-hour vs. full work-week samples (Table 1). Conversely, hopane (diesel)
and arsenic (coal) concentrations were higher in work-week than rush-hour samples.

During summer, we found greater concentrations of some diesel-related constituents (i.e., BC,
fluoranthene, pyrene, cholestane) in rush-hour vs. work-week samples, though some (i.e., hopanes)
were higher in work-week samples (Table 2).
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Table 2. Temporally-adjusted summer pollutant concentrations across 24 distributed sites, by sampling
interval. Concentrations which differed significantly between sampling schemes are shown in bold
(p < 0.05).

Pollutant
Rush-Hour Sampling Work-Week Sampling

p-Value between Programs
Mean (SD) Median Mean (SD) Median

PM2.5 (µg/m3) a 13.1 (1.69) 12.4 12.8 (1.98) 12.6 0.18
BC (abs) a 2.09 (0.76) 1.76 1.83 (0.64) 1.97 <0.0001

Total EC (µg/m3) 1.98 (0.89) 1.57 1.85 (0.76) 1.85 0.13
Total OC (µg/m3) 2.87 (0.91) 2.51 2.65 (0.56) 2.64 0.16

Diesel Tracers b:

Al 35.2 (35.89) 23.8 52.2 (44.6) 36.16 0.18
Ca 63.6 (58.10) 52.4 83.7 (86.3) 51.20 0.22
Fe 106.2 (48.82) 107.8 121.9 (85.3) 106.4 0.53

Tracers of Other Sources b:

As 0.60 (0.18) 0.60 0.59 (0.21) 0.62 0.84
Ba 4.82 (2.93) 4.38 6.55 (6.94) 3.91 0.37
Cr 1.30 (0.69) 1.29 1.51 (1.25) 1.33 0.53
Cu 5.09 (2.88) 4.50 5.59 (4.03) 4.60 0.69
K 34.8 (18.87) 32.6 38.5 (21.4) 37.4 0.56

Mg 10.2 (6.59) 9.74 17.7 (19.8) 8.23 0.12
Mn 4.50 (2.50) 4.31 4.91 (2.96) 4.47 0.60
Mo 1.92 (0.79) 1.88 2.14 (1.32) 1.95 0.42
Ni 0.58 (0.36) 0.52 0.67 (0.52) 0.58 0.49
P 3.63 (1.52) 3.59 3.99 (2.25) 3.65 0.52

Pb 2.39 (1.01) 2.40 2.61 (1.64) 2.37 0.70
S 571.2 (216.59) 615.9 781.1 (424.3) 771.9 0.06

Sb 1.14 (0.60) 0.98 1.24 (0.87) 1.03 0.63
Se 1.21 (0.37) 1.28 1.24 (0.33) 1.32 0.82
Sr 0.59 (0.31) 0.57 0.61 (0.41) 0.54 0.94
V 0.30 (0.05) 0.30 0.30 (0.04) 0.30 0.61

Zn 11.1 (5.14) 10.7 13.2 (8.4) 11.7 0.38

PAHs (ng/m3):

Benzo(a)pyrene 0.07 (0.06) 0.05 0.04 (0.01) 0.04 0.15
Benzo(e)pyrene 0.03 (0.02) 0.03 0.03 (0.01) 0.03 0.22

Benzo(ghi)perylene 0.01 (0.01) 0.01 0.01 (0.01) 0.01 0.58
Chrysene N/A N/A 0.04 (0.02) 0.03 N/A

Fluoranthene 0.17 (0.15) 0.12 0.11 (0.09) 0.08 0.02
Indeno(1,2,3-cd)pyrene 0.01 (0.01) 0.01 0.01 (0.01) 0.01 0.52

Pyrene 0.08 (0.08) 0.04 0.05 (0.05) 0.03 0.03
Total PAHs 0.22 (0.22) 0.16 0.14 (0.15) 0.09 0.07

Hopanes (ng/m3):

Total hopanes 0.13 (0.10) 0.11 0.18 (0.14) 0.13 0.03

Steranes (ng/m3):

Cholestane 0.03 (0.02) 0.03 0.02 (0.02) 0.02 0.02

Benz(a)anthracene and benzo(ghi)fluoranthene samples were below LOD for both programs; a One
PM/BC/elemental measurement was lost due to chrontroller error during work-week program; b For the work-week
program, one elemental sample was lost due to sampling instrument failure; one elemental sample lost due to
analytic instrument failure.

3.3. Comparisons between Seasons

Concentrations of BC, EC, and OC were higher in summer than winter, in both rush-hour and
work-week samples (Supplementary Materials Tables S1 and S2).

In rush-hour samples, concentrations of coal-related elements (i.e., As, Se) were higher during
summer. Motor-vehicle-related elements (i.e., calcium, phosphorus, potassium, zinc) and diesel-related
organics (i.e., benzo(e)pyrene, benzo(ghi)perylene, pyrene, total PAHs) were higher during winter
(Supplementary Materials Table S1).

Likewise, in the work-week samples, concentrations of motor vehicle-related zinc, and diesel-related
organics (i.e., benzo(e)pyrene, benzo(ghi)perylene, chrysene, fluoranthene, pyrene, total PAHs) were
higher during winter than summer (Supplementary Materials Table S2).
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3.4. LUR Models

For PM2.5 and EC, the only significant source covariate retained in LUR models, for both seasons
and sampling schemes, was mean bus density within 200 m of the sampling site (Tables 3 and 4).
For BC, mean bus density was the strongest term for both seasons and sampling schemes; truck density
within 200 m explained additional spatial variability in summer.

Table 3. Winter rush-hour and work-week LUR summary for all modeled pollutants. All models
include a temporal term (mean reference site concentration for the session).

Pollutant

Rush-Hour Samples Work-Week Samples

Spatial
Covariate(s)

β

(p-Value)
Conc. Incr.

per IQR R2 Spatial
Covariate(s)

β

(p-Value)
Conc. Incr.

per IQR R2

PM2.5
(µg/m3)

Bus Density
(200 m)

9.0 × 10−9

(0.02)
1.05 0.78 Bus Density

(200 m)
1.1 × 10−8

(0.01)
1.29 0.77

BC (abs) Bus Density
(200 m)

5.0 × 10−9

(<0.0001)
0.58 0.61 Bus Density

(200 m)
4.0 × 10−9

(<0.0001)
0.47 0.63

EC (µg/m3)
Bus Density

(50 m)
4.0 × 10−9

(<0.0001)
0.59 0.72 Bus Density

(50 m)
4.0 × 10−9

(<0.0001)
0.59 0.76

OC (µg/m3)
Bus stop

events/day
(175 m)

1.7 × 10−4

(<0.0001)
0.58 0.74

Bus stop
events/day

(175 m)

2.1 × 10−4

(<0.0001)
0.72 0.69

Total PAHs
(ng/m3)

Bus Density
(50 m)

1.0 × 10−9

(<0.0001)
0.15 0.88 Bus Density

(50 m)
1.0 × 10−9

(< 0.0001)
0.15 0.89

Hopanes
(ng/m3) - - - - Bus Density

(50 m)
1.0 × 10−9

(0.02)
0.15 0.55

Al (ng/m3) - - - 0.30 - - - 0.18

Ca (ng/m3)
Distance to

primary road
−0.29
(0.02) 8.91 0.41 Bus Density

(50 m)
2.0 × 10−7

(0.01)
29.7 0.38

Fe (ng/m3) - - - 0.35 - - - 0.07

Table 4. Summer rush-hour and work-week LUR summary for all modeled pollutants. All models
include a temporal term (mean reference site concentration for the session).

Pollutant

Rush-Hour Samples Work-Week Samples

Spatial
Covariate(s) β (p-Value) Conc. Incr.

per IQR R2 Spatial
Covariate(s) β (p-Value) Conc. Incr.

per IQR R2

PM2.5
(µg/m3)

Bus Density
(200 m)

1.3 × 10−8

(0.001)
2.16 0.72 Bus Density

(50 m)
7.0 × 10−9

(<0.0001)
1.16 0.69

BC
(abs)

Bus Density
(200 m)

4.0 × 10−9

(0.02)
0.66 - Bus Density

(200 m)
3.4 × 10−9

(0.02)
0.50 -

Truck Density
(200 m)

6.8 × 10−5

(0.005)
0.40 0.75 Truck Density

(200 m)
5.7 × 10−5

(0.01)
0.34 0.71

EC
(µg/m3)

Bus Density
(200 m)

7.0 × 10−9

(<0.0001)
1.16 0.62 Bus Density

(200 m)
7.0 × 10−9

(<0.0001)
1.16 0.62

OC
(µg/m3)

Truck Density
(150 m)

3.2 × 10−5

(0.03)
0.24 0.49 Commercial

land use (150 m)
2.0 × 10−6

(0.001)
0.51

- - - - Buildings aspect
ratio

0.064
(0.06) 0.27 0.63

Total PAHs
(ng/m3)

Bus stop
events/day

(200 m)

8.0 × 10−5

(0.002)
0.37 0.61 Bus Density

(200 m)
2.0 × 10−9

(0.02)
0.23 0.66

Hopanes
(ng/m3)

Truck Density
(200 m)

2.2 × 10−5

(0.002)
0.13 0.50 Bus Density

(200 m)
1.8 × 10−9

(<0.0001)
0.21 0.53

Al
(ng/m3)

Truck Density
(200 m)

1.8 × 10−3

(0.02)
10.6 0.39 - - - 0.02

Ca
(ng/m3)

Truck Density
(200 m)

2.5 × 10−3

(0.02)
14.7 0.33 - - - 0.07

Fe
(ng/m3)

Truck Density
(200 m)

4.0 × 10−3

(0.02)
23.5 0.37

Primary &
secondary road
length (25 m)

0.34
(0.01) 7.82 0.40
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For OC, bus stop use (number of stops per day) was the only significant predictor, for both
sampling schemes, during winter (Table 3). During summer, truck density explained variability in
rush-hour samples; commercial land use and buildings aspect ratio explained variability in work-week
samples (Table 4).

For total PAHs, bus-related covariates were significant for both seasons and schemes (Tables 3
and 4). For total hopanes, bus density explained spatial variance in full work-week samples, in
both seasons. For rush-hour samples, no source covariates predicted spatial variance during winter;
only truck density explained spatial variance in summer.

For the elemental tracers (Al, Ca, Fe), during winter, no covariates explained spatial variance in
Al or Fe, using either sampling scheme (Table 3). For Ca, distance to primary road explained variability
in rush-hour samples; bus density explained variation in work-week samples. During summer, for all
three elements, truck density explained spatial variation in rush-hour samples (Table 4). No source
covariates explained spatial variation in summer work-week samples of Al or Ca; length of roadway
explained spatial variability in work-week Fe.

3.5. Sensitivity Analyses

Scatterplots revealed that final models were not driven by outliers or influential points. Tree
structures and Random Forest automated methods corroborated the covariates retained in final
models. Moran’s I results indicated no spatial autocorrelation in model residuals across distributed
monitoring sites. Removal of a random subset (20%) of monitoring sites did not significantly change
any of the models, and predicted concentrations at the withheld sites were within 10% of the
measured concentrations.

4. Discussion

Air pollution saturation studies are now commonly used in exposure assessment and
environmental epidemiology, but few have been able to capture spatial variation during selected
hours of the day (e.g., rush-hours, inversion events [9]), largely due to technical and equipment
limitations. Further, relatively few studies to date have been able to incorporate organic pollutants into
spatial saturation studies. We sampled gasoline and diesel-related organic and elemental constituents
during rush-hour and work-week hours, to disentangle a complex mix of sources impacting spatial
variation in air pollution exposures across an urban core.

This study is the first, to our knowledge, to explicitly capture and compare spatial variation in
multiple pollutants during high diesel source-intensity hours (“rush hours”) vs. the overall work-week.
We hypothesized heightened concentrations and sharper spatial contrasts in multiple pollutants
during the rush hours, and expected to identify source terms which differently explained spatial
variation in multiple pollutant concentrations during these different hours of the day. Rush-hour
sampling indicated non-significantly higher PM2.5 concentrations compared to work-week sampling,
in both seasons, with no evident difference in spatial patterns—possibly suggested that rush-hours
emissions accounted for a large portion of total PM2.5 concentrations and spatial variance across the
downtown core.

We observed higher concentrations of traffic-related elemental and organic constituents during
rush-hours, relative to the work-week, again with similar spatial patterning using both sampling
schemes. The differences between rush hours and the full work week were stronger for BC and other
components than for PM2.5—possibly because BC and other components may be more specific to
traffic and diesel emissions than is total PM2.5 [30,31].

GIS-based source terms explained similar variability (R2) during the rush hours and full
work-week, possibly suggesting that the bulk of spatial contrast in diesel-related pollutants
may be explained during rush hours. Bus traffic explained the bulk of spatial variance in
rush-hour concentrations, and accounted for some spatial variation in work-week samples. Higher
concentrations of coal-related elements during work-week, relative to the rush hours, suggests that
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non-traffic industrial sources may have a greater relative influence on pollution exposure patterns
during non-rush-hours.

Comparing between seasons, PM2.5 concentrations did not differ significantly, possibly pointing
to the consistency of commuting traffic, working hours, and bus and truck traffic year-round. For BC,
EC, and OC, we found higher concentrations during summer compared to winter. The differences
between rush hours and the full work week were stronger for BC than for PM2.5—possibly because BC
may be more specific to traffic and diesel emissions than is total PM2.5.

Though we hypothesized greater spatial contrasts and different source contributions during
rush hours, LUR models for both schemes were comparable for PM2.5 and BC, with bus density as
the lone significant predictor. The significance of the bus indicators in predicting concentrations of
many pollutants may indicate a greater accuracy in this GIS variable, compared to other source terms,
or a particularly strong impact of bus-related emissions. This same pattern held true for total EC
rush-hour models in both seasons, as well as winter total OC models, suggesting slightly higher
pollutant concentrations and spatial contrasts during rush hours.

We may have observed lesser spatial contrast, and weaker fits for GIS-based source terms, during
winter than summer due to a lower mixing height, cooler ambient temperature, and/or greater
frequency of inversion events (possibly flattening out spatial contrasts in pollution across this small
area of relatively uniform elevation).

There are several limitations to our study, including the lack of downtown-area meteorological
data (i.e., windspeed and direction), limiting our ability to account for complex dispersal patterns in
and around urban street canyons. In addition, the majority of GIS-based source terms available were
based on annual-average source intensity (e.g., annual-average daily traffic)—limiting our ability to
identify short-term changes in local emissions during our sampling period. Finally, limited equipment
availability required us to sample different sites over several weeks, and to temporally-adjust all
concentrations prior to LUR modelling and comparison of spatial patterns. As higher diesel-related
exposures are generally found in densely-populated urban areas, diesel particulate matter (DPM) can
have a tremendous impact on public health. By performing a saturation sampling campaign across the
downtown area during specific time periods (i.e., rush hours), we were able to identify locations and
times of peak pollution exposures, and were able to identify potential contributing sources using land
use regression modelling. New policies could also be implemented to target specific sources found in
the LUR models (e.g., bus routes), to decrease pollutant exposures.

Future studies should consider sampling, as possible, during high- and low-source intensity
hours, and include tracers for a wider variety of sources; our study could not, for example, examine
impacts of railroads, barges, and other sources, although they may impact upon total diesel-related
exposures, and contribute differently to the concentrations of these various constituents. Furthermore,
the Pittsburgh Port Authority is changing the majority of their bus fleet to natural gas in the coming
years; validation analyses for the effectiveness of this intervention in reducing local concentrations
could include re-sampling using this or a similar spatial saturation design.

5. Conclusions

This study is among the most densely-saturated monitoring campaigns, to our knowledge,
and was specifically designed to capture spatial variation in pollution during selected hours of the
day, incorporating both elemental and organic tracers of diesel-related emissions into our analysis.
This method could be replicated across other urban areas to assess whether spatial variation differs
by time of day. Future studies could focus on variability in constituents, with an emphasis on local
meteorological phenomenon and its impact on spatial gradients in exposure.

Mean bus density was the strongest LUR predictor, regardless of sampling interval, underscoring
the significant contribution of bus exhaust to overall pollutant concentrations. While rush-hour
sampling produced slightly higher PM2.5 concentrations, there were no evident differences in spatial
patterns, compared to work-week sampling, and rush-hour and work-week LUR models explained
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similar proportions of variability in concentrations in each season. We found substantial spatial
variability in most trace elements and organic compounds, with comparable spatial patterns, using
both sampling paradigms. Overall, we found higher concentrations of traffic-related trace elements
and organic compounds in the rush-hour samples, and higher concentrations of coal-related elements
(e.g., As, Se) in the work-week samples. Together, these results indicate that vehicular source patterning
during rush hours may account for a substantial portion of overall spatial variation in exposures.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/9/1968/
s1, Table S1: Summary and comparison of rush-hour temporally-adjusted pollutant concentrations by winter and
summer seasons, Table S2: Summary and comparison of work-week temporally-adjusted pollutant concentrations
by winter and summer seasons.
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