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Abstract: Hydrolysis and photolysis kinetics of Fubianezuofeng (FBEZF) in water were investigated
in detail. The hydrolysis half-lives of FBEZF depending on pH, initial concentration, and
temperature were (14.44 d at pH = 5; 1.60 d at pH = 7), (36.48 h at 1.0 mg L−1; 38.51 h at
5.0 mg L−1; and 31.51 h at 10.0 mg L−1), and (77.02 h at 15 ◦C; 38.51 h at 25 ◦C; 19.80 h at
35 ◦C; and 3.00 h at 45 ◦C), respectively. The photolysis half-life of FBEZF in different initial
concentrations were 8.77 h at 1.0 mg L−1, 8.35 h at 5.0 mg L−1, and 8.66 h at 10.0 mg L−1,
respectively. Results indicated that the degradation of FBEZF followed first-order kinetics, as the
initial concentration of FBEZF only had a slight effect on the UV irradiation effects, and the increase
in pH and temperature can substantially accelerate the degradation. The hydrolysis Ea of FBEZF
was 49.90 kJ mol−1, which indicates that FBEZF belongs to medium hydrolysis. In addition, the
degradation products were identified using ultra-high-performance liquid chromatography coupled
with an Orbitrap high-resolution mass spectrometer. One degradation product was extracted and
further analyzed by 1H-NMR, 13C-NMR, 19F-NMR, and MS. The degradation product was identified
as 2-(4-fluorobenazyl)-5-methoxy-1,3,4-oxadiazole, therefore a degradation mechanism of FBEZF in
water was proposed. The research on FBEZF can be helpful for its safety assessment and increase the
understanding of FBEZF in water environments.
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1. Introduction

Rice bacterial leaf blight caused by pathogen Xanthomonas oryzae pv. oryzae (Xoo) is the
most important bacterial disease of rice in the rice-growing period. Fubianezuofeng (FBEZF,
2-(4-fluorobenzyl)-5-(methylsulfonyl)-1,3,4-oxadiazole, Figure 1) is a novel bactericide that exhibits
considerable inhibition effects against rice bacterial leaf blight and leaf streak with half-maximal
effective concentration (EC50) values of 1.07 µg/mL and 7.14 µg/mL, respectively, which are superior
to commercial agents such as bismerthiazol and thiadiazole copper [1]. FBEZF has been developed as
a new oxadiazole sulfone bactericide and is classified as a sulfone derivative. Field trials have been
performed in 2015, and the results show that FBEZF has potent control efficiency against rice bacterial
leaf blight in China. Owing to the potential development prospect of FBEZF in China, rapid and
sensitive methods for detection of byproducts and the degradation studies on FBEZF are required.
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Hydrolysis and photolysis are crucial in the environmental behavior of pesticides. In the last
decades, many studies have reported the photolysis of pesticides [2–6] and effect of organic and
inorganic compounds in the environment on the degradation of pesticides [7,8]. The photocatalytic
degradation of 16 substituted phenylurea pesticides in water has been studied, 13 degradation products
have been identified, and a degradation mechanism proposed that indicates dealkylation is the main
degradation pathway [9]. Photolysis of bromoxynil and trifluralin has been reported by numerous
researchers [10–14]. For example, Chelme-Ayala et al. [15] found that hydroxylation and debromination
were the primary pathways for bromoxynil degradation, whereas hydroxylation and dealkylation were
the major degradation mechanisms of trifluralin. Moreover, the hydrolysis of pesticides was reported in
some papers. Wyer et al. [16] proposed the enhanced hydrolysis of diazinon, in which bidentate binding
of Ag+ to S of the P = S electrophilic site in tandem with binding to N of the leaving group stabilizes
the SN2 (P) transition state relative to the ground state. Zhang et al. [17] investigated the hydrolysis of
chlorpyrifos and diazinon in aqueous solution under ultrasonic irradiation. The hydrolysis, oxidation,
hydroxylation, dehydration, and decarboxylation were deduced to contribute to the degradation
reaction and the degradation pathway for both pesticides.
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Figure 1. Chemical structure of FBEZF.

Temperature and pH are the factors that can influence the degradation of pesticides [18,19].
Soil degradation of the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile or TPN), was
studied under laboratory conditions. Although the dissipation was less at 30 ◦C and larger at 38 ◦C
than that at 25 ◦C, the dissipation rate of TPN increased with temperature [20]. The effect of temperature
on the degradation of 1-benzyltriazole and 4-fluoro fungicides was reported. The degradation rate
of the unsubstituted compound was sensitive to temperature changes, increasing eightfold as the
temperature rose from 5 ◦C (T1/2 = 240 days) to 10 ◦C (T1/2 = 34 days) [19]. Kinetic studies on
the degradation of aldrin, endosulfan, and lindane were reported under various temperatures and
pH, and the changes in pH and temperature influenced their degradation [21]. The degradation of
methyl parathion showed that the degradation rate increased as the pH level increased from 3.0 to
9.0 [22]. Isobutylurea was neither photolytic nor hydrolytic in water [23]. Xu et al. [24] reported
that the dissipation rates of isobutylurea were not affected by the increase in pH value from 6 to
11. The degradation rate of boscalid was increased with pH, rapidly proceeding in alkaline aqueous
solution [25].

To the best of our knowledge, no research on the degradation products and mechanism of FBEZF
in aqueous solution has been published. Only one proteomic analysis of FBEZF in Xanthomonas
axonopodis pv. citri was found [26]. In terms of analysis, only one article reported residue pretreatment
and JHXJZ residue (similar structure to FBEZF) in tomato [27]. In addition, after FBEZF is applied to
the field, may find its way into drinking water through runoff, leaching, or osmosis. Water is essential
to the survival of our human. FBEZF whether degradation in water, degradation of security or not
is the problem to be solved. So describing degradation kinetics, potential degradation products, and
the degradation mechanism of FBEZF in water is necessary. The objectives of the present study are
as follows: (1) to demonstrate the degradation kinetics of FBEZF in water under different conditions,
(2) to investigate the photolysis of FBEZF in water, and (3) to elucidate the potential degradation
intermediates and mechanism of FBEZF degradation in water.
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2. Materials and Methods

2.1. Chemicals and Reagents

An analytical standard of FBEZF (99.0% purity) was provided by the Key Laboratory of Green
Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University (Guiyang,
China). HPLC-grade acetonitrile and methanol were purchased from Merck (Darmstadt, Germany).
Analytical-grade methylene chloride, ethyl acetate, petroleum ether, methanol, potassium biphthalate
(KHP), KH2PO4, Na2B4O7·10H2O, KCl and NaOH were purchased from Jinshan Chemical Reagent
Co. (Chengdu, China). Distilled water was obtained from Watsons Co. Ltd. (Dongguan, China).
Syringe filters (nylon, 0.22 µm) were purchased from PeakSharp Technologies (Yibin, China).

2.2. UPLC Analysis

The detection of FBEZF in water was performed on a Waters ACQUITY UPLC H-class system
fitted with a sample manager, a quaternary solvent manager, a PDA detector, and an ACQUITY
UPLC BEH Shield RP18 column (50.0 mm × 2.1 mm i. d., 1.7 µm film thickness) (Waters Corporation,
Milford, MA, USA). The column temperature was at 40 ◦C. A total of 2 µL sample solution was
injected, and the chromatography was run with acetonitrile/water (30/70, v/v) at a flow rate of
0.2 mL min−1. The chromatographic conditions were determined from the trial experiments for
optimal results in terms of peak shape, column efficiency, chromatographic analysis time, selectivity,
and resolution. FBEZF was detected at 212 nm. Retention time of FBEZF was 3.9 min under the
optimized chromatographic conditions.

2.3. UPLC–MS/MS Analysis

FBEZF and its degradation products in water were separated on an UltiMate 3000 ultra-high-
performance liquid chromatography (UPLC) system (Thermo Scientific Transcend, Thermo Fisher
Scientific, San Jose, CA, USA) coupled with a single-stage Orbitrap high-resolution mass spectrometer
(MS/MS) (Q-Exactive, Thermo Fisher Scientific, Bremen, Germany). The experiment sample was
detected with a heated electrospray interface (ESI, Thermo Fisher Scientific,) in positive ion mode
(ESI+). Xcalibur program version 3.0.63 (Thermo Fisher Scientific) with Qual and Quanbrowser was
used to process the data. Thermo Scientific Dionex Chromeleon 6.8 was employed to screen the target
compounds. Optimized tuning parameters were as follows: aux gas heater temperature at 300 ◦C;
capillary temperature at 300 ◦C; spray voltage at 3.70 kV; and sheath, auxiliary, and sweep gas flow
rates at 35, 10, and 2 a.u., respectively. UPLC separations were obtained using an ACQUITY UPLC
BEH Shield RP18 column (50.0 mm × 2.1 mm i.d., 1.7 µm film thickness). The mobile phase comprised
component A accounting for 70% (H2O + 0.1% formic acid) and component B was 30% (CH3CN).
The injection volume was 5 µL and the flow rate was set at 0.2 mL min−1. Data were collected in a
positive mode within the range of 150 m/z to 500 m/z using full scan and t-SIM/ddMS2 analysis with
resolution 140,000 during the entire process.

2.4. Calibration Curve

For the quantification experiment of FBEZF, a calibration curve was established by analyzing the
peak areas of FBEZF at concentrations of 0.105, 0.510, 1.05, 5.10, 10.5, 20.2, and 45.0 mg L−1. The curve
has a good linear correlation coefficient (>0.9999) with a regression equation of y = 27789x − 3813.7
(y = peak area; x = concentration, mg L−1). The LOD and LOQ of FBEZF in water were 0.0015 mg L−1

and 0.005 mg L−1, respectively.

2.5. Degradation Kinetics Experiments

Photolysis experiments of FBEZF were conducted in a climate chamber with a 30 W UV lamp.
The photon fluxes of 30 W UV lamps were 41.03 µmol m−2 s−1. Then, these photolysis experiments
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were performed in 250 mL quartz flasks with different initial concentrations of FBEZF (1.0, 5.0,
and 10.0 mg L−1) aqueous solution. Hydrolysis experiments of FBEZF were conducted in 500 mL
wide-mouth bottles in the dark. The effect of pH, temperature, and different initial concentrations on
the hydrolysis of FBEZF was investigated. All laboratory glassware was sterilized and 0.1 g NaN3 was
added into the aqueous solution to prevent the growth of bacteria. The samples were filtered with
0.22 µm syringe filters for UPLC analysis. All experiment results were calculated on the average of
triplicate experiments.

2.6. Identification of Degradation Products

Standard FBEZF was directly dissolved in the water until a concentration of 100 mg L−1 was
reached to obtain the detectable signals of potential degradation products on the UPLC–MS/MS
system. When most FBEZF have been degraded, the samples were filtered with 0.22 µm syringe filters
and then detected on the UPLC–MS/MS system. These potential products were further analyzed to
elucidate their structures using the UPLC–MS/MS via retention times, MS, MS2, and observed mass
differences compared with those of FBEZF.

The degradation products of FBEZF were isolated and analyzed in this experiment. FBEZF (1 g)
was added to the water to obtain a sufficient amount of the degradation product. Liquid–liquid
extraction was selected for the extraction of the degradation products. The hydrolyzed sample was
extracted multiple times by dichloromethane. Extraction of the sample was concentrated and purified
by thin-layer chromatography (TLC) (ethyl acetate/petroleum ether, 3/1, v/v). The products were
further analyzed by 1H-NMR, 13C-NMR, 19F-NMR, and MS.

3. Results and Discussion

3.1. Hydrolysis Experiments

3.1.1. Effect of pH

The experimental results of the degradation kinetics are listed in Figure 2A and Table S1.
The half-lives of FBEZF in buffer solutions were 14.44 d at pH = 5 and 1.60 d at pH = 7. The results
indicated that FBEZF was relatively stable in acidic solution but unstable in alkaline solution, allowing
the hydrolysis ratio to reach nearly 100% in pH 9 buffer solution after 25 min. Therefore, pH values
played a critical role in the degradation rate of FBEZF in water because the degradation rate decreases
with pH, and FBEZF rapidly degrades in alkaline aqueous solutions. Because the degradation rate
of FBEZF in water environment is relatively fast, it won’t cause harm for the environment and
human health.

3.1.2. Effect of Initial Concentration

The effect of different initial concentrations on the hydrolysis rate of FBEZF and the corresponding
kinetic parameters are shown in Table S2. Figure 2B shows that the half-lives of FBEZF in different
initial concentrations were 36.48 h (1.0 mg L−1), 38.51 h (5.0 mg L−1), and 31.51 h (10.0 mg L−1).
The experimental results also demonstrate that the initial concentration of FBEZF only had a slight
effect on the degradation rate. Similar results have been reported on the degradation of acephate,
dufulin, and monocrotophos [28–30].

3.1.3. Effect of Temperature

The data are listed in Table S3 and Figure 2C. The results indicate that the half-lives of FBEZF were
77.02 h at 15 ◦C, 38.51 h at 25 ◦C, 19.80 h at 35 ◦C, and 3.00 h at 45 ◦C. The hydrolysis rate increased
1.92–2.02 times with every 10 ◦C increase in temperature between 15 ◦C and 35 ◦C. An increase
in temperature leads to a high reaction rate within a certain range [31,32]. Some researchers have
indicated that the elevated temperature can result in the reduction of surface tension and threshold
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intensity required to produce cavitation, thus leading to the increasing degradation efficiency [33].
The effects of temperature on FBEZF degradation in aqueous solutions followed Van’t Hoff theory that
the hydrolysis rate usually doubled with every 10 ◦C increase in temperature [34].

The temperature dependence of the rate constant k for the process is described by the Arrhenius
equation as follows:

K = A·e−
Ea
RT , (1)

lnK = lnA − Ea
RT

, (2)

∆H = Ea − RT, (3)

∆S = R
(

lnA − KBT
h

)
, (4)

where A is constant, KB is Boltzmann’s constant, h is Planck’s constant, K is the rate constant obtained
by the experiment, T is the absolute temperature of the experiment, and R is gas constant. The energy
of activation (Ea), enthalpy of activation (∆H), and entropy of activation (∆S) were obtained by the
preceding formula. Thermodynamic parameters of FBEZF’s hydrolysis at four temperatures are listed
in Table 1.

Table 1. Thermodynamic parameters for hydrolysis of FBEZF.

Kelvin Temperature (K) 288 298 308 318 Average

Rate constant k 0.009 0.018 0.035 0.231 /
Ea (kJ mol−1) 50.7 50.74 50.74 47.4 49.90
∆H (kJ mol−1) 48.31 48.27 48.18 44.76 47.38

∆S (kJ mol−1 *K) −106.36 −114.8 −123.25 −131.69 −119.03
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A plot of ln k against 1/T provided a linear line in the temperature range 288–318 K and yielded
the Arrhenius expression ln k = −6103.4 (1/T) + 16.464. The Ea and ∆H were calculated as 49.90
and 47.38 kJ mol−1, respectively. Ea and ∆H determined the occurrence rate of pesticide hydrolysis.
The large activation energy means it has a large energy difference between ground and transition
states. Because few reacting molecules collided with sufficient energy to climb the high activation
energy barrier resulted in a slow reaction. The low activation energy means it has a small energy
difference between ground and transition states. Because reacting molecules were sufficiently energetic
to climb to the activation energy barrier resulted in rapid reaction velocity. According to classification
of hydrolysis [35], the hydrolysis of compound was easy at room temperature when Ea is less than
33.49 kJ mol−1, and the hydrolysis of compound was difficult when Ea is greater than 167.5 kJ mol−1.
The hydrolysis Ea of FBEZF was 49.90 kJ mol−1, indicating the hydrolysis of FBEZF ability among the
above classification. Furthermore, activation entropy (∆S) was crucial in hydrolysis reaction because
it was a measure of the degree of order. The results (Table 1) indicated that ∆S gradually decreased
with the increase in temperature and reactant molecules had a greater degree of freedom than that of
activation complex molecules in the hydrolysis reaction process.

3.2. Photolysis Experiments

Effect of Initial Concentration

The photolysis experimental data are listed in Figure 3 and Table S4. The photolysis experimental
results showed that the half-lives of FBEZF in 1.0, 5.0, and 10.0 mg L−1 were 8.77, 8.35, and 8.66 h,
respectively. These results were similar to the hydrolysis data of FBEZF in various initial concentrations.
The photolysis experimental results also revealed that the initial concentration of FBEZF only had a
slight effect on the degradation rate.
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3.3. Identification of Degradation Product

During the degradation experiments, the degradation products of FBEZF were characterized
on the high-resolution MS system. Two peaks were regarded as potential degradation products by
comparing the UPLC–MS/MS profiles of the degradation and the blank control samples. The peaks
were identified by retention times and protonated molecular ions as follows: t = 3.08 min, m/z
209.07236, labeled P1; t = 4.03 min, m/z 257.03918, labeled P0 (Figure 4). The degradation products
were identified by MS, MS2 of fragmentation of the protonated molecular ions or potassium-adducted
ions, which were used to illuminate the structures of degradation products. For the second peak, the
retention time, MS, and MS2 of P0 were the same as FBEZF, thereby confirming P0 as FBEZF.

P1 had m/z of 209.07236; if it was a protonated ion, then the molecular weight (MW) should be
208.0. According to the molecular weight, the degradation product of FBEZF has been previously
assumed as 2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole (Figure 5). The fragmentation pattern of
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P1’s MS2 was studied to confirm product P1. Four fragment ions at m/z 109.04520 (1), m/z 113.03490
(2), m/z 134.04016 (3), and m/z 177.04591 (4) were discovered (Figure 6).Int. J. Environ. Res. Public Health 2019, 16 7 

 

 
Figure 4. (a) Total ion current chromatogram of FBEZF degradation sample, (b) Full mass 
chromatogram, (c) Mass range chromatogram MS at m/z 209.07236, and (d) Mass range chromatogram 
MS2 at m/z 209.07236.  

The fragment ion at m/z 109.04520, which appeared in the MS2 spectrum of P1, was considered 
by a protonated molecule cleavage of an oxazole ring C–C bond. Corresponding protonated 
molecular fragment ion at m/z 113.03490 and a potassium-adducted fragment ion at m/z 134.04016 
represented such a cleavage by one protonated molecular cleavage of a benzene ring C–C bond. The 
two protonated molecular fragment ions formed tropylium cation. Another ion at m/z 177.04591 was 
due to the loss of one −OCH3, indicating that P1 had one −OCH3. Therefore, P1 was tentatively 
confirmed as 2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole. 

 
Figure 5. Mass spectrum of MS of P1 at m/z 209.0723. 

Liquid–liquid extraction and TLC were selected for the extraction of degradation product to 
further confirm the degradation product of FBEZF. The product was then analyzed by 1H-NMR 
(Figure S1), 13C-NMR (Figure S2), 19F-NMR (Figure S3), and MS spectra (Figure S4). Figure S4 shows 
that the product had a molecular ion at m/z 209.0 and a sodium-adduct ion at m/z 231.0. The 1H-NMR, 
13C-NMR, and 19F-NMR data of the degradation product were as follows: 1H-NMR (500 MHz, DMSO–
d6, ppm) δ: 7.34 (dd, J = 8.6, 5.6 Hz, 2H, Ar–H), 7.15 (t, J = 8.8 Hz, 2H, Ar–H), 4.12 (s, 2H, Ar–CH2–), 
4.06 (s, 3H, –OCH3); 13C-NMR (125 MHz, DMSO–d6, ppm) δ: 166.58 (s), 162.86 (s), 161.63 (s), 160.93 
(s), 131.29–131.13 (m), 130.84 (s), 115.81 (s), 59.86 (s), 30.72 (s); 19F-NMR (471 MHz, DMSO–d6) δ 115.46. 

Figure 4. (a) Total ion current chromatogram of FBEZF degradation sample, (b) Full mass
chromatogram, (c) Mass range chromatogram MS at m/z 209.07236, and (d) Mass range chromatogram
MS2 at m/z 209.07236.

The fragment ion at m/z 109.04520, which appeared in the MS2 spectrum of P1, was considered
by a protonated molecule cleavage of an oxazole ring C–C bond. Corresponding protonated molecular
fragment ion at m/z 113.03490 and a potassium-adducted fragment ion at m/z 134.04016 represented
such a cleavage by one protonated molecular cleavage of a benzene ring C–C bond. The two protonated
molecular fragment ions formed tropylium cation. Another ion at m/z 177.04591 was due to the loss
of one −OCH3, indicating that P1 had one −OCH3. Therefore, P1 was tentatively confirmed as
2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole.

Int. J. Environ. Res. Public Health 2019, 16 7 

 

 
Figure 4. (a) Total ion current chromatogram of FBEZF degradation sample, (b) Full mass 
chromatogram, (c) Mass range chromatogram MS at m/z 209.07236, and (d) Mass range chromatogram 
MS2 at m/z 209.07236.  

The fragment ion at m/z 109.04520, which appeared in the MS2 spectrum of P1, was considered 
by a protonated molecule cleavage of an oxazole ring C–C bond. Corresponding protonated 
molecular fragment ion at m/z 113.03490 and a potassium-adducted fragment ion at m/z 134.04016 
represented such a cleavage by one protonated molecular cleavage of a benzene ring C–C bond. The 
two protonated molecular fragment ions formed tropylium cation. Another ion at m/z 177.04591 was 
due to the loss of one −OCH3, indicating that P1 had one −OCH3. Therefore, P1 was tentatively 
confirmed as 2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole. 

 
Figure 5. Mass spectrum of MS of P1 at m/z 209.0723. 

Liquid–liquid extraction and TLC were selected for the extraction of degradation product to 
further confirm the degradation product of FBEZF. The product was then analyzed by 1H-NMR 
(Figure S1), 13C-NMR (Figure S2), 19F-NMR (Figure S3), and MS spectra (Figure S4). Figure S4 shows 
that the product had a molecular ion at m/z 209.0 and a sodium-adduct ion at m/z 231.0. The 1H-NMR, 
13C-NMR, and 19F-NMR data of the degradation product were as follows: 1H-NMR (500 MHz, DMSO–
d6, ppm) δ: 7.34 (dd, J = 8.6, 5.6 Hz, 2H, Ar–H), 7.15 (t, J = 8.8 Hz, 2H, Ar–H), 4.12 (s, 2H, Ar–CH2–), 
4.06 (s, 3H, –OCH3); 13C-NMR (125 MHz, DMSO–d6, ppm) δ: 166.58 (s), 162.86 (s), 161.63 (s), 160.93 
(s), 131.29–131.13 (m), 130.84 (s), 115.81 (s), 59.86 (s), 30.72 (s); 19F-NMR (471 MHz, DMSO–d6) δ 115.46. 

Figure 5. Mass spectrum of MS of P1 at m/z 209.0723.

Liquid–liquid extraction and TLC were selected for the extraction of degradation product to
further confirm the degradation product of FBEZF. The product was then analyzed by 1H-NMR
(Figure S1), 13C-NMR (Figure S2), 19F-NMR (Figure S3), and MS spectra (Figure S4). Figure S4
shows that the product had a molecular ion at m/z 209.0 and a sodium-adduct ion at m/z 231.0.
The 1H-NMR, 13C-NMR, and 19F-NMR data of the degradation product were as follows: 1H-NMR
(500 MHz, DMSO–d6, ppm) δ: 7.34 (dd, J = 8.6, 5.6 Hz, 2H, Ar–H), 7.15 (t, J = 8.8 Hz, 2H, Ar–H), 4.12
(s, 2H, Ar–CH2–), 4.06 (s, 3H, –OCH3); 13C-NMR (125 MHz, DMSO–d6, ppm) δ: 166.58 (s), 162.86 (s),
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161.63 (s), 160.93 (s), 131.29–131.13 (m), 130.84 (s), 115.81 (s), 59.86 (s), 30.72 (s); 19F-NMR (471 MHz,
DMSO–d6) δ 115.46.Int. J. Environ. Res. Public Health 2019, 16 8 
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The degradation product (P1) was thus confirmed as 2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole.
Moreover, based on the study of degradation product identification, a probable degradation mechanism
was proposed. Degradation of FBEZF in water involves a nucleophilic attack on the sulfone group.
Then, the intermediate combined with methanol and formed the degradation product by the loss of
one H2O. These results can explain the relative instability of FBEZF in alkaline conditions.

3.4. Future Research

First, the experimental results also demonstrate that the initial concentration of FBEZF only had
a slight effect on the degradation rate, but kinetic half-lives are expected to depend on first order
kinetic rate coefficients rather than initial concentrations. Through the experiment proved that the
degradation rate is related to the initial concentration or not is necessary. Second, also under field
conditions a dissolved organic chemical would likely interact with suspended particles. That would
influence the reaction mechanisms for either hydrolysis or photolysis. It is necessary to investigate
the influence of dissolved organic matter for the degradation. Third, chemical units would have to be
used for kinetics and mechanism to establish the chemical stoichiometry for kinetics. At last, about
the toxicity and security of degradation product, it will be taken into consideration in the next step
of work.

4. Conclusions

The hydrolysis and photolysis of FBEZF in water were studied in this paper. The effects of different
factors were investigated in detail. The results showed that pH and temperature played critical roles
in the degradation rate of FBEZF in water. The degradation rate of FBEZF in water decreased with
pH, FBEZF rapidly degraded in alkaline aqueous solutions, and temperature substantially accelerated
the degradation. Thermodynamic parameters were also obtained for hydrolysis of FBEZF under four
hydrolysis conditions. The dissipation rate of FBEZF was hardly affected by the initial concentration.
According to the result of the experiments, the degradation of FBEZF in water was relatively fast, and
the half-lives of FBEZF were 14.44 d at pH = 5, and lower than 3 days under the other conditions
studied. When FBEZF was applied to the field, it should be relatively safe due to its rapid degradation.
The degradation rate of FBEZF in a water environment is relatively fast, so it won’t cause harm for the
environment and human health. Moreover, the degradation product and mechanism of FBEZF were
proposed. The degradation product was identified as 2-(4-fluorobenzyl)-5-methoxy-1,3,4-oxadiazole by
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NMR and MS. The degradation mechanism indicated that nucleophilic attack on the sulfone group and
combination of the resulting intermediate combined with methanol, formed the degradation product
by the loss of one H2O. The study of FBEZF’s degradation kinetics and degradation mechanism
can contribute to its safety assessment and increase our understanding of the behavior of FBEZF in
water environments.
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Spectrum of degradation product P1; Table S1. Hydrolysis parameters of FBEZF in water with different pH values;
Table S2. Hydrolysis parameters of FBEZF with different initial concentrations in water. Table S3. Hydrolysis
parameters of FBEZF in water under different temperature; Table S4. Photolysis parameters of FBEZF with
different initial concentrations in water.
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