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Abstract: Chronic kidney disease of unknown etiology (CKDu) is a global epidemic. Sri Lanka has
experienced a doubling of the disease every 4 or 5 years since it was first identified in the North
Central province in the mid-1990s. The disease primarily affects people in agricultural regions who
are missing the commonly known risk factors for CKD. Sri Lanka is not alone: health workers
have reported prevalence of CKDu in Mexico, Nicaragua, El Salvador, and the state of Andhra
Pradesh in India. A global search for the cause of CKDu has not identified a single factor, but rather
many factors that may contribute to the etiology of the disease. Some of these factors include heat
stroke leading to dehydration, toxic metals such as cadmium and arsenic, fluoride, low selenium,
toxigenic cyanobacteria, nutritionally deficient diet and mycotoxins from mold exposure. Furthermore,
exposure to agrichemicals, particularly glyphosate and paraquat, are likely compounding factors, and
may be the primary factors. Here, we argue that glyphosate in particular is working synergistically
with most of the other factors to increase toxic effects. We propose, further, that glyphosate causes
insidious harm through its action as an amino acid analogue of glycine, and that this interferes with
natural protective mechanisms against other exposures. Glyphosate’s synergistic health effects in
combination with exposure to other pollutants, in particular paraquat, and physical labor in the
ubiquitous high temperatures of lowland tropical regions, could result in renal damage consistent
with CKDu in Sri Lanka.
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1. Introduction

Starting in the early 1990s, an epidemic of chronic kidney disease (CKD) was discovered among
rice paddy farmers, primarily young men, in the North Central province of Sri Lanka [1,2]. The disease
now affects a total population of over 150,000 with estimated annual deaths of 5,000, with a doubling
of the disease every 4 or 5 years [3]. The most unique feature of this CKD is that its etiology does not
include commonly known risk factors such as diabetes mellitus, hypertension and glomerular nephritis.
Because of this, it is often referred to as chronic kidney disease of unknown origin or unknown etiology
(CKDu). The prevalence of CKDu is 15.1–22.9% in some Sri Lankan districts [4]. Similar epidemics of
CKDu have been reported mostly among sugarcane workers along the Pacific coast of Mexico and
Central America (Mesoamerican nephropathy), and agricultural workers in Andhra Pradesh in India
(Uddanam epidemic nephropathy). In El Salvador, it is the second leading cause of death, with a 30.6%
increase between 2007 and 2017 [5]. Other countries affected by the disease include Guatemala, Costa
Rica, Honduras, and Egypt [6,7].
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Several researchers and organizations, including the World Health Organization (WHO), have
conducted studies to pinpoint the cause of CKDu in Sri Lanka. However, none of these studies were
conclusive in their findings. The purpose of this paper is to review the current literature on the
causative factors related to the CKDu in Sri Lanka with a view toward synthesizing these findings
into a single model that could explain the etiology of the disease according to the present status of our
knowledge. Some of the possible biochemical mechanisms involved in the pathogenesis of CKDu and
other adverse health effects will also be discussed.

Some recent studies have attempted to make clinical and histopathological comparisons between
Mesoamerican nephropathy (MeN) and Sri Lankan agricultural nephropathy (CKDu). Like CKDu,
MeN has an unknown etiology. Chronic interstitial nephritis and glomerular sclerosis are the most
common pathologic findings in both types of CKDs [8]. These types of pathological changes are
mostly evident in occupational and/or environmental exposures. Similar findings have been reported
following excessive exposure to lead, cadmium, and aristolochic acid [9]. The herbicide glyphosate
has been implicated as a key factor in both MeN [10] and CKDu in Sri Lanka [11,12]. A pathological
picture consistent with a toxic nephropathy was present in kidney biopsies from both El Salvador and
Sri Lanka [9]. In a more recent study, Wijkström et al. (2018) [13] found that the morphology and
biochemical characteristics of CKDu patients in Sri Lanka have many resemblances with the MeN
epidemic in Central America, indicating a similar diagnostic entity and possibly a similar etiology. With
these fairly consistent pathological findings of chronic interstitial nephritis and glomerular sclerosis,
there is enough agreement that the Sri Lankan CKDu is a toxic nephropathy [11,14–19]. However,
there is much less agreement among researchers as to what combination of occupational exposures
and environmental toxicants manifest to CKDu.

In this paper, we will develop a hypothesis that CKDu in Sri Lanka is a consequence of the
synergistic toxicity of glyphosate in combination with a number of different toxic agents, including
paraquat, excessive fluoride and phosphate exposure, heavy metals, surfactants and pathogenic toxins,
along with dehydration. It has been argued that glyphosate-based formulations are much more toxic
than glyphosate in isolation [20]. The formulations contain additives such as polyoxyethylenamines
(POEA) and Quaternary ammonium compounds (QAC), which were shown in toxicity studies to be
considerably more acutely toxic than glyphosate itself. They also detected toxic metals such as arsenic,
chromium, lead and nickel in the formulations, which are known nephrotoxins.

While it had been widely believed that glyphosate is relatively nontoxic to humans, recent evidence
has dramatically changed that perception. The International Agency for Research on Cancer (IARC)
labeled glyphosate a “probable carcinogen” in March, 2015, and the state of California followed suit by
listing it as a “probable carcinogen” requiring labeling. In a period of less than a year from August,
2018 to June, 2019, three successful California lawsuits involving a causal link between glyphosate
and non-Hodgkin’s lymphoma resulted in jury awards of over two billion U.S. dollars. This caused
a dramatic drop in the value of Bayer’s stock, since Bayer had acquired Monsanto not long before these
lawsuits were litigated. In July, 2019, Austria became the first European country to ban glyphosate for
all uses [21].

We argue here that glyphosate, even without the added formulants, has a unique insidious
mechanism of toxicity that involves substituting erroneously for the coding amino acid glycine during
protein synthesis. This leads to disruption of proteins that are critical for the detoxification and
removal of other environmental chemicals, causing them to be much more nephrotoxic than they
would otherwise be. Nephropathy at the nexus of glyphosate, paraquat, and dehydration presents
a path of exploration for future research into this global health crisis among agricultural workers.

2. Environmental Condition of People with Chronic Kidney Disease of Unknown Etiology

Given the occurrence of CKDu only over the past thirty years and nearly always in agricultural
communities, it is highly likely that the factors involved are a result of human activities related to
agriculture and climate change. Some researchers emphasize the agricultural component by referring to
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the disease as Chronic Interstitial Nephritis in Agricultural Communities or CINAC [22]. Nevertheless,
the disease targets the proximal renal tubules of the kidneys of people who live in hot climates that are
getting hotter [23] and more polluted [24,25].

One possible result of the accumulation of multiple toxins in agricultural areas is the observation
that children in CKDu endemic regions are also manifesting with early renal damage [26]. CKDu
risk factors consistently identified in multiple studies include male sex, being a farmer, using and/or
spraying pesticides—often without adequate personal protective equipment (PPE), drinking well
water at home or in the field, and having a family member with renal dysfunction [27–30]. Poverty,
lack of education, inadequate medical attention, and limited or no access to safe drinking water also
have been identified as a constellation of contributory factors [31]. Although many authors suggest
a multifactorial etiology [3,27–29], new evidence is beginning to accumulate on the role of drinking
water and irrigation systems for paddy cultivation as a vehicle for toxicants that may contribute to
CKDu in Sri Lanka [32,33]. Most paddy lands in the CKDu-affected area are irrigated by an ancient
cascade system of tanks. Abeysingha and colleagues provide a detailed account of how the design
of the cascade irrigation system and the adverse changes that took place to the ecosystem with the
introduction of new commercial practices of agriculture (mostly the use of agrochemicals) in the CKDu
endemic area have contributed to its rapid spread [34].

A revealing anthropological study that interviewed 200 participants in the CKDu-affected areas
indicated that 94% of those from agricultural settlements, 86% from old villages and 80% from the
Vedda (indigenous) villages view kidney disease as being caused by drinking polluted water from
dug wells and tube wells [35]. The impressions of these villagers were scientifically confirmed by the
discovery of early renal damage among children living in the region of highest CKDu burden [26].
Jayasekera et al. have shown that the emerging new foci of CKDu are located in villages below the
level of the reservoirs/canals. This may indicate the possibility that the irrigated water is draining into
the shallow wells of the households, which is the main source of drinking water [1,32].

Multiple research studies have analyzed the content of calcium, magnesium, fluoride and other
heavy metals such as arsenic, cadmium, iron, lead and aluminum, in the irrigated water reservoirs
and the shallow wells that were once used as a source of drinking water by the farmers [36–38]. Most
of these wells are now abandoned because of an unacceptable musty taste (described as “Kivul” by
villagers). Jayasumana et al. have shown that drinking well water and a history of drinking water
from abandoned wells are important risk factors for CKDu (with Odds Ratios 2.52, (95% CI 1.12–5.70)
and 5.43, (95% CI 2.88–10.26) respectively) [33]. It was demonstrated in the same study that 94% of
the abandoned wells contained more than 1 µg/L of glyphosate while 31% of the currently serving
wells contained glyphosate above the level of 1 µg/L. They also reported that the subjects who sprayed
glyphosate were four times more likely to develop CKDu compared to those without such a history.

The only other study that tested for glyphosate in well water was a study conducted by the
World Health Organization (WHO) [36]. In addition to glyphosate, this WHO study found cadmium
(a known nephrotoxic metal), arsenic and lead, along with low (depleted) selenium levels. The study
also reported that 65 percent of the subjects excreted glyphosate in urine and another 28 percent
excreted its metabolite, aminomethylphosphonic acid (AMPA). The authors stated that “simultaneous
exposure of people to heavy metals and nephrotoxic pesticides may be a contributory factor in the
pathogenesis and progression of CKDu.” It has been demonstrated that the main source of these heavy
metals in drinking water is from fertilizer tainted with these metals [39]. In addition to the abundant
use of contaminated fertilizer, Sri Lanka has one of the highest pesticide use rates, ranking 4th in
Asia [40].

According to the same author, who works for the Sri Lankan Registrar of Pesticides, 33 percent of
vegetable samples were contaminated with pesticide residues. These pesticides included diazinon,
phenthoate, prothiofos, oxyfluorfen, tebuconazole, and also the already banned pesticide chlorpyrifos.
It is interesting to note that this same study did not test for glyphosate residues, even though this
pesticide accounted for at least 25 percent of the total imports into the country [40].
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Another recent study shows glyphosate contamination in CKDu-affected areas [41]: the glyphosate
levels of lakes were between 28 and 45 µg /L. Glyphosate was detected in all sediment samples
(85–1000 µg/kg), and a strong linear relationship with the organic matter content was observed.
Presence of high valence cations such as Fe3+ and Al3+ in topsoil resulted in the formation of
glyphosate-metal complexes, resulting in the strong retention of glyphosate in soil. Rainfall is another
potential source of exposure. A study based in Argentina found up to 67 µg/kg of glyphosate in 80% of
collected rain samples [42].

Individuals in the CKDu-affected areas may also be ingesting more glyphosate through the
consumption of locally grown food as well as imported foods such as red lentils. The 2016 Department
of Census and Statistics Household Income and Expenditure Survey has estimated that the average
consumption of red lentils was 583.40 g per person per month. Red lentils have become a staple part of
the Sri Lankan diet almost similar to rice. Australia and Canada have become important suppliers
of red lentils to Sri Lanka [43]. Tests conducted by the Canadian Food Inspection Agency (CFIA) on
many samples of these lentils and moong dal grown by farmers in Canada and Australia found an
average 282 parts per billion and 1000 parts per billion of glyphosate respectively, which is high by any
standard [44,45].

Most of the research in Sri Lanka that has been conducted on CKDu during the past decade
has resulted in multiple hypotheses. These hypotheses include arsenic, cadmium, nephrotoxic
pesticides, fluoride, the use of cheap aluminum vessels, cyanobacteria, ayurvedic treatments, snake
bites, and the use of nonsteroidal anti-inflammatory medications as possible causes of CKDu [36,46–48].
Unfortunately, these hypotheses were presented as possible alternatives to each other and not as
complementary risk factors acting synergistically. This is a missed opportunity.

Our work builds on the existing research on dehydration and pesticide exposure to explain the
etiology of CKDu [49–51], while exploring the synergistic actions of two specific agricultural chemicals,
glyphosate and paraquat, and their contribution to CKDu in Sri Lanka.

Climate change has resulted in a significant rise in the global mean temperature and it is predicted
to get worse [23]. This means more extreme heat events and heat exposure for people working in
agriculture in the hot climates. A recent study of 192 agricultural workers in Florida showed that the
odds of acute kidney injury increased 37% for each 5-degree (◦F) increase in the heat index [52].

Sri Lankan agricultural workers are subjected to extreme heat and humid conditions with excessive
perspiration. Though their dehydration status is unknown, numerous government and academic
reports show that their well water is contaminated [24,37,49,53,54]. As a result, these farmers may
ingest significant amounts of glyphosate, other pesticides, calcium, magnesium, fluoride, and other
heavy metals with their drinking water during a normal workday [3,33]. As we show below, the
ingestion of glyphosate along with other heavy metals and pesticides is likely an important factor in
the causation of CKDu, due in part to glyphosate’s ability to inhibit the cytochrome P450 enzymes [55]
and to chelate and transport metals to the kidneys [12,56].

3. The Web of Causation of CKDu

As was first suggested by MacMahon and Pugh (1960) for non-communicable diseases (NCDs)
including CKDu, there is no single factor responsible for their causation [57]. There are multiple factors
that contribute to the etiology of an NCD and the role of each factor can be mapped out and their
contribution to the disease burden could be measured. This was the origin of the concept of attributable
risk in epidemiology and the use of this concept in program planning to design interventions to reduce
the disease burden. The mapping out of these causal factors resulted in the concept of a “web” of
causation. As an illustration, we have produced below a web of causation for CKDu based upon the
current status of our knowledge (see Figure 1).

In the remainder of this paper, we will first present the evidence from the research literature
that glyphosate is capable of substituting for glycine erroneously during protein synthesis. We
will then discuss several aspects of CKDu where one or more causative factors can be predicted
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to work synergistically with glyphosate to cause harm, due to glyphosate’s disruption of critical
proteins involved in protection from these other toxic elements. We will conclude with a summary of
our findings.
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4. Glyphosate as a Glycine Analogue

Glyphosate can be characterized as an amino acid analogue of glycine, and much of its toxicity
likely derives from this feature. Glyphosate has been demonstrated to interfere with enzymes that
have glycine as a substrate, such as δ-aminolevulinic acid synthase, the catalyst for the first step
in the synthesis of porphyrin rings, which are core components of both chlorophyll and heme [58].
Glycine is a ligand for N-methyl D-aspartate (NMDA) receptors in the brain, and glyphosate has been
shown to activate NMDA receptors, causing neurotoxicity, likely also through its role as a glycine
analogue [59]. Glyphosate is in fact a complete glycine molecule, except that the nitrogen atom is
bound to an additional methylphosphonyl group.

It has been proposed that glyphosate’s insidious cumulative mechanism of toxicity to humans
may be realized through a unique ability to substitute for glycine, a coding amino acid, during
protein synthesis [60]. It is possible to explain the strong correlations that are seen between the rise
in a large number of debilitating chronic diseases and glyphosate usage on core crops through such
a mechanism [61,62]. Detailed descriptions of strong glycine dependencies in proteins linked to various
diseases have been presented in a sequence of recent papers, relating glyphosate substitution for
glycine during protein synthesis as a plausible contributory cause of diabetes, obesity and Alzheimer’s
disease [60], amyotrophic lateral sclerosis (ALS) [63], autism, multiple sclerosis and prion diseases [64],
anencephaly [65], CKDu [66] and gout [67].

Monsanto researchers conducted a remarkable study in 1989 which provides strong evidence
that glyphosate is getting incorporated into proteins by mistake in place of glycine [68]. In this study,
bluegill sunfish were exposed to radiolabelled glyphosate and various tissue samples were examined
for the presence of radiolabel, as an indicator of glyphosate accumulation in the tissues. They then
used an assay to measure glyphosate levels in the same tissue samples and discovered that only up to
20% of the radiolabel could be accounted for as glyphosate. However, they found that, by subjecting
the tissue samples to proteolysis by proteinase K, they could increase the yield of glyphosate up to
70%. They even used the words “incorporated into the protein” to explain the observed increase in
yield, because proteolysis would be needed to break up the peptide sequence into individual amino
acids, freeing up glyphosate so that it could be detected by standard assays.
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A strong case can be made for glyphosate substitution during protein synthesis through
observations that have been noted concerning the unique aspects of glyphosate’s suppression of
5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EPSPS) in the shikimate pathway. This is
believed to be the main mechanism of toxicity of glyphosate to weeds. Multiple species of plants and
multiple species of microbes have independently acquired a mutated form of EPSPS that is completely
insensitive to glyphosate, even at high concentrations [63,69], and this mutation forms the basis of the
engineered gene in glyphosate-resistant core crops [70]. In all cases, the mutation involves disrupting
a highly conserved glycine residue that forms part of the pocket where the substrate phosphoenol
pyruvate (PEP) fits snugly.

A paper published in 1997 by Monsanto researchers pointed out several remarkable aspects of
glyphosate’s interactions with EPSPS [71]. These authors proposed that glyphosate acts as an allosteric
inhibitor of PEP binding. However, they observed several facts that make glyphosate’s behavior
exceptional. Noting glyphosate’s uniqueness, they wrote: “To date no glyphosate analog or derivative
has been identified that is more potent than glyphosate either as a herbicide or as an EPSPS inhibitor.”
This statement is corroborated in another published paper, which stated that over a thousand different
analogues of glyphosate with similar shape and biophysical properties were tested, yet none of them
was nearly as effective as glyphosate in suppressing EPSPS activity [70,72].

The Monsanto researchers observed that various mutations in EPSPS have rather contradictory
behavior in terms of their effects on PEP binding versus their effects on glyphosate inhibition [71].
Mutations that lose the conserved glycine residue at the PEP binding site have devastating and
categorical effects on glyphosate but much weaker effects on PEP. They wrote: “For example, replacing
the conserved glycine-101 with alanine (G101A) in petunia EPSPS weakens the Km(app) for PEP by
40-fold, reduces kcat by 2-fold, but perturbs glyphosate inhibition by nearly 5000-fold.” This would be
expected if glyphosate works through substituting for glycine via the DNA code, which, with alanine
substituted, no longer matches.

On the other hand, other mutations that disrupt PEP binding had little effect on glyphosate
inhibition. For example, in the case of a mutation, R104K, in Bacillus subtilis mutants, the enzyme
became even more sensitive to glyphosate inhibition, yet its catalytic efficiency towards PEP dropped
dramatically. Since lysine (K) is smaller than arginine (R), this stimulatory effect on glyphosate could
make sense in terms of allowing additional room for the methylphosphonyl group on glyphosate’s
nitrogen atom. A similar effect was observed for other mutations at the PEP binding site, as long as
they did not involve substitutions for the glycine residue [71].

A seminal paper was published in 2018 by researchers from DowDuPont involving CRISPR
technology to tweak the gene coding for EPSP synthase in maize [73]. It revealed important insights
into the structure of the modified version that yielded the best result, in terms of high activity for PEP
and high resistance to glyphosate. The optimized variant, called D2c-A5, had a G101A substitution as
in the petunia plant above, which, as expected, made it completely insensitive to glyphosate. However,
the extra methyl group created steric hindrance for PEP binding, but this could be corrected through
additional mutations to nearby amino acids, substituting a smaller amino acid so as to expand the
pocket to now fit PEP. As we would predict, as long as glycine is substituted, sensitivity to glyphosate
is lost.

It should be anticipated that mutations that impinge on the glycine residue might disturb
glyphosate’s ability to fit into the peptide chain. As expected, by substituting leucine for proline
at location 101, Staphylococcus aureus has discovered another clever way to protect EPSPS from
glyphosate’s effects [74]. In this case, the bulkier leucine residue crowds the nearby glycine residue but
does not perturb the binding site for PEP at all. Glyphosate is no longer able to substitute for glycine
due to steric hindrance with leucine. Enzymatic activity towards PEP is maintained at a high level
while glyphosate inhibition is disrupted.

Perhaps the most remarkable study for supporting the idea that glyphosate inhibits EPSPS by
substituting for its highly conserved glycine residue is one conducted on an Escherichia coli (E. coli)
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version of the enzyme where the critical glycine residue is located at position 96 [75]. In this study,
G96 was mutated to serine, which resulted in a dramatic change to the protein function. Its normal
reaction was completely disabled, but instead a reverse reaction became possible, where EPSP, the
normal product, was converted back to shikimate-3-phosphate, releasing pyruvate. This G96S version
of EPSPS was highly inhibited by shikimate-3-phosphate through product inhibition, but not sensitive
at all to glyphosate inhibition, as expected because there is no glycine residue at the critical site in the
enzyme for glyphosate to displace.

One can now imagine the consequences of glyphosate substituting for G96 in E coli. It is likely
that such a corrupted enzyme would behave similarly to the G96S mutation, driving the reaction in
reverse. While only some percentage of the EPSPS molecules would be affected, they would work
against production of EPSP by undoing the reaction product of the intact versions of the enzyme. The
net result is a waste of the energy in the phosphate bond of PEP, used to produce the EPSP that is then
reverted back to pyruvate and shikimate-3-phosphate by the G96-glyphosate substituted enzyme.

Glyphosate’s ability to substitute for a coding amino acid is not unique. There are several examples
in the research literature of other toxic substances, many of which are naturally produced, which
produce their toxic effects through amino acid substitution. One of these is glufosinate, a naturally
produced amino acid analogue of glutamate that is currently gaining popularity as an alternative
herbicide to handle glyphosate resistant weeds [76]. Several species of fine fescue release large amounts
of 3-hydroxyphenylalanine, a non-coding amino acid analogue of phenylalanine (commonly known as
meta-tyrosine) into the rhizosphere surrounding their root zone, which works as a cytotoxin (herbicide)
to inhibit root growth of other species of plants. Researchers have suggested that m-tyrosine may be
useful as a natural herbicide in crop management [77]. Other examples include Azetidine-2-carboxylic
acid (Aze), an analogue of proline [78], β-Methylamino-l-alanine (BMAA), an analogue of serine [79,80],
and L-canavanine, an amino acid analogue of arginine [81]. All of these amino acid analogues cause
serious diseases, often with a long latency period, through the disruption of protein function of
a diverse number of proteins.

5. Glyphosate and Phosphate Binding

We have formed the hypothesis that phosphate-binding sites of many proteins besides EPSP
synthase may also be especially susceptible to glyphosate substitution for a highly conserved
glycine residue at that site. There is a vast array of proteins that bind extremely important small
phosphate-containing molecules, such as adenosine triphosphate (ATP), guanosine triphosphate
(GTP), nicotinamide adenine dinucleotide phosphate (NADPH), pyridoxal-5′-phosphate (PLP),
glucose-6-phosphate (G6P), flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), etc. It is
insightful to study the features of phosphate binding sites of EPSP synthase and, more generally, of any
protein that binds phosphate.

Although most phosphate binding sites cannot be characterized by a specific motif, it is possible to
use a statistical approach to capture features of phosphate binding sites in proteins. Such an approach
was used successfully by a team of researchers who were specifically interested in ATP-binding
sites [82]. They analyzed 168 nonredundant ATP protein binding chains, and, using a machine
learning approach, produced compositional data characterizing which amino acids were preferentially
associated with the phosphate binding site. They found that glycine, along with the three positively
charged amino acids arginine, lysine and histidine, were statistically significantly more likely to be an
ATP-interacting residue. They summarized: “It can be inferred that the Gly and positively charged
amino acids are important for the interaction with ATP.” This is reasonable, because the positively
charged amino acids can hydrogen bond to the negatively charged phosphate moiety to secure it in
place, and glycine, being the smallest amino acid, provides flexibility as well as room for the phosphate
anion. This model fits well for EPSP synthase. E. coli’s EPSP synthase has two lysine residues, as well
as a histidine and an arginine residue, that are present at the PEP binding site [83]. It is likely that
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glyphosate’s methylphosphonyl group is well secured into the pocket intended for phosphate during
protein synthesis, aided by electrostatic bonding to the neighboring positively charged amino acids.

This principle likely carries over to phosphate binding associated with other phosphorylated
ligands, such as pyridoxal 5′-phosphate (PLP, vitamin B6). For example, two glycine residues (Gly219
and Gly257) as well as an arginine (Arg258) and a histidine (His179) (both positively charged) are all
involved in stabilizing binding to the phosphate moiety of PLP in the enzyme lysine decarboxylase [84].
Mitochondrial δ-aminolevulinic acid synthase (the rate limiting enzyme in pyrrole synthesis) requires
pyridoxal phosphate as a cofactor [85], and it has a GxGxxG motif beginning at residue 274 (GAGAGG)
and a glycine-rich sequence beginning at residue 417 (GLYGARGGG). It may be that glyphosate’s
mechanism of inhibition of this enzyme [58] involves glycine substitution at the phosphate-binding site.

Kinases are an important class of enzymes that transfer a phosphate from ATP to the substrate.
Their ATP-binding site has a characteristic glycine-rich motif, GxGxxG, where the middle glycine
in particular is almost universally present and crucial for catalysis, because it coordinates the γ

phosphate of the ATP molecule and facilitates phosphoryl transfer. An important study using
oligonucleotide-directed mutagenesis showed that substitution of either of the first two glycines by
serine or alanine had a profound effect on a kinase, increasing the rate of ATP hydrolysis but sharply
reducing phosphoryl transfer to substrate. In other words, the energy in the ATP phosphate bond was
wasted. This has parallels with the G96S substitution in EPSP synthase discussed above.

Notably, a study on E. coli which looked at protein expression found that multiple ATP-binding
site proteins were upregulated in the presence of glyphosate [86]. The data from the appendix of this
paper on ATP-binding components are reproduced here as Table 1. It is likely that upregulation is
a consequence of the fact that glyphosate is getting inserted into the protein at the ATP-binding site
and disrupting its catalytic activity. Many of these ATP-binding sites involve transporters, and the
ATP-binding site of bacterial transporters usually has the Walker A GxxGxGKS/T motif which would
be highly susceptible to glyphosate disruption [87].

Table 1. ATP-binding proteins upregulated by E coli in response to glyphosate exposure. Reproduced
from Lu et al., 2013 [86].

Protein Fold Increased

D,D-dipeptide permease system, ATP-binding component 2.83
ATP-binding protein of nickel transport system 2.24
ATP-binding component of transport system for glycine, betaine and proline 12.96
Fused D-allose transporter subunits of ABC superfamily: ATP-binding components 2.03
ATP-binding component of transport system for maltose 2.38
Putative ATP-binding sugar transporter 2.10
Flagellum-specific ATP synthase 2.07
Putative ATP-binding component of a transport system 3.04
Putative part of putative ATP-binding component of a transport system 2.31
Putative ATP-binding component of a transport system 2.30

FAD has a pyrophosphate (PPi) moiety at its center, and studies on multiple enzymes that bind
FAD have revealed a characteristic glycine-rich motif, GxGxxG, at the PPi-binding site. The second
glycine, in particular, because of its missing side chain, permits close contact to oxygen atoms in the
PPi of FAD [88]. Glyphosate substitution here may be responsible for the observed suppression of
enzyme activity of succinate dehydrogenase in the mitochondrial Complex II, which binds FAD at the
sequence GAGGAG [89].

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is arguably the most common
protein on earth. It is involved in the first major step of carbon fixation in plants. Notably, it contains 22
completely conserved glycine residues [90], and it binds phosphate at three different sites [91]. Multiple
studies have found that glyphosate suppresses this enzyme in plants. De Maria et al. found a 26%
reduction in RuBisCO activity in the leaves of Lupinus albus one week after application of 10 mM
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glyphosate [92]. Picoli et al. found a reduction in the assimilation rate of CO2 in glyphosate-resistant
ryegrass following exposure to glyphosate [93]. Zobiole et al. observed that glyphosate-treated
glyphosate-resistant soybean plants become chlorotic (yellow) due to a decrease in the rate of
photosynthesis [94].

6. Synergy between Glyphosate and Other Toxic Elements

Statistical analyses of disease trends have shown that multiple chronic diseases are rising in
incidence in the United States over the past two decades in step with the dramatic rise in the use of
glyphosate on core crops. We reproduce here three figures from the seminal paper by Swanson et al.
(2014) [61] showing correlations between the rise in glyphosate usage and end stage renal disease
(Figure 2), deaths due to renal failure (Figure 3) and bladder cancer (Figure 4). In all cases, the p-value
for the likelihood that the correlation could have occurred by chance is extremely small, with several
zeros before the first significant digit.
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Figure 2. Correlation between age-adjusted End Stage Renal Disease deaths and glyphosate applications
and percentage of US corn and soy crops that are GE. (From Swanson et al., 2014) [61].

In this section, we discuss how glyphosate could be expected to collaborate with other toxic
exposures to increase susceptibility risk to CKDu. In some cases, we draw on the research literature on
the specific roles of certain critical glycine residues in the proper function of proteins whose dysfunction
is known to be linked to CKDu. First, it should be noted that glyphosate-based formulations have been
shown to have powerful adverse effects on the kidneys in rat studies, even at ultra-low doses. A study
published in 2015 involved a transcriptome analysis on liver and kidney gene expression following
exposure to ultra-low doses of Roundup doses [95]. They found that Roundup induced alterations
in gene expression of thousands of proteins, both upregulated and downregulated, in both liver
and kidney. They noted that “Observed alterations in gene expression were consistent with fibrosis,
necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with
and thus confirm observations of pathology made at an anatomical, histological and biochemical level.”
They wrote in the conclusion: “The results of the study presented here indicate that consumption of far
lower levels of a GBH formulation, at admissible glyphosate-equivalent concentrations, are associated
with wide-scale alterations of the liver and kidney transcriptome that correlate with the observed signs
of hepatic and kidney anatomorphological and biochemical pathological changes in these organs.” [95],
p. 13.
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In examining 46 biopsies of patients with CKDu, Laura Lopez-Marin et al. found interstitial
fibrosis and tubular atrophy with or without inflammatory monocyte infiltration [8]. In addition,
generalized sclerosis, increased glomerular size, collapse of some glomerular tufts, and lesions of
extraglomerular blood vessels (such as intimal proliferation and thickening and vacuolization of the
tunica media) were observed.Int. J. Environ. Res. Public Health 2019, 16 10 of 26 
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6.1. Glyphosate and Cytochrome P450 Impairment

Cytochrome P450 (CYP) enzymes are responsible for metabolism of thousands of endogenous
and exogenous chemicals in the liver. Defective CYP enzymes can lead to acute sensitivity to toxicity
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of various drugs and mycotoxins. CYP enzymes have been shown to play an important role in
detoxification of Fusarium-produced T-2 toxin, an important mycotoxin [96].

In addition, P450 molecules are critical to the production of steroid hormones, Vitamin A and
Vitamin D. Activated D is produced in the proximal renal tubule. It plays a fundamental role in
several disease processes that are closely related to CKD, including inflammation [97]. Vitamin D may
also play a role in racial differences in mortality seen in dialysis patients [98]. Several studies have
reported that treatment with Vitamin D analogues, such as paricalcitol, results in an increase in the
life expectancy of patients with renal failure [99] (and references therein). The three most important
steps in vitamin D metabolism, 25-hydroxylation, 1α-hydroxylation, and 24-hydroxylation, are all
performed by CYP enzymes [100].

The P450 family of CYP enzymes has a signature motif characterized as FGxGRHxCxG (also
known as CXG), with two and often three highly conserved glycine residues [101]. This motif is located
at the heme-binding iron center, and the synthesis of heme is also disrupted by glyphosate through
its competitive inhibition of glycine as substrate to the reaction catalyzed by δ-aminolevulinic acid
synthase, the rate-limiting step in synthesis of the component pyrrole ring [58]. Iron chelation by
glyphosate may also impair iron bioavailability. CYP enzymes also depend on the cofactor, NADPH,
which plays an essential role in splitting the oxygen dimer to add a single oxygen atom to the
substrate. A highly conserved glycine residue forms a main-chain hydrogen bond with phosphate
at the FMN-binding site of the accessory protein, cytochrome P450 reductase, which is necessary for
catalytic activity of all CYP enzymes [102]. Both the CYP enzymes and CYP reductase have binding
sites for NADP(H), a phosphorylated molecule. NAD(P)H is synthesized in the liver from tryptophan,
a direct product of the shikimate pathway which glyphosate disrupts [103,104]. Hence, it comes as no
surprise that glyphosate has been shown to highly suppress CYP enzyme activity in rat liver [105].

6.2. Glyphosate and Toxic Metals

We have already discussed multiple papers mentioning toxic metals, particularly arsenic, as likely
playing a role in CKDu. While phosphate fertilizers are a known source of toxic metals, glyphosate
herbicide formulations are as well. A recent publication by Defarge et al. (2018) analyzed multiple
formulants of glyphosate for levels of toxic metals [20]. Indeed, they found high levels of contamination
of arsenic (As), chromium (Cr), nickel (Ni) and lead (Pb) in many of the formulations. Specifically,
they wrote: “In total, all except 3 formulations had 5–53 times the permitted level of As in water in
European Union or USA; all except 1 had Cr above (up to 40 times) the permitted level; all except
1 contained Ni, with 19 samples being above the permitted level (up to 62 times); 6 contained up to
11 times the permitted level of Pb.” [20] (p. 160).

A paper by Jayasumana et al. published in 2015 provided evidence that glyphosate may be
working synergistically with toxic metals to harm the kidneys in Sri Lankan agricultural workers [39].
Their study looked at urinary samples drawn from patients, controls living in the same region, and
controls living elsewhere. While urinary levels of multiple toxic metals were generally higher in both
patients and colocalized controls compared to controls outside of the endemic area, the most striking
finding was that glyphosate excretion was very high in both endemic controls (39 times more) and
patients (46 times more) compared to non-endemic controls [39].

Glyphosate, as a strong chelator, should be capable of transporting arsenic past the gut barrier
and on to the kidneys, where it is being released in the acidic environment of the urine to cause stress
to the renal tubules [11]. By analogy, it has also been proposed that glyphosate could be transporting
aluminum to the brain, causing damage to the brainstem nuclei when aluminum is released in the
acidic environment of the terminal watershed [106]. There is a precedent with citrate being known
to carry aluminum across the gut barrier via a similar chelation mechanism [107]. Aluminum from
sub-standard utensils used in cooking could be contributing to CKDu in Sri Lanka, especially when
combined with acidic cooking conditions and fluoride stress [108].
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6.3. Hyperphosphorylation and Tubular Fibrosis Following Injury

Tubulointerstitial fibrosis is a core feature of CKDu in Sri Lanka. Interstitial fibrosis and tubular
atrophy were the dominant histopathological observations in a study of 64 CKDu patients from North
Central Sri Lanka [109,110]. This condition is characterized by the overproduction of extracellular
matrix by infiltrating fibroblasts, invoked as a response to injury. Renal cells damaged by injury or
oxidative stress release cytokines and growth factors such as transforming growth factor-β (TGF-β),
endothelial growth factor (EGF) and platelet derived growth factor (PDGF) [111,112]. The receptors
for these signaling molecules are typically protein kinases, belonging to one of two broad classes:
serine/threonine kinases and tyrosine kinases. These receptors are activated through phosphorylation
of multiple serine, threonine or tyrosine residues, and the cascade that is launched can include
autophosphorylation in a positive feedback loop. The resulting signal transduction pathways lead
eventually to nuclear activation of expression of proteins involved in matrix production, inducing
fibrosis [113].

TGF-β is well established as a cytokine linked to renal tubular fibrosis [113,114]. The TGF-β
receptor is a serine/threonine kinase that is activated through phosphorylation of its own serine and
threonine residues. In particular, there is a motif referred to as a “GS domain” that contains the sequence
185Thr–Thr–Ser–Gly–Ser–Gly–Ser–Gly192, where all of the serine and threonine residues are potential
phosphorylation sites [115]. The four glycine residues within this sequence are obviously potential sites
for glyphosate substitution. Biophysical arguments support the idea that the methyl-phosphonyl group
of glyphosate would be a very strong mimetic of serine phosphorylation. It has been demonstrated
experimentally that aspartate and glutamate can both act as phosphoserine mimetics, and this property
has been exploited in experiments that induce a constitutive psuedophosphorylation of serine through
substitution by glutamate or aspartate [116]. Glyphosate, similarly negatively charged and even more
closely matched (methylphosphonate vs phosphate), should act in a similar way.

Experiments have shown that substitution of a negatively charged amino acid, such as aspartate or
glutamate, in place of a serine residue, can yield a behavior that is very similar to that of a phosphorylated
serine residue, causing the protein to become constitutionally activated. A zebrafish version of an
enzyme that is normally activated through serine phosphorylation is missing the serine residue, yet it
behaves as if it is permanently serine phosphorylated. An analysis of the enzyme led to the conclusion
that its novel aspartate residue two codons away from the missing serine was providing the negative
charge that maintained it in an activated state [117].

Serine/threonine phosphatases terminate TGF-β signaling [118]. Dephosphorylation of phosphorylated
serines and threonines is likely to be problematic with glyphosate substituting for glycine. Serine/threonine
phosphatases have multiple glycine-containing signature motifs that are involved in metal coordination
and phosphate binding, including GDxHG, GDxVDRG, GNHE, HGG, and RG [119]. Thus, both
pseudophosphorylation through glyphosate substitution for glycines adjacent to serines as well as impaired
phosphatase activity due to glyphosate substitution for critical glycines in phosphatases can be expected
to drive the cellular signaling towards excessive phosphorylation, systemically, leading to the nuclear
activation of synthesis of proteins involved in fibrosis.

Multiple receptor tyrosine kinases (RTKs) play a crucial role in the development of renal fibrosis
as well [120]. Receptors for epidermal growth factor, fibroblast growth factor, and vascular endothelial
growth factor are all examples of receptor tyrosine kinases involved in the disease process [120].
A number of drugs used to treat cancer, degenerative diseases, and cardiovascular diseases work as
inhibitors of tyrosine kinases. At least two of these inhibitors, Nintedanib [121] and Suramin [122],
have been shown to attenuate renal fibrosis in CKD.

Phosphotyrosines are normally aggressively dephosphorylated by phosphatase enzymes, but
these are likely to be severely disabled by glyphosate substitution. The central glycine residue in
the tyrosine phosphatase signature motif, (H/V)CxxGxxR(S/T), is highly conserved. Substitution
of proline or alanine for the conserved Gly-127 residue within this motif in T-cell protein tyrosine
phosphatase resulted in a 400-fold decrease in catalytic activity [123]. Thus, the processes that remove
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phosphates from tyrosine residues are likely to be impeded by glyphosate as well, resulting in systemic
hyperphosphorylation of tyrosines.

6.4. Paraquat and MATE1

According to the U.S. Centers for Disease Control and Prevention (CDC), paraquat is one of the
most commonly used herbicides in the world. In Sri Lanka, paraquat was used extensively in the rice
paddies in the 1980s to control weeds. By the mid-1990s, glyphosate became a popular alternative,
mostly because paraquat’s acute toxicity was becoming much more appreciated and glyphosate was
considered a safer alternative. CKDu was first recognized in Sri Lanka in the mid-1990s, when both
paraquat and glyphosate were in active use.

Although paraquat has been banned by the European Union since 2007, hundreds of countries
continue to use it, including El Salvador, where it has the highest sales among pesticides [124]. Paraquat
and glyphosate are both popular as post-emergence herbicides for sugarcane [125], and glyphosate
is the herbicide of choice for ripening the cane just before harvest [126]. El Salvador is experiencing
an alarming rate of kidney failure among the sugarcane workers [53]. Paraquat was phased out in
Sri Lanka beginning in 2008 due to concerns over its use for self-harm, and glyphosate was banned
beginning in 2016, although the ban was lifted in 2018. However, both formulations continue to be
available on the black market.

Paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) is actively secreted in the kidney via the
proximal tubules, which are the target site of CKDu. Paraquat induces reactive oxygen species (ROS),
including superoxide, hydrogen peroxide, and the hydroxyl radical, ultimately damaging the proximal
tubules [127]. These ROS cause DNA damage and genotoxicity, as well as destroying membrane lipids
and inducing cell death [128]. An in vitro study on rabbit renal tubules demonstrated that paraquat
appears to disrupt the mitochondrial electron transport chain, inducing oxidative stress and depleting
glutathione and energy supplies [127]. Like the mushroom-derived nephrotoxin orellanine, also a
bipyridinium, paraquat selectively targets renal tubular epithelial cells [129–132]. Damage to proximal
tubules could mean reduced elimination and more toxicity for other organs [133].

In addition to specifically targeting the renal proximal tubules, there is good evidence to support
the idea that paraquat is synergistically toxic with glyphosate, based on the argument that glyphosate
can substitute for glycine during protein synthesis. The main protein responsible for the export of
paraquat from the apical membrane of tubular cells into the tubule lumina for excretion into the
urine is called Multidrug and Toxin Extrusion 1 (MATE1). Designer mice with a deficiency in MATE1
are especially susceptible to renal paraquat toxicity, due to a much higher accumulation within the
tubular cells [128]. These authors wrote: “Our data indicated that MATE1 played a critical role in the
renal elimination of PQ [paraquat] and disruption of MATE1 function remarkably potentiated PQ
nephrotoxicity in mice.” [128] (p. 2477).

Gene sequence alignments of MATE1 from four species reveals 32 glycine residues that are
conserved among all four species, as well as another 6 that are conserved among 3 out of 4 [134].
In a study on observed human single-nucleotide polymorphisms (SNPs), a glycine mutation (G64D) in
MATE1 and another glycine mutation (G211V) in a related protein, MATE2-K, both caused transport
activity to be completely abolished [135]. This would result in the accumulation of toxins such as
paraquat in the tubules. Glyphosate substitution for these critical glycines, as well as any of the other
highly conserved glycines, would likely also severely disrupt protein function.

Multidrug resistance protein 1 (MDR1), also known as p-glycoprotein, is another efflux protein
expressed in the kidneys that has also been shown to be protective against paraquat toxicity [136,137].
This protein binds to ATP and has two nucleotide binding sequences matching the GxxGxG motif
(GNSGCG beginning at residue 427 and GSSGCG beginning at residue 1070). ATP hydrolysis is
coupled to binding and translocation of substrates across the membrane [138]. Thus, it is likely
susceptible to disruption by glyphosate at the phosphate binding sites.
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6.5. Impaired Antioxidant Defenses

A study on gene expression in association with CKDu determined that proteins related to protection
from oxidation damage are upregulated in association with CKDu, including glucose-6-phosphate
dehydrogenase (G6PD), the rate-limiting enzyme in the pathway that regenerates the antioxidant
NADPH, as well as enzymes involved in the synthesis of glutathione and the restoration of the reduced
form of glutathione [139]. NADPH is needed to restore glutathione to its reduced (protective) state.
The overexpression of these enzymes is an indicator that patients with CKDu are chronically exposed
to oxidizing agents from the environment.

Glutathione (GSH) is an essential antioxidant tripeptide, as it can protect from oxidative damage
through reversible oxidation to the dimer form GSSG. Glutathione deficiency increases susceptibility
to mycotoxins [140]. Glutathione is composed of glycine, glutamate and cysteine. It is possible
that glyphosate disrupts glutathione by directly substituting for its glycine residue, as proposed
in Seneff et al., (2017) [67]. Gamma glutamyl transpeptidase (GGT) is an enzyme that breaks
glutathione down into its individual amino acids, allegedly so that the components can be distributed
in the blood for reuptake and reassembly back into glutathione by another cell. However, another
motivation for disassembly/reassembly might be that it is a defective version of the tripeptide due to
glyphosate substitution for the glycine residue. Experiments involving exposing rat testes to Roundup
demonstrated the upregulation of multiple enzymes involved in glutathione metabolism, including
GGT, as well as the depletion of glutathione levels in the testes [141]. Notably, GGT is upregulated in
association with end-stage chronic renal failure [142], and elevated GGT is an independent predictor of
mortality in patients with stage 4–5 kidney failure [143].

Glutathione S-transferase (GST) plays an important role in liver detoxification of a large number
of hydrophobic compounds by catalyzing their conjugation to glutathione, thus increasing their water
solubility. Biliary excretion of glutathione conjugates of aflatoxin are a key mechanism for liver
clearance of this mycotoxin [144]. Gly-146 is one of few residues that are strictly conserved in the GST
superfamily. This residue lies within a conserved folding module called Motif II which maintains an
internal hydrogen bond network in the face of heat stress, supporting protein stability under elevated
temperature conditions. Substitution of either alanine or valine for this glycine destabilizes a conserved
loop-helix substructure that is essential for proper folding [145].

Glucose-6-phosphate dehydrogenase (G6PD) is an important antioxidant enzyme, particularly
in red blood cells, which regenerates NADPH, needed for glutathione reduction. Thus, it plays an
essential role in maintaining antioxidant defenses. A study examining a possible association between
G6PD deficiency and CKDu found that 20% of CKDu patients in Sri Lanka were deficient compared to
only 2% of controls [1].

G6PD has three regions where it binds to molecules containing phosphate. One involves its
substrate, glucose-6-phosphate. Another binds to the NADP+ molecule that will ultimately be reduced
to NADPH. The third site is a region where it binds tightly to another NADP+ molecule, a site
that has been dubbed the “structural NADP+ binding site” as opposed to the “catalytic NADP+

binding site” [146]. G6PD has multiple critical dependencies on glycines, mostly linked to these
phosphate-binding sites. Highly conserved sequences within G6PD include a 9-residue sequence
containing a glycine residue at the glucose-6-phosphate binding site, a GxxGDLA “nucleotide-binding”
fingerprint at the catalytic NADPH binding site, and another EKPxG motif near the substrate binding
site [147]. A glycine residue at location 488 is within the structural NADP+ binding site.

Glyphosate present in the serum could be readily taken up by RBCs and incorporated into G6PD
in place of these critical glycine residues, disrupting enzyme activity. G6PD is one of the most highly
mutated enzymes in humans. Mutations to a bulkier amino acid have been shown to decrease the
binding affinity to NADP+ [146]. A glycine-to-arginine mutation in G6PD (G447R) leads to very low
residual activity, resulting in a severe chronic hemolytic anemia [148]. A G274K mutation also leads to
a defective version of the enzyme [149].
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Gao et al. (2019) [150] use a cell culture model to show that the kidney is damaged by glyphosate-
based herbicides and that the renal proximal tubule may be a main target. Though the toxicity of
commercial formulations is well established, the authors demonstrate that glyphosate, the active
ingredient of glyphosate-based herbicides, injures renal tubule epithelial cells via the NMDAR1/calcium
influx/oxidative stress pathway, both in vitro and in vivo. They state that their findings “provide
a theoretical basis and reference data to assess the risk of glyphosate and to explore the etiology
of CKDu.”

6.6. Aquaporins and Dehydration

Aquaporins are a set of integral membrane proteins that form pores in the membrane to facilitate
the transport of water through the membrane [151]. Aquaporins are especially important in the renal
tubules, where they mediate osmotic water transport across the renal medullary epithelium, in order
to concentrate the urine and protect from water loss. Aquaporin expression is upregulated in response
to dehydration, mediated by vasopressin [152]. NSAIDS, such as Ibuprofen, have been shown to
decrease aquaporin 2 expression in water-restricted rats [153]. It has been suggested that NSAID use
may be a causal factor in CKDu, due to excessive loss of water through urine. Nocturia is a common
early symptom of CKDu. A study on women with CKDu in an agricultural community in El Salvador
showed that 40% of them took NSAIDS, and half of them suffered from nocturia [154].

Glyphosate may also cause excessive loss of water through urine, through substitution for certain
critical glycine residues in aquaporin, as argued in Seneff and Orlando (2018) [66]. Most aquaporins
contain two highly conserved glycine residues: Gly-57 in transmembrane helix (TM) 2 and Gly-173
in TM5 at the contact point where the two helices cross in human Aquaporin 1 [155]. Aquaporin 6
has an asparagine residue in place of the usual Gly-57, and this aquaporin functions not as a water
channel but rather as an ion channel. This implies that substituting glyphosate for Gly-57 in other
aquaporins would greatly disrupt their function in retaining water. Replacing this asparagine residue
in Aquaporin 6 with glycine converts it back into a water channel, and replacement of the glycine at
this site in Aquaporins 0, 1 and 2 completely blocked their expression as a water transporter [155].

Glyphosate-resistant soybean plants treated with glyphosate are more sensitive to drought and
less efficient in converting water into biomass compared to those not exposed to glyphosate. Zobiole
et al. (2010) [94] found a highly significant nearly perfectly linear relationship between the amount of
glyphosate applied in a single treatment and the amount of water absorbed by 58 days post emergence.
They hypothesized that disruption of aquaporin function could be the cause, although they admitted
that the exact mechanism was unknown.

6.7. Cyanobacteria and Glyphosate

Toxigenic cyanobacteria present a growing problem in Sri Lanka’s waterways, particularly in
the North Central province where CKDu is endemic [156]. It is clear that their overgrowth is related
to human activities, particularly in agricultural areas, where agricultural runoff of phosphate and
nitrate fertilizers are supporting their growth. It is likely that glyphosate is also a major contributing
factor. Glyphosate does not kill cyanobacteria, though it can kill beneficial species in waterways. The
cyanobacteria are actually able to break the difficult C-P bond in glyphosate and fully metabolize
it, utilizing the phosphorus atom in glyphosate as a source of phosphorus [157]. Drzyzga and
Lipok [158] demonstrate that glyphosate is a significant factor for the phosphorus utilization strategy
of cyanobacteria.

Cyanobacteria produce multiple toxins that are known to be nephrotoxic, causing proximal tubule
epithelial cell necrosis, which leads to the accumulation of cellular debris in the distal tubules [159].

6.8. Mycotoxins and Sulfotransferases

It is possible that toxic metabolites produced by various species of fungi play a contributory role
in CKDu. Fusarium mycotoxins, such as fumonisin B1 (FB1), deoxynivalenol (DON) and zearalenone
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(ZEA), are the most frequently occurring mycotoxins worldwide, and are common contaminants in
food sources such as wheat. Studies on rats have shown that these metabolites are toxic to both the
liver and the kidney, mainly through the induction of oxidation damage to membrane lipids [160].
In a study of 31 patients in the North Central province of Sri Lanka suffering from CKDu, aflatoxins,
ochratoxins, and fumonisins were detected in 61.29, 93.5, and 19.4% of the patients respectively [161].
Aflatoxin (AF), zearalenone (ZEA) and deoxynivalenol (DON) are three of the most common toxic
metabolites of fungi.

Both DON and ZEA are capable of being sulfonated by sulfotransferase enzymes, which produce
a metabolite that is more soluble and significantly less toxic than the original toxin. For example,
it has been demonstrated that Aspergillus species are able to detox ZEA through conjugation with
sulfate [162], and that wheat plants infected with Fusarium can produce multiple sulfated conjugates of
DON. Don-15-sulfate was about 44-fold less inhibitory than native toxin, and no toxicity was observed
for DON-3-sulfate [163]. It is possible that glyphosate is either killing the Aspergillus species or
disrupting the synthesis of sulfated metabolites, both of which would accelerate the production of
mycotoxins in soil. For example, the application of glyphosate-based herbicides at a dose 100 times
lower than that used in agriculture is lethal to the fungus Aspergillus nidulans [164]. Glyphosate
may disrupt the synthesis of sulfated metabolites because sulfotransferase is dependent on two
highly conserved glycine residues in a GXXGXXK motif at the active site where PAPS, the activated
sulfonate donor, binds to the enzyme [165]. The liver in humans also detoxifies multiple xenobiotics
through sulfonation, producing a more soluble and less toxic product that can then be more readily
cleared. The liver is very vulnerable to glyphosate toxicity [95]. One reason may be the disruption of
sulfation pathways.

7. Conclusions

As it becomes increasingly clear that CKDu is a multifactorial disease, the complexity of possibilities
can be narrowed by an understanding of local environmental health conditions and resulting disease
processes in the people that live and work there. A web of causality can begin to show related
factors and research paths. We have proposed a plausible mechanism of toxicity for glyphosate that
involves substitution for the coding amino acid glycine during protein synthesis, and we have shown
theoretically how this could lead to increased toxicity of multiple other factors associated with CKDu.
Figure 5 shows a schematic summarizing various synergistic effects of glyphosate with other chemical
exposures, especially if it is indeed substituting for glycine.

The causality outlined in this paper shows that one of the most important steps to take to reduce
the burden of CKDu would be to stop the commercial sale of paraquat and glyphosate and end the
black-market availability of these agricultural chemicals in Sri Lanka. This may be difficult to do
in practice, but research is sorely needed to come up with viable alternatives that provide effective
low-cost weed control while minimizing non-target toxic chemical exposures.

Agricultural methods and practices that enhance crop productivity without subsequent damage
to agricultural ecosystems and human health are well documented. These methods and practices have
variations based on crops, culture, climate, and a number of other factors, but they share several core
principles: the enhancement of soil health, recycling of biomass, utilization of cover crops, biodiversity
above and below-ground, and an ecological focus on interactions and synergisms that benefit both
plants and people. At least 31 million hectares (77 million acres) of farmland worldwide that utilize
some of these principles is managed without agricultural chemicals [166].

One ecosystem approach is to replace chemical-based nitrogen and phosphate fertilizers with
organic fertilizers in crop production, while improving soil health. This would, for example, help reduce
water pollution and prevent the overgrowth of toxin-producing cyanobacteria [156]. Switching from
chemical-based phosphate fertilizers to organic fertilizers would also help reduce arsenic exposure [167].

There are other measures that can be taken to reduce the likelihood of CKDu. Workers can be
supported, through education and improved access, in wearing protective gear when using agricultural
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chemicals to minimize exposure risk. Government agencies and other institutions can conduct
environmental and bio-monitoring in CKDu-affected areas to better understand local factors in the web
of causation. Efforts to treat contaminated water with reverse osmosis filters could be expanded [167].
With regard to the treatment of CKDu, it is beyond the scope of this paper to discuss specific drugs and
protocols. Still, it is clear that emphasis should be placed on preventive measures, especially since
sophisticated treatment options such as dialysis and kidney replacement are often not realistic options
for the agricultural workers due to the lack of access and prohibitive cost.

Our work shows the possible synergistic effects, specifically of glyphosate, on several metabolic
processes in the presence of other agricultural toxicants, such as paraquat, along with adverse
environmental and occupational conditions, such as hot climates, rising temperatures, and dehydration
among agricultural workers, that can result in renal disease described by CKDu. Further exploration
into these factors working together to cause CKDu is warranted.
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