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Abstract: Infectious diseases are an important cause of human death. The study of the pathogenesis,
spread regularity, and development trend of infectious diseases not only provides a theoretical basis
for future research on infectious diseases, but also has practical guiding significance for the prevention
and control of their spread. In this paper, a controlled differential equation and an objective function
of infectious diseases were established by mathematical modeling. Based on cellular automata theory
and a compartmental model, the SLIRDS (Susceptible-Latent-Infected-Recovered-Dead-Susceptible)
model was constructed, a model which can better reflect the actual infectious process of infectious
diseases. Considering the spread of disease in different populations, the model combines population
density, sex ratio, and age structure to set the evolution rules of the model. Finally, on the basis of
the SLIRDS model, the complex spread process of pandemic influenza A (H1N1) was simulated.
The simulation results are similar to the macroscopic characteristics of pandemic influenza A (H1N1)
in real life, thus the accuracy and rationality of the SLIRDS model are confirmed.

Keywords: infectious disease dynamics; cellular automata; propagation model; pandemic influenza A;
H1N1; numerical simulation

1. Introduction

Infectious diseases are diseases that can be transmitted from person to person, from person to
animal, or from animal to animal after proto-microorganisms and parasites infect human beings or
animals [1–3]. Infectivity, epidemic, and uncertainty are the three main characteristics of infectious
diseases. A thorough study of the spread causes, spread routes, spread processes, and epidemic
laws of infectious diseases is the main method for effective prevention, control, and elimination of
infectious diseases.

At present, the mathematical study of infectious diseases is mainly based on the theory and
method of infectious disease dynamics [4–6]. The essence of infectious disease dynamics is to establish
a mathematical model that can reflect the spread process, spread law, and spread trend of infectious
diseases. Its advantage is that, according to the characteristics of infectious diseases, the model of
infectious diseases is reasonably assumed, the appropriate parameters are set, and the appropriate
variables are selected. Then, the dynamic characteristics of infectious diseases can be clearly revealed.
It has laid a solid foundation for further analysis of the causes and key factors of the spread of infectious
diseases, and for seeking the optimal strategies for the prevention and control of such diseases.

The main method to study and forecast the spread mechanism of infectious diseases is to establish
mathematical models. Some of these are used to study the general laws of infectious diseases,
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while others are used to study specific infectious diseases, such as HFMD (Hand foot and mouth
disease), tuberculosis, AIDS, and so on. In 1760, Bernoulli [7] began using mathematical models to
study the spread of smallpox by vaccination. In 1906, Hamer [8] constructed and analyzed a discrete
time model for the study of recurrent measles epidemics. In 1927, Kermack and McKendrick [9]
proposed the SIR (Susceptible-Infected-Recovered) compartmental model for the first time in order
to study the epidemic law of the Black Death prevailing in Europe at that time. On the basis of the
SIR model’s analysis, the "threshold theory" was proposed to distinguish the spread or regression
of the disease. The validity of the SIR model has been proven by the data regarding large-scale
infectious diseases in history, thus the deterministic model [10] based on a differential equation has
been widely accepted.

With the deepening of research, the factors involved in establishing the mathematical model
are increasing, and the dimension of the model is also increasing. Based on the classical
SIR model, Aron and Schwartz [11] proposed the SEIR(Susceptible-Exposed-Infective-Recovered)
model in 1984. That model considers that the latency of infectious diseases also has an impact
on infectious diseases, so the model is more realistic. Focusing on Severe Acute Respiratory
Syndrome (SARS) infectious disease spread in recent years, Safi and Gumel [12] constructed
the SEQIJR(Susceptible-Exposed-Quarantine-Infective-Isolation-Recovered) model according to the
characteristics of SARS. Small and Chi [13] studied the effects of vaccination and isolation on the SARS
epidemic and constructed the SEIRP (Susceptible-Exposed- Infective- Recovered-Persevered) model.

In addition, some researchers start with the population structure of infectious disease spread
and study the spread model of infectious disease. According to the influence of age on the spread
of infectious diseases, Boklund et al. [14] proposed a model to better characterize the effect of
age heterogeneity on the spread of infectious diseases. According to the difference in population,
Meng et al. [15] divided the population into different groups, and they proved the global stability of
disease-free equilibrium and endemic equilibrium.

With the development of artificial intelligence, the network dynamics model has gradually
become a new research method of infectious disease model. The most common network dynamics
models include the ordinary differential equation model, the discrete differential equation model,
the impulsive differential equation model, and the differential equation model with time delay. The main
methods are finite equation theory, matrix theory, bifurcation theory, K-order monotone system theory,
central manifold theory, Lasalle invariant principle, etc. However, these research methods are all
theoretical studies on infectious diseases, but it is difficult to apply them to practical problems.

The concept of cellular automata was proposed in the 1940s. Cellular automata can be described
as a dynamic system consisting of a transformation function in cellular space, which is discrete
in time and space. The cellular automata model can be formally expressed as CA = (LC, S, M, f ),
where CA represents the cellular automaton system, LC represents the mesh space which is divided
according to given rules, a mesh corresponding to a cell of cellular automata, S represents the set of
cell states, M = (C1, C2, . . . , Cn) represents the set of current cell adjacent to cells, and f represents
the transformation function which can transform Cn to C, the function that can calculate the state of
cell C at t + 1 time according to the state of adjacent cells of cell C at t time. Adjacent cells are Moore
neighbors with radius = 1. As shown in Figure 1, cells can move in eight directions.Int. J. Environ. Res. Public Health 2019, 16, x 3 of 17 

 

 
Figure 1. Moore neighbor (radius = 1). 

Misra et al. [16] gave a comprehensive introduction to the theory and application of cellular 
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extensively studied. According to the characteristics and mechanism of AIDS, Pan et al. [21] proposed 
a spread model of AIDS based on cellular automata. López et al. [22] proposed an epidemic spread 
model based on cellular automata that considers individual heterogeneity, population mobility ratio, 
and individual maximum moving distance. Because cellular automata can perform some 
experiments that cannot be done in real life by modeling, we can analyze the actual situation and 
obtain the results, in order to solve the complex problems that cannot be dealt with in the 
deterministic model. It is thus becoming a typical representative of the network dynamics model. 

Based on the ability of cellular automata to model complex problems, this paper considered that, 
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level, and other factors, and that population density, sex ratio, and age structure of area also have some 
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diseases were discussed, and the simulation results were analyzed to observe the effects 
of the above three factors on the spread process of infectious diseases. 

• The suggestions given in this paper based on the three influencing factors provided 
strong support for researchers to study the spread process of infectious diseases in 
different environments. 

The rest of this paper is organized as follows. The methodology of our research is introduced in 
Section 2. Simulation results and analysis are given in Section 3. Discussions are presented in Section 
4. Finally, conclusions are given in Section 5. 

2. Methodology  
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On the basis of the SIR and SIS (Susceptible-Infected-Susceptible) models, the state of the 
population was divided into susceptible, latent, infected, recovered, and dead. The total number of 
members of the population is denoted as 𝑁(𝑡). 𝑆(𝑡) represents susceptible population, meaning the 
number of members of the population who are not infected but are susceptible to infection at time t. 
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time t but not yet affected, and at this time the individual is not infectious. Infected population is 
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Misra et al. [16] gave a comprehensive introduction to the theory and application of cellular
automata. Since the 1990s, epidemic spread models based on cellular automata [17–20] have been
extensively studied. According to the characteristics and mechanism of AIDS, Pan et al. [21] proposed
a spread model of AIDS based on cellular automata. López et al. [22] proposed an epidemic spread
model based on cellular automata that considers individual heterogeneity, population mobility ratio,
and individual maximum moving distance. Because cellular automata can perform some experiments
that cannot be done in real life by modeling, we can analyze the actual situation and obtain the results,
in order to solve the complex problems that cannot be dealt with in the deterministic model. It is thus
becoming a typical representative of the network dynamics model.

Based on the ability of cellular automata to model complex problems, this paper considered
that, in real society, population mobility is caused by economic development, living environment,
education level, and other factors, and that population density, sex ratio, and age structure of
area also have some influence on the spread of infectious diseases. An epidemic spread model
Susceptible-Latent-Infected-Recovered-Dead-Susceptible (SLIRDS) based on cellular automata was
therefore established.

The contributions of our research are as follows:

• A more realistic epidemic spread model based on cellular automata was established and achieved
good results in simulation experiments.

• The effects of population density, sex ratio, and age structure on the spread of infectious diseases
were discussed, and the simulation results were analyzed to observe the effects of the above three
factors on the spread process of infectious diseases.

• The suggestions given in this paper based on the three influencing factors provided strong support
for researchers to study the spread process of infectious diseases in different environments.

The rest of this paper is organized as follows. The methodology of our research is introduced in
Section 2. Simulation results and analysis are given in Section 3. Discussions are presented in Section 4.
Finally, conclusions are given in Section 5.

2. Methodology

2.1. SLIRDS Model

On the basis of the SIR and SIS (Susceptible-Infected-Susceptible) models, the state of the
population was divided into susceptible, latent, infected, recovered, and dead. The total number of
members of the population is denoted as N(t). S(t) represents susceptible population, meaning the
number of members of the population who are not infected but are susceptible to infection at time
t. Latent population is denoted as L(t), meaning the number of members of the population infected
at time t but not yet affected, and at this time the individual is not infectious. Infected population
is denoted as I(t), meaning the number of members of the population who are infected and have
infectivity at time t. Recovered population is denoted as R(t), meaning the number of members
of the population who are immune at t time and will not be infected for a certain period of time.
Dead population is denoted as D(t), meaning the number of members of the population who died of
infectious diseases at time t, and individuals are not infectious at the moment.

The SLIRDS model can be described through the following differential equation models:

dS(t)
d(t) = δR(t) − βS(t)I(t)

dL(t)
d(t) = δS(t)I(t) −ωL(t)

dI(t)
d(t) = ωL(t) − γI(t) − λD(t)

dD(t)
d(t) = λI(t)

dR(t)
d(t) = γI(t) − δR(t)

i(O) = io, s(O) = so ,

(1)
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where δ represents the proportion of the population who lost immunity to the infectious disease, β is
the ratio coefficient of the infection rate, ω is the latency ratio coefficient of the infectious disease, γ is
the ratio coefficient of the recovered infected population, and io and so represent the ratio of infected
and susceptible individuals in the initial population, respectively.

The transition relationships of states in the SLIRDS model are shown in Figure 2.
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In order to simulate the phenomenon of crowd movement in the real world, this paper introduced
the idea of random walk cellular automata to simulate individual movement in the crowd. Considering
the limitation of individual movement, the maximum step length L is set for individual movement.
At the same time, considering the individual activity m, all individuals are scanned randomly in each
time step, and the individuals whose proportion is m are selected. di and d j (|di|,

∣∣∣d j
∣∣∣ ≤ L) are chosen

randomly for each selected individual C(i, j), and then C(i, j) and C(i+di, j+d j)
are exchanged to complete

the individual movement.
In this paper, the SLIRDS epidemic model based on cellular automata is proposed. Assuming that

the environment of the crowd is a regular N = n × n mesh space, a sparse matrix whose density is
ρ = Cn/N (Cn is the set of individuals) is generated randomly. Each non-zero element of the matrix
represents an effective individual. M represents the neighbor set of cellular nodes, and it uses a Moore
neighbor with radius = 1. S(i, j)(t) = {0, 1, 2, 3, 4} is used to represent the cell state in the i-th row and
the j-th column at time t. Different values represent different states as follows:

S(i, j)(t) = 1 represents susceptible state, meaning that individuals are not infected and they are
immune to this infectious disease;

S(i, j)(t) = 2 represents latent state, meaning that individuals have been infected, but they do not
have infectivity;

S(i, j)(t) = 3 represents infected state, meaning that individuals are infected and infectious;
S(i, j)(t) = 4 represents recovered state, meaning that individuals have recovered and acquired

immunity within a certain period of time;
S(i, j)(t) = 0 represents dead state, meaning that individuals are dead and they do not

have infectivity.
Because cellular automata cannot reflect every individual’s and their neighbors’ randomness,

unified parameters T1, T2, and T3 are introduced, T1 representing the maximum peak of latency time
for each individual, T2 representing the maximum peak of illness time for each individual, and T3

representing the maximum peak of immunization time for each individual. T1
(
S(i, j)(t)

)
represents

latency time of the individual, T2
(
S(i, j)(t)

)
represents illness time of the individual, and T3

(
S(i, j)(t)

)
represents immunization time of the individual.
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2.2. Influence Analysis of Different Factors on Infectious Disease Spread

Because of heterogeneity among individuals, each individual shows different resistance, infectivity,
and infectious range to disease. This paper considers the effects of population density, sex ratio, and age
structure on infectious disease spread in the population, and discusses the influence of different factors
on infectious disease spread.

2.2.1. Population Density, Sex Ratio, and Age Structure

In real life, because there are differences in climate, economy, education, and medical treatment,
the population is not divided by rules like cellular automata. For example, in China, the population
density in the southeast coastal areas is greater than that in the northwest. In addition, because of the
different distribution of business districts, schools, and hospitals, the distribution of population in the
same city is not uniform. In areas with a large population density, the distance between individuals is
shorter and the spread range of individuals is wider. Individuals in the population have higher contact
frequency and more neighbors around them, so their infectivity and the probability of being infected
also increase.

In order to study and analyze the influence of population density on infectious disease spread,
each individual is mapped into a cell in the cellular automata model. When there is no individual and
the individual is in dead state in a cell, they are not infectious. In order to simulate the difference in
population density, the population density can be simulated by setting the value of D(t) in the initial
state. At this time, D(t) does not represent the number of dead individuals, but represents that there is
no individual in the cell. In this paper, a sparse matrix was used to simulate the random distribution of
population and the infectious disease spread, and then the trend of infectious disease spread under
different population densities as well as the influence of different population densities on infectious
disease spread were analyzed.

Due to the influence of economic development and other factors, the population ratio and age
structure in different regions are also different. For example, young and middle-aged people in remote
mountainous areas go to work in big cities, resulting in a large number of old and young people in the
original area. In areas where labor is scarce, such as coal mines and crude oil mining areas, there is an
imbalance in the proportion of men to women. Therefore, it is of great practical significance to study
the influence of sex ratio and age structure on infectious disease spread.

2.2.2. Individual Heterogeneity

In real life, because of different living environments, living habits, resistance levels to viruses,
infectious abilities to diseases, levels of drug resistance, and spread ranges, and in order to simulate
the spread mechanism of infectious diseases more accurately, it is particularly important to consider
individual heterogeneity, establish an infectious disease spread model, and further analyze and predict
the spread mechanism of the epidemic situation.

In this paper, the probability of infection P(i, j)(t) was used to describe individual heterogeneity.
Individual heterogeneity is determined by the individual’s resistance to disease and the infectivity of
neighbor cells.

The state of neighbor cells of cell C(i, j) at (i, j) can be expressed by an adjacency matrix as follows:

NC(i, j)
=


S(i−1, j−1)(t) S(i−1, j)(t) S(i−1, j+1)(t)
S(i, j−1)(t) S(i, j)(t) S(i, j+1)(t)

S(i+1, j−1)(t) S(i+1, j)(t) S(i+1, j+1)(t)

 (2)
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After three times spread, its adjacency matrix is defined as follows:

QC(i, j)
=


C(i−1, j−1)(t) C(i−1, j)(t) C(i−1, j+1)(t)
C(i, j−1)(t) C(i, j)(t) C(i, j+1)(t)

C(i+1, j−1)(t) C(i+1, j)(t) C(i+1, j+1)(t)

 (3)

The infection rate of cell C(i, j) at time t is defined as follows:

P(i, j)(t) =
a
4

∑
(k, l) ∈ QC(i, j)

k , i and i , j

{PC(i, j),C(k,l)(t)}+
b
4

∑
(k, l) ∈ QC(i, j)

k = i or i = j

{PC(i, j),C(k,l)(t)} (4)

where PC(i, j),C(k,l)(t) is used to describe the probability of cell C(i, j) infected by cell C(k,l) at time t.
Because the probability of infection is inversely proportional to one’s own resistance, it is

proportional to the infectivity of one’s neighbors. Thus, it can be expressed as follows:

PC(i, j),C(k,l)(t) =
√

fC(i, j),C(k,l)

(
1−RC(i, j)

)
(5)

where fC(i, j),C(k,l) represents the infectivity of cell C(k,l) to cell C(i, j) (because of the difference in the
constitution of different individuals, they have different infectivity and resistance) and fC(i, j),C(k,l)
obeys (0,1) uniform distribution [23]. RC(i, j)

represents the infectious disease resistance of cell C(i, j).
Some diseases have different influences on different sex and age groups, that is, individual sex and age
differences are also important factors affecting an individual’s resistance to disease. Thus, it can be
expressed as follows:

RC(i, j)
=

[
gm, g f

][ fm
f f

]
[y1, . . . , yn]


f1
. . .
fn

TC(i, j)
(6)

where gm and g f represent the proportion of males and females in the population, fm and f f represent
the influence coefficient of infectious diseases on males and females, y1, . . . , yn are the proportion of
various age groups in the population, f1, . . . , fn are the influence coefficient of infectious diseases on n
groups of populations, and TC(i, j)

obeys (0,1) uniform distribution [23]. The infection probability of
each individual is determined by its own resistance to infectious diseases and the infectivity of its
neighbors. At each time step, the individual state is updated synchronously.

2.2.3. Model Evolution Rules

According to a given population density, the sparse matrix is generated to simulate the distribution
of population, and then through the age structure and sex ratio, each individual sets their attribute
values. The initial state of all individuals is set to S = 1, the state of the infected individuals is set to
S = 2. Individuals in cells are updated according to the following rules:

(1) When S(i, j)(t) = 1, individual infection probability P(i, j)(t) is calculated, and then whether the
individual will be transformed into S(i, j)(t) = 2 is determined. Otherwise, S(i, j)(t) = 1. Meanwhile,

individual latency time T1
(
S(i, j)(t)

)
= T1

(
S(i, j)(t)

)
+ 1.

(2) When S(i, j)(t) = 2, when T1
(
S(i, j)(t)

)
< T1, S(i, j)(t + 1) = 2. Otherwise, S(i, j)(t + 1) = 3.

Meanwhile, individual illness time T2
(
S(i, j)(t)

)
= T2

(
S(i, j)(t)

)
+ 1.

(3) When S(i, j)(t) = 3, when T2
(
S(i, j)(t)

)
< T2, S(i, j)(t + 1) = 3. Otherwise, the individual

enters into dead state with probability λ, and S(i, j)(t + 1) = 0; the rest of individuals have
recovered and acquired immunity, and S(i, j)(t + 1) = 4. Meanwhile, individual immunization

time T3
(
S(i, j)(t)

)
= T3

(
S(i, j)(t)

)
+ 1.
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(4) When S(i, j)(t) = 4, when T3
(
S(i, j)(t)

)
≥ T3, individual immunity to the infectious disease

disappears with probability δ. The individual then turns into susceptible state, S(i, j)(t) = 1.
(5) At each time step, all individuals move.

3. Simulation Results and Analysis

Without considering other factors, this paper focused on the influence of three factors, namely,
population density, individual heterogeneity, and mobility on infectious disease spread, and the
SLIRDS model based on cellular automata was constructed. In order to verify the validity of the
model, this paper took pandemic influenza A (H1N1) as an example to simulate the spread process of
pandemic influenza A (H1N1).

In this paper, we used MATLAB simulation software (R2013b, MathWorks, Natick, MA, USA) to
carry out 200 simulation experiments; the simulated curves are realizations of the average from all
simulations. According to the latent and infectious characteristics of pandemic influenza A (H1N1),
the time step of simulation is in days, and the total time is set to T = 40.

The simulated initial number of members of the infected population was consistent with the
actual number of members of the infected population, and we assumed that the proportion of the
initial latent population was 0.15%.

First, the number of members of the infected population in the SLIRDS model simulation
experiments was compared with the actual data of pandemic influenza A (H1N1) in Beijing in
Mainland China (June–July 2009) [24]. The comparison results are shown in Figure 3.
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in Mainland China (June–July 2009).

In Figure 3, the abscissa is the time step of simulation and the ordinate is the number of infected
individuals. The correlation coefficient of the two sets of data is 0.97215 by t-test. It shows that the
simulation results are close to the actual data and that the model is reasonable and effective.

3.1. Influence of Population Density on Infectious Disease Spread

All things being equal, the parameters of two simulations for the SLIRDS model were set as follows:
(1) Population density ρ = 1, susceptible population:latent population:infected population =

0.872:0.107:0.021.
(2) Population density ρ = 0.8, susceptible population:latent population:infected population =

0.6985:0.0855:0.016.
Two simulation results are shown in Figure 4.
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In Figure 4, considering the difference in population base, the number of members of the population
that died, were susceptible, were infected, and were immunized was replaced by death, susceptibility,
infection and immunization rates to describe the changes in population in different states.

From the death rate curve in Figure 4a, it can be seen that the death rate increases with the increase
of population density, but the overall trend is rising and tending to be stable.

From the susceptibility rate curve in Figure 4b, it can be seen that the change in population density
has little influence on the susceptible population, and the susceptibility will first decrease and then
reach a stable value when the population density is large.

From the infection rate curve in Figure 4c, it can be seen that the change in population density
has little influence on the infected population. When the population density is large, the number
of members of the infected population is greater, but the general trend is rising first, then falling,
and finally tends to be stable.

From the immunization rate curve in Figure 4d, it can be seen that the change in population density
has little influence on the immune population. When the population density is large, the immunity
first rises and then reaches a stable value.

According to the above analysis, it is known that when the population density is large, the spread
rate of infectious diseases is faster.

3.2. Influence of Sex Ratio on Infectious Disease Spread

3.2.1. Influence of Infectious Disease Spread under Different Coefficients

All things being equal, the ratio of males to females was 4:1. The parameters of two simulations
for the SLIRDS model were set as follows:

(1) The influence coefficients of infectious disease on males and females were 0.1 and
0.9, respectively.

(2) The influence coefficients of infectious disease on males and females were 0.9 and
0.1, respectively.

Two simulation results are shown in Figure 5.
As shown in Figure 5a, we can see that when infectious diseases have a greater influence on males,

the number of deaths is higher, but the overall trend is rising and gradually stable.
As shown in Figure 5b, we can see that infectious diseases have less influence on susceptible

population under different influence coefficients; when infectious diseases have a greater influence
on females, the number of members of the susceptible population first decreases and then reaches a
stable value.

As shown in Figure 5c, we can see that infectious diseases have less influence on infected
population under different influence coefficients; when infectious diseases have a greater influence on
males, the number of members of the susceptible population first decreases and then reaches a stable
value. However, the overall trend is first rising and then falling, and finally tends to be stable.

As shown in Figure 5d, we can see that infectious diseases have less influence on recovered
population under different influence coefficients; when infectious diseases have greater influence
on males, the number of members of the susceptible population increases first, and then reaches a
stable value.

According to the above analysis, it is known that in cities with more males than females, when
the infectious disease has a great influence on males, infectious diseases have a greater influence on
the population because of the large population base of males. Similarly, there are corresponding
phenomena in cities with more females than males.
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3.2.2. Influence of Infectious Disease Spread under Different Sex Ratios

According to related materials [24], the influence coefficient of pandemic influenza A (H1N1) on
males and females is very different. In simulation experiments, the influence coefficients of pandemic
influenza A (H1N1) on males and females were set to gm = 0.55, g f = 0.35, respectively. The parameters
of two simulations for the SLIRDS model were set as follows:

(1) The ratio of males to females is 4:1.
(2) The ratio of males to females is 1:4.
Two simulation results are shown in Figure 6.
From the death curve in Figure 6a, we can see that when the number of males is large, the number

of deaths is higher, but the overall trend is rising and gradually stable.
From the susceptibility curve in Figure 6b, we can see that under different sex ratios, infectious

diseases have little influence on susceptible population. When the number of females is large, the
number of members of the susceptible population first decreases and then reaches a stable value.

From the infection curve in Figure 6c, we can see that under different sex ratios, infectious diseases
have little influence on the infected population. When the number of males is large, the number of
members of the infected population decreases first and then reaches a stable value.

From the immunization curve in Figure 6d, we can see that under different sex ratios, infectious
diseases have little influence on the immunization population. When the number of males is large, the
number of members of the immunization population increases first, and then reaches a stable value.
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According to the above analysis, it is known that when the number of males is larger in the
cities where infectious diseases affect men more, infectious diseases have a greater influence on
the population.

3.3. Influence of Age Structure on Infectious Disease Spread

Due to factors such as mobility and spatial environment, age structure of the population presents
different distributions. The age structure of a city can be divided into three types: young, adult,
and aged according to the proportion of children, adolescents, youth, middle-aged people, and
elderly people.

According to related materials [24], the influence coefficient of pandemic influenza A (H1N1) on
children, adolescents, youth, middle-aged people, and elderly people is very different. In simulation
experiments, the influence coefficients of pandemic influenza A (H1N1) on children, adolescents, youth,
middle-aged people, and elderly people were set to f1 = 0.65, f2 = 0.58, f3 = 0.46, f4 = 0.37, f5 =

0.68, respectively.
All things being equal, the parameters of three simulations for the SLIRDS model were set

as follows:
(1) Young: children: adolescents: youth: middle age: old age = 0.025:0.05:0.5:0.4:0.025.
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(2) Adult: children: adolescents: youth: middle age: old age = 0.2:0.2:0.3:0.25:0.15.
(3) Aged: children: adolescents: youth: middle age: old age = 0.1:0.05:0.05:0.2:0.6.
Three simulation results are shown in Figure 7.
The death, susceptibility, infection, and immunization curves are shown in Figure 7a–d, respectively.

It can be seen that the number of deaths in the aged cities is the largest. The number of young urban
deaths is only inferior to that of the aged cities, whereas the number of deaths in the adult cities is the
least. However, the overall trend of change is gradually stable after rising for all types of cities. The
difference in age structure of the population has little influence on the susceptible population, and
the number of members of the susceptible population in adult cities decreases first and then reaches
a stable value. The difference in age structure of the population has little influence on the infected
population. The number of members of the infected population in the aged cities is the highest, but the
general trend is rising first and then decreasing for all types of cities. The difference in age structure
of the population has little influence on the immunization population, and the number of immune
individuals in the adult city rises first to then reach a stable level.

According to the above analysis, it is known that infectious diseases spread more slowly in adult
cities than in aged and young cities, but the resistance of young cities to infectious diseases is slightly
greater than that of aged cities.

Int. J. Environ. Res. Public Health 2019, 16, x 14 of 17 

 

According to related materials [24], the influence coefficient of pandemic influenza A (H1N1) on 
children, adolescents, youth, middle-aged people, and elderly people is very different. In simulation 
experiments, the influence coefficients of pandemic influenza A (H1N1) on children, adolescents, youth, 
middle-aged people, and elderly people were set to 𝑓ଵ = 0.65, 𝑓ଶ = 0.58, 𝑓ଷ = 0.46, 𝑓ସ = 0.37, 𝑓ହ = 0.68, 
respectively. 

All things being equal, the parameters of three simulations for the SLIRDS model were set as 
follows: 

(1) Young: children: adolescents: youth: middle age: old age = 0.025:0.05:0.5:0.4:0.025. 
(2) Adult: children: adolescents: youth: middle age: old age = 0.2:0.2:0.3:0.25:0.15. 
(3) Aged: children: adolescents: youth: middle age: old age = 0.1:0.05:0.05:0.2:0.6. 
Three simulation results are shown in Figure 7. 

 

 
Figure 7. Cont.



Int. J. Environ. Res. Public Health 2019, 16, 4683 14 of 16
Int. J. Environ. Res. Public Health 2019, 16, x 15 of 17 

 

 

 

Figure 7. Infectious disease spread state distribution with different age structure. (a) Death rate curve; 
(b) Susceptibility rate curve; (c) Infection rate curve; (d) Immunization rate curve. 

The death, susceptibility, infection, and immunization curves are shown in Figure 7a–d, 
respectively. It can be seen that the number of deaths in the aged cities is the largest. The number of 
young urban deaths is only inferior to that of the aged cities, whereas the number of deaths in the 
adult cities is the least. However, the overall trend of change is gradually stable after rising for all 
types of cities. The difference in age structure of the population has little influence on the susceptible 
population, and the number of members of the susceptible population in adult cities decreases first 
and then reaches a stable value. The difference in age structure of the population has little influence 
on the infected population. The number of members of the infected population in the aged cities is 
the highest, but the general trend is rising first and then decreasing for all types of cities. The 
difference in age structure of the population has little influence on the immunization population, and 
the number of immune individuals in the adult city rises first to then reach a stable level. 

According to the above analysis, it is known that infectious diseases spread more slowly in adult 
cities than in aged and young cities, but the resistance of young cities to infectious diseases is slightly 
greater than that of aged cities. 
  

Figure 7. Infectious disease spread state distribution with different age structure. (a) Death rate curve;
(b) Susceptibility rate curve; (c) Infection rate curve; (d) Immunization rate curve.

4. Discussion

In this paper, we used the idea of a sparse matrix to add population density, sex ratio, and age
structure factors into the SLIRDS model. Population density was set to 1 and 0.8, respectively. All things
being equal, with the increase of population density, infectious diseases spread faster, and infectious
diseases have a greater influence on the population. When analyzing the influence of sex ratio on the
spread of infectious diseases, we considered two factors, namely, different influence coefficient and
different sex ratio. First, the ratio of males to females was set to 4:1. Because of the large population base
of males, infectious diseases have a greater influence on the population when the infection coefficient
is greater. Second, the influence coefficients of infectious diseases on males and females were 0.9 and
0.2, respectively. Because infectious diseases have a greater influence on males, when the number of
males is larger, the influence of infectious diseases on the population is greater. When analyzing the
influence of age structure on the spread of infectious diseases, we simulated three types of population
distribution structure, namely, young, adult, and aged, according to the age structure distribution
ratio. The number of members of the infected population and deaths in the aged cities were the
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largest, and the susceptibility of adult cities to infectious diseases was stronger. That is, the uniform
distribution of age plays a more active role in the spread of infectious diseases.

In order to effectively prevent the spread of infectious diseases in the population, we offer three
suggestions according to the three influencing factors. (1) Population density: the regional economy
should be balanced, the large-scale turnover of personnel should be reduced, the density of urban
population should be controlled, the population in densely populated areas such as schools should be
evacuated during the epidemic period of infectious diseases. (2) Sex ratio: when infectious disease has
a greater influence on a certain sex, or if the sex ratio is larger in the population, attention should be
paid to prevention and treatment with respect to that sex. (3) Age structure: the age structure should be
optimized and the age structure of the city should be stabilized. On this basis, we should pay attention
to prevention and treatment with respect to disadvantaged groups (such as the elderly and children) in
the spread of infectious diseases.

Many factors affect the spread of infectious diseases. This paper only studied the influence of
the above three factors on the spread of infectious diseases. The many factors that must be further
explored in the future include the following: first, the influence of population activity on the spread
of infectious diseases; second, the influence of population size on the spread of infectious diseases;
and third, in view of the analysis of the influence factors, how to implement effective prevention and
control measures against the spread of infectious diseases in specific cities.

5. Conclusions

In order to study the main factors that affect the spread process of infectious diseases, the SLIRDS
model was proposed in this paper. Combined with cellular automata, an epidemic model based on
cellular automata was established. In the simulation experiment, the influence of population density,
sex ratio, and age structure on infectious disease spread was analyzed by comparing the results with
those from the actual spread process of pandemic influenza A (H1N1), and the accuracy of the SLIRDS
model was confirmed.

With research on the spread of infectious diseases, the advantage of using cellular automata to
model complex problems can be used to optimize epidemic models. The system can better analyze
the factors affecting the spread of infectious diseases, and provide better theoretical support for the
prevention and control of infectious diseases.

Because cellular automata cannot reflect every individual’s and their neighbors’ randomness,
there was a lack of individual randomness in the SLIRDS model for the maximum peak of each state for
the different durations. This will be the direction that we take in the future to focus on improvement.
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