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Abstract: To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used
cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein
diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl)
anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which
the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average
concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM2.5) and coarse
(PM10) particles were determined. The results were 44.8 ± 13.7, 9.8 ± 5.1 and 9.3 ± 4.8 µg·m−3 for
PM2.5 and 75.5 ± 25.1, 16.3 ± 8.7 and 11.8 ± 5.3 µg·m−3 for PM10, respectively, for PM, OC and EC.
The water-soluble organic carbon (WSOC) fraction accounted for 42 ± 14% and 28 ± 9% of organic
carbon in PM2.5 and PM10, respectively. The average volume normalized OP values for the three
assays depended on both the sampling periods and the PM fractions. The OPBPEAnit had its peak
at 2 p.m.; in the afternoon, it was three times higher compared to the morning and late afternoon
values. The DCFH and BPEAnit results were correlated (r = 0.64), while there was no good agreement
between the BPEAnit and the DTT (r = 0.14). The total organic content of PM does not necessarily
represent oxidative capacity and it shows varying correlation with the OP. With respect to the two
PM fractions studied, the OP was mostly associated with smaller particles.
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1. Introduction

Atmospheric particulate matter (PM) is a heterogeneous mixture of extremely small particles
and liquid droplets that get into the air [1]. The physical properties and the chemical composition of
PM vary depending on meteorological conditions and emission sources and may contain inorganic
and organic compounds, transition metals etc. [2,3]. The most detrimental effect to health can be
attributed to the presence of respirable particles (RP). It is more prominent in accumulation mode
(~80–1000 nm) due to the small size of particles and their large surface area, which enables them to
have longer residence times in the air and deeper penetration in the lungs. In general, the exposure to
PM is associated with respiratory and cardiovascular diseases, premature delivery, birth defects, low
birth weight and premature death [4–6].

The chemical composition of PM and the determination of its oxidative potential (OP) representing
the capacity of PM to oxidize target biomolecules are closely related to biological responses. The OP is
an important metric used to assess the potential of PM to cause negative health effects [7,8]. Although
the mechanisms of PM-related health effects remain incompletely understood, a leading hypothesis
is that the exposure to PM leads to oxidative stress, induced by the formation of reactive oxygen
species (ROS) within affected cells. ROS can be either exogenous (brought into the cell with PM)
or endogenous (generated inside the cell upon exposure to PM). The presence of these species can
damage important biological macromolecules, such as deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA), causing inflammation and cell apoptosis. At low ROS concentrations, cells are able to
defend themselves against ROS damage through the assistance of antioxidant enzymes, while in the
case that high levels of ROS are introduced to cells, intracellular defense mechanisms are not efficient
and oxidative stress occurs [9]. OP can be determined either via direct measurement of radicals in the
cells using chemical probes or exposure and examination of cells for oxidative stress markers (both
animal and lab cultivated cells) [10].

For their simplicity, fast readouts and easy implementation, cell-free assays are much more
practical for fieldwork and are frequently used in OP measurements [11,12]. Most commonly used
cell-free, molecular probes are dithiothreitol (DTT), dichloro-dihydro-fluorescein diacetate (DCFH-DA)
and ascorbic acid (AA). These probes differ in their sensitivity towards various organic and inorganic
species that contribute to the overall OP as well as their stability and robustness [13]. There is no
consensus on which cell-free assay for offline measurement of ROS is the most appropriate [14].
According to the available literature data, a high DTT activity is related to the presence of redox active
species (metals, quinones, some water-soluble organic carbon (WSOC) and humic-like substances) [15]
and low atmospheric dilutions (e.g., in the case of stagnant air inside a roadway tunnel where
particle-phase semi-volatiles condense under such conditions) [16,17]. Semi-volatile compounds (for
example, polycyclic aromatic hydrocarbons—PAHs), are oxidized to aromatic species, such as quinones,
which have an influence on the ambient PM DTT activity [15]. Venkatachari and Hopke found that the
DCFH assay was more nonspecific to ROS than either DTT or p-hydroxyphenylacetic acid assays [18].
The increasing preference for using DCFH as a probe is probably due to the fact that it can be oxidized
non-discriminatorily by many groups such as RO2

·, RO·, OH., HOCl and ONOO- [19]. The DCFH
assay is simple and inexpensive, but it has some disadvantages that limit its application in real-time
systems. The DCFH dye is unstable, it slowly oxidizes to fluorescent DCF in the air, and it is also
photo-labile [19], which can generate false-positive results and higher background values that increase
over time [20]. In contrast, 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit) has been reported
to detect carbon and sulfur-centered free radicals as well as peroxyl and hydroxyl radicals [21], and it
is stable for a long time towards light and auto-oxidation [22].

A variety of methods in both cell-free (offline and online) [23,24] and cell-based systems (in vivo
and in vitro) are used to collect particles for subsequent ROS measurements [14,25,26]. In general,
OP measurements depend heavily on the method used to collect particles for the OP analysis.
Filter collection is a commonly used offline method, popular due to its excellent collection efficiency,
practicality and low-cost. However, it is necessary to use organic solvents for particle extraction in
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order to achieve a good recovery of particles collected on the filters. Such a procedure can ultimately
lead to biased results. Moreover, the aging of particles on the filter surfaces can cause underestimation
(due to the evaporation of some organic species) or overestimation (if the particles become oxidized) of
ROS, while the use of sonication for extraction can cause chemical changes and thermal degradation of
the compounds present [27].

Numerous publications reported the OP of airborne PM in urban setting near sites exposed to
the traffic, which was assessed by DTT [16,24,28] and DCFH assays [23,29–31]. There are available
literature data with the comparison of different methods for OP estimation [32–34]. However, there are
no literature data concerning the comparison between the OP values measured by online BPEAnit
probe and the offline probes such as DTT and DCFH assays. The aim of this study was to investigate
the OP of PM collected at the Terazije Tunnel with high traffic load, and at an urban background
site. According to our knowledge, this is the first study to evaluate the comparative performance
of common offline DTT and DCFH probes, and the online BPEAnit probe for the estimation of the
OP. Whereas the offline measurements analyzed the OP content from particles collected on filters,
the online measurements were performed by a modified Particle Into Liquid Sampler (PILS) and an
average diurnal OP profile was developed. The diurnal OP profile was done to illustrate the magnitude
of the real-time sampling effect and the scope of the information that can be gathered from online
measurements. Finally, our study focused on the correlation between ROS and carbonaceous species.

2. Materials and Methods

The main aim of the study was to compare the results obtained by three probes for the OP
assessment and to generate the data that may illustrate the probe properties, looking specifically for
the contribution of vehicular traffic, a known source of substances with the high OP. Two sampling
sites were selected: the first one with limited traffic contribution (the urban background, located at
Vinca Institute, with an annual average PM10 concentration of approximately 26 µg·m−3), and the
second one with high traffic contribution (the urban traffic site, located in vicinity of the Terazije tunnel,
with an annual average PM10 concentration of approximately 45 µg·m−3). For offline assessment, the
PM2.5 and PM10 samples were collected with low-volume samplers (LVS3, Sven Leckel, Germany)
operated at each site for three 3-h periods (from 8 a.m. to 5 p.m.). Moreover, the collected filters were
analyzed for elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC),
and DTT and DCFH assays were used to assess the OP. Prior to the study, the sampling time and
frequency were selected regarding to what considered the minimum quantity of PM that would lend
itself to a successful assay analysis. For online assessment, a PILS with subsequent BPEAnit assay was
employed at both sites from 8 a.m. to 5 p.m., obtaining hourly values. This online assay, as well as the
filter collection, were carried out for 8 days at the urban traffic site and for 4 days at the background
site. To make the results comparable, the measured hourly values obtained by PILS were presented as
mean values of the three-hour measurements.

2.1. Sampling Locations

The PM10 and PM2.5 samples were collected at two locations. The first location represented
an urban site, at which the air pollution was highly influenced by vehicle emissions. This sampling site
was located in Belgrade city center. The samplers were installed on a terrace above a pedestrian passage
at the height of 1.5 m above ground, approximately 10 m away from the portal of the 223-meter-long
Terazije Tunnel (see Scheme 1). The tunnel had the west and east portals with two-way traffic.
Each direction had two lanes with no pavement. The average traffic density through the tunnel was
4000 vehicles per hour between 7 a.m. and 10 p.m., which was halved during the night. The second
sampling site was an urban background 15 km away from the city center, at the Vinca Institute, and the
samplers were set in a yard 1.5 m above ground.
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2.4. Sample Preparation 
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used. The extraction procedure from one half of each filter was done with 12 mL of deionized water 
(18.2 MΩ), in falcon tubes using an orbital shaker (IKA® KS 130) at 800 rpm for 90 min. This 
extraction procedure was used because sonication leads to ROS formation. It generates OH radicals, 
which can oxidize particles on the filter (or a solution) and increase the oxygenated organic aerosols 
(OOAs) fraction. This leads to positive artifacts in the reported measurements and can increase the 
reported ROS up to two orders of magnitude [27]. The obtained water extracts were filtered through 
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Scheme 1. The sampling location.

2.2. PM Collection

The sampling campaign at the urban site was carried out from 18 until 29 May 2016, while at the
urban background site it was done from 30th May until the 3rd of June 2016. Identical low-volume
samplers (LVS3, Sven Leckel, Germany) with flow rates of 2.3 m3/h were used for collecting both
fractions. The sampling was conducted in 3-h periods (between 8 a.m. and 11 a.m.; 11 a.m. and 2 p.m.
and 2 p.m. and 5 p.m.). Quartz fiber filters (Whatman® QA-M, 47 mm) were used for the collection
of PM. Fifty-six sets of the filter samples were collected for both sites. All filters were pre-treated at
900 ◦C for three hours, to remove possible contamination, potentially present prior to the sampling.
To minimize errors associated with sampling and analysis, three field blank filters were collected
during this campaign. After the sampling (and before the analysis), all filters were kept in Petri dishes,
wrapped in aluminum foil and frozen at −20 ◦C.

2.3. PM Mass Contraction

PM10 and PM2.5 were determined gravimetrically following SRPS EN 12341 standard (2005).
Before weighing the filters both prior to and after the sampling, they were conditioned at a constant
temperature (20 ± 1 ◦C) and relative humidity (50 ± 5%) during 48 h. All filters were weighed twice
using a microbalance (MYA 5.3Y, RADWAG, reading precision of 1 µg).

2.4. Sample Preparation

The exposed and blank filters were cut into pieces of different shapes and dimensions for further
analyses. For the determination of organic and elemental carbon, a punch area of 1.5 cm2 was used. The
extraction procedure from one half of each filter was done with 12 mL of deionized water (18.2 MΩ),
in falcon tubes using an orbital shaker (IKA® KS 130) at 800 rpm for 90 min. This extraction procedure
was used because sonication leads to ROS formation. It generates OH radicals, which can oxidize
particles on the filter (or a solution) and increase the oxygenated organic aerosols (OOAs) fraction.
This leads to positive artifacts in the reported measurements and can increase the reported ROS up to
two orders of magnitude [27]. The obtained water extracts were filtered through a syringe filter (0.2
µm nylon membrane), and used for WSOC and DTT measurements. DCFH analysis was performed on
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the filters with the surface of 0.739 cm2, as described in the subsection OP measurements (DCFH-DA
assay).

2.4.1. Carbon Analysis

Carbonaceous compounds in PM fractions, OC and EC, were determined by Carbon Aerosol
Analyzer (Sunset Laboratory Inc.), using the thermo-optical transmittance protocol and following the
NIOSH 5040 method. In brief, a filter punch was placed inside a quartz oven and heated passing through
four temperature ramps (from 0 ◦C to 870 ◦C) [35]. The first phase was done in helium atmosphere,
while the second phase was performed in 2% oxygen/helium atmosphere. A He–Ne laser light passing
through the filter allows continuous monitoring of filter transmittance. Laser transmittance was used
to correct the pyrolytically-generated EC. The carbon evolved during both phases was measured by a
flame ionization detector (FID) after the conversion to CH4 inside the methanator. The instrument
calibration was achieved through the injection of a known volume of methane into the sample oven for
each analysis. The calibration constant was checked by a sucrose inner standard at least once each day
when the instrument was used.

2.4.2. WSOC Analysis

The determination of WSOC was done by TOC-VCPN (Shimadzu) organic carbon analyzer using
the non-purgeable organic carbon (NPOC) method. The first step in each analysis was acidifying
a sample by 2M HCl, in a syringe. High-purity air (the carrier gas) was bubbled through the sample
to eliminate carbonate carbon and carbon dioxide [36]. During the second step, the sample was
injected into an oven and catalytically oxidized to carbon dioxide at 680 ◦C. The sample combustion
products were then delivered by the carrier gas to the cell of non-dispersive infrared (NDIR) gas
analyzer, where carbon dioxide was detected. The WSOC concentrations in the extracted samples
were determined using a calibration curve, constructed for a series of potassium hydrogen phthalate
standard solutions (concentration range from 0.4 to 2.8 µg·mL−1). The injection volume both for the
standard and for the analyzed solutions was 30 µL. Each measurement was done in triplicate. In order
to reduce possible bias, the syringe and the sample line were washed before each analysis.

2.5. OP Measurements

2.5.1. DTT Assay

In this study, a slightly modified procedure of Cho et al. [37] was used. The time-dependent
DTT consumption was measured in 15 min time intervals (from 0 to 90 min). The water extracts with
a known PM mass were incubated at 37 ◦C with DTT (100 µM) in 0.1 M potassium phosphate buffer at
pH 7.4 (1 mL total volume). After the incubation, 100 µL of 10% trichloroacetic acid was added to stop
the reaction. An aliquot of 0.5 mL of the reaction mixture was taken and then mixed with 1 mL of 0.4
M Tris-HCl (pH 8.9) containing 20 mM ethylene diamine tetra-acetic acid (EDTA). Finally, this reaction
mixture was shaken for 30 s after the addition of 25 µL of 10 mM 5, 5′-dithiobis-2-nitrobenzoic acid
(DTNB). The concentration of the formed 2-nitro-5-thiobenzoic acid (TNB) product was measured
spectrophotometrically at 412 nm (Perkin Elmer Lambda 35 spectrophotometer). Since such a reaction
is sensitive to light [38], the whole experiment was done in the dark hood. The blanks and samples
were analyzed in duplicates. The rate of the DTT loss for each sample was determined as the slope of
its sample regression line minus the blank slope (according to the Charrier and Anastasio [15]).

2.5.2. DCFH-DA Assay

The preparation of DCFH-HRP reaction mixture: 2 mL of 1 mM DCFH-DA in ethanol was mixed
with 8 mL of 0.01 M potassium hydroxide, and it was left at the room temperature for 30 min to
hydrolyze. After this time, the hydrolyzate was added to 1990 mL of 25 mM potassium phosphate
buffer (pH 7.2), which contained 25 mg horseradish peroxidase (HRP, 179.2 U·mg−1).
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The sampled and blank filters were suspended into an appropriate volume (2–4 mL) of DCFH-HRP
reaction mixture, depending on their particulate mass. The reaction mixture was then sonicated for
15 minutes, since it was established in previous studies [27] that such a procedure will not alter the
chemical composition of PM. This was followed by the 15-min incubation at 37 ◦C. A microplate
reader (1420 VICTOR2, Perkin Elmer Wallac) was used to measure fluorescence at 535 nm (excitation
at 485 nm). The DCFH-DA assay was done for the series of H2O2 standard solutions (from 0.80 to
6.32 × 10−7 M) to obtain a calibration curve. All samples and blanks were analyzed in duplicate and
the results were expressed as H2O2 equivalents.

2.5.3. The Profluorescent BPEA Nitroxide Assay

In this study, a modified version of the PILS was used, based on the design presented by Orsini et
al. [39]. The air (with or without particles) coming into the system was mixed with a flow of steam;
it then exited from an expanded cone and entered a condensation chamber, where the mixture rapidly
cooled down forming a temperature gradient. The steam temperature at the point of injection was at the
maximum of 105 ◦C, while the temperature of the aerosol flow exiting the chamber did not exceed 40
◦C. Due to supersaturated conditions, the particles grew into 1–2 µm water droplets and were captured
into a BPEAnit assay inside a vortex collector. The 1 µM BPEAnit was continuously introduced at
the flow rate of 0.28 mL min-1 to react with the grown, condensed particles. The exiting liquid was
collected at the same flow rate and analyzed by an in-line fluorometer (USB2000+, Ocean Optics) with
Spectra Suite software at 484.79 nm (excitation at 430 nm). A calibration curve was created from 10 nM
to 200 nM concentrations of BPEAnit-Methyl (a representative fully fluorescent probe-adduct species)
was used to convert the fluorescence intensity generated in the sample into units reflecting ROS activity
as in previous studies [22,40]. All the liquid flows were delivered using a peristaltic pump. The flow
rate of the system was set to 5 L·min−1. The collection was done in a wetted wall cyclone, with a
DMSO solution of the BPEAnit probe being the collection liquid. The collection time for each sample
was 15 min, while the collected volume was 6 mL. The sampling of particles was done every 60 min.
The fluorescence of the previously collected sample was measured, while HEPA filter was placed at
the inlet of the instrument in order to do a background correction for the gas phase without particles.
These measurements were done in the same way as for the gas phase with particles both before and
after each particle-phase sampling. The value corresponding to the contribution of particle-phase
activity was obtained by subtracting the fluorescence values recorded for non-filtered and filtered air.

To obtain comparable results of the BPEAnit probe with the samples collected on quartz filters,
the sampling and measuring by PILS was done between 8 a.m. and 6 p.m.

2.6. Statistical Analysis

The relationships between variables were estimated using linear regression. The regression
analysis was used to evaluate the relationship of the OP to the OC and to the EC. This was done
to see if the estimated OP values depended on the OC content or on the primary vehicle pollution,
well represented by EC emissions. In addition, the regression analysis was used to compare the trends
among the OP values measured by different chemical probes. The observations derived from each
type of the OP test were plotted against each other (points) together with an estimated regression line
(solid line), and a 95% confidence interval associated with the estimate (grey area).

3. Results and Discussion

3.1. OC, EC and TC Concentrations

The OC, EC and TC concentrations were determined according to the procedure described in
the subsection Sample preparation (Carbon analysis). The samples were taken at regular intervals,
three times per day: in the morning, at noon and in the afternoon. The results for PM2.5 and PM10 and
carbonaceous compounds are shown in Figure 1.
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Figure 1. Daily dependence of OC (light grey color), EC (grey color) and PM mass concentrations
(black circles and lines) of PM2.5 and PM10 in the morning, noon and afternoon, at the urban traffic site.

In the PM2.5 fraction, the values for OC and EC were approximately 30% lower in the morning
than in the afternoon, although both sampling periods can be considered as the peaks in the traffic.
These results can be explained by the deeper mixing of boundary layers in the afternoon. In addition,
during the second week, the morning OC and EC values were 15% lower in comparison to the first
week, while the noon and the afternoon values were approximately 50% higher. In contrast to EC,
the OC values were either the same (morning and noon) or 10% higher (afternoon). In the PM10

fraction, the EC and OC concentrations were similar in the morning and at noon, while the afternoon
values were slightly higher. During the second week, the morning OC and EC values were 6% lower,
and approximately 40% higher at noon and in the afternoon, in comparison with the corresponding
periods in the first week. It was also observed that the OC concentrations in PM10 fraction were, in
most of the cases, 25–50% higher than the EC, which was more prominent in the second week of
the sampling. The ratios of the PM2.5 and PM10 values for OC and EC were approximately 60% and
80%, respectively.

Table S1 (in Supplementary Material) shows that the OC concentrations varied between 4.37 µg·m−3

and 22.52 µg·m−3 in the PM2.5 fraction, while they were slightly higher, between 6.89 µg·m−3 and 38.77
µg·m−3, in the PM10. The EC concentrations ranged from 2.59 µg·m−3 to 22.80 µg·m−3 in PM2.5 and
from 3.96 µg·m−3 to 23.89 µg·m−3 in PM10. The TC and the mass concentration trends were in good
agreement for both PM2.5 and PM10. At the background site, as expected, the concentrations for OC,
EC and TC were much lower than at the urban traffic site although they showed the same trends.

In Table S2, the results obtained in this study were compared with the available literature data. The
reported OC and EC concentrations varied depending on the length of the tunnel, traffic flow, types of
motor vehicles and ventilation in the tunnel. In most studies, the average OC and EC concentrations
were higher than the values obtained in this study. However, taking into account that the Terazije
Tunnel is shorter than the other tunnels presented in Table S2, the average OC and EC concentrations
are considered high and comparable with the values recorded for the longer tunnels with more intense
traffic flow. A possible reason for higher OC and EC values lies in the fact that the Terazije Tunnel is
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an urban tunnel with heavy traffic flow, especially during rush hour. Additionally, a huge number
of diesel vehicles without any after-treatment devices (pre-European emission standard-IV) are still
present in Serbia.

The concentrations of the WSOC fraction in PM2.5 for all sampling periods were in the range from
3.23 µg·m−3 to 4.72 µg·m−3, while the average WSOC/OC ratio was 0.42 ± 0.14. In the PM10 fraction,
the WSOC concentrations ranged from 2.69 µg·m−3 to 6.56 µg·m−3, while the average WSOC/OC ratio
was 0.28 ± 0.09.

3.2. OPDTT and OPDCFH Measurements and Their Correlation with PM Components (OC, EC and WSOC)

As described in the subsection OP measurements, the OP of the soluble fraction of PM was
measured by DTT and DCFH assays. These results were normalized per PM mass and then correlated
with the OC, EC and WSOC. Firstly, it can be observed that the OP at the busy tunnel site, measured by
both the DTT and DCFH (OPDTT and OPDCFH), was of similar intensity in both fractions. This could
indicate that the OP was carried by the species found on particles within a very large range of sizes,
which was particularly pronounced for the DCFH assay [32].

At the urban background site Vinca, the OP detected by the DTT, normalized per mass of PM,
was similar in the PM2.5 and PM10 phases, but as PM10 contained a larger mass in comparison to
PM2.5, this indicates that most of the OP is associated with the PM2.5 phase. Simonetti et al. [32]
have already reported that the DTT assay is more sensitive to particles belonging to a fine mode.
Moreover, Janssen et al. [24] obtained similar results for an urban background site. The ranges of
OPDTT and OPDCFH values normalized per PM mass and per volume of air, as well as the average
values with standard deviations are shown in Table 1. The difference between OPDTT in both fractions
as well as between OPDCFH, were analyzed for its statistical significance with Student’s t-test. For
both assays (DTT and DCFH) there was a statistically significant difference between PM2.5 and PM10

fractions (p < 0.05).

Table 1. Minimal, maximal and average OPDTT and OPDCFH values normalized per PM mass and per
volume of air.

Oxidative Potential
PM2.5 PM10

Min Max Average ± std Min Max Average ± std

OPDTT

pmol DTT
(min·µg)−1

5.06 20.90 9.43 ± 4.27 0.18 13.39 6.66 ± 3.90

OPDCFH

nmol H2O2 eq·µg−1 0.03 0.40 0.09 ± 0.09 0.02 0.21 0.05 ± 0.05

OPDTT

pmol DTT
(min·m3)−1

153.03 638.17 365.67 ± 149.74 20.99 1059.72 457.82 ± 290.81

OPDCFH

nmol H2O2 eq·m−3 0.62 6.38 3.14 ± 1.65 0.83 7.25 3.20 ± 1.60

Both OP methods showed almost the same inter-day variability. The results obtained by the DTT
assay were generally quite low but in agreement with several previous studies [41–43]. The OPDCFH

were in the same range as in the studies of See et al., Khurshid et al. and Perrone et al. [23,30,44].
Similarly, the results recorded for OPDTT were in line with previous studies [42,45]. Comparison of
OPDTT and OPDCFH obtained in this study with literature data can be seen in Tables S3 and S4 in the
Supplement. The higher values obtained for OPDCFH in comparison to OPDTT indicated that both of
these assays were sensitive to different PM composition and could be dependent on a number of factors.
One of the possible explanations for these results can be attributed to the fact that some potential
species, which can contribute to the OP, remained in a residual fraction that was not examined in the
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DTT assay. Moreover, the DTT activity in the water-soluble fraction mostly depends on the metal
content and organic species from combustion [46]. According to the literature, there are references
that deal with the issue of soluble/insoluble part of PM, different extraction procedures as well as the
correlation between soluble and insoluble fraction [47–50].

In addition, offline measurements by DCFH predominantly depend on ozone
concentrations, temperature, solar radiation, sulfate, nitrate and certain transition metals [23,44].
Finally, several studies also found a good correlation with OC for both assays [37,44,51,52].

In Figures S1–S3 in the Supplement, DTT and DCFH measurements were presented as the amount
of probe reacted, not normalized per mass of PM and then correlated with the mass of OC, EC and
WSOC of corresponding samples. It can be observed that the OP did not correlate with the OC at
the background site, while this correlation was modest at the busy tunnel site. Furthermore, a closer
observation of the OC values reveals that one part of the OC mass that was contained in PM10 fraction
did not have OP measurable by either DTT or DCFH. The measured OC values were extremely low at
the background site, especially in the PM2.5 fraction. This further confirms the findings that not all the
organic species contribute to the OP and also that not all of them are equally reactive and potent [40].
The DTT and DCFH measured amounts were similar at both sites, although the concentration of EC
was much higher near the tunnel. As mentioned before, EC did not contribute to the measured OP.
However, if EC is used as a marker for the traffic, an increase in the EC-correlated OP is an indicator
that traffic-related sources are contributing to the OP. At the background site, the samples with very
low EC concentrations showed a high OP as measured by DTT, and no correlation with EC was noticed.
This may indicate that the measured OP did not come from combustion sources at the background site.
As it was shown that the correlation between the OC and OP was not particularly strong, it can be
assumed that not all the species in the OC fraction carried a detectable OP.

Finally, WSOC did not contribute to the species originating from primary sources and fresh
exhaust and containing a detectable OP, as shown in Figure S3. The sampled particles did not have
enough time to be aged photochemically; thus, the correlation with WSOC was modest, as previously
noticed by Verma et al. [53].

In Figure 2, the OP, as measured by DCFH and DTT but normalized per unit mass, was presented
as a function of the OC/EC ratio. The OC/EC ratio was used as a measure of the fraction of organic
carbon in PM. It can be seen that the OPDCFH rises with the increase of the OC/EC ratio, showing that
the species that contributed to it were definitely organic. It can also be seen that the same did not
apply to the DTT measurement, indicating that something else was the OP carrier. Some recent studies
also report a lack of correlation between OC and DTT, citing the presence of traffic-related transition
metals as a possible reason [44,54]. However, such presence was not observed at the background site.
Finally, it can be concluded that these assays may detect different species on particles and that the
information they provide is contradictory in many cases. To obtain a better insight into the potential
toxicity of PM, DCFH and DTT results should be combined, providing a more holistic assessment.
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3.3. Diurnal OP Profiles at the Busy Urban Site Measured by BPEAnit

The oxidative potential at the busy urban site was estimated by profluorescent BPEA nitroxide
assay as previously mentioned in the subsection OP measurements (the profluorescent BPEA nitroxide
assay).

Figure 3 shows diurnal profiles of the OP measured by BPEAnit in particle phase at the busy tunnel
site in Belgrade city center. The OP was normalized per volume of air sampled, which represented the
actual exposure better than the OP normalized per mass. The process was used to explore the nature
of the ROS captured and its correlation with the sources and the sampling conditions. The OP was at
its peak at the 2 p.m. rush hour. In the morning, it increased and remained more or less stable until
1 p.m., when it dropped by 30%. After the afternoon peak, the ROS concentration decreased steadily
until 6 p.m. The OP measured during the afternoon rush hour was three times as high as the morning
and late afternoon values. A diurnal OP profile illustrates the magnitude of the real-time sampling
effect and the information that can be gathered from online measurements. Real-time systems allow
us to detect the parts of the day when toxicity of the air is the highest and then to track the change
throughout the day. Although PM-bound ROS cannot be used as a direct measure of toxicity, it can
be used as a proxy for potential toxicity. Stevanovic et al. [22] measured PM-bound ROS of filtered
(gas-phase) and non-filtered (neat) diesel and biodiesel exhaust and compared it to the results of direct
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human lung cells exposure. They found that both diesel exhaust significantly reduced cell viability
and that the exposure resulted in a significant increase in inflammation, as showed by the increase
in Interleukin 8 (IL-8) secretion and BPEAnit measurements. Real-time systems also facilitates our
understating of OP values, i.e., their relationship with the meteorological factors, proximity of traffic or
point sources, topography of the terrain, as well as the composition of primary emissions in general.
As air is a dynamic system, only real-time monitoring can address these challenges.
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the morning for PM2.5 and in the afternoon for PM10. The OPV

norm
DTT for PM2.5 at noon and in the

afternoon were lower than in the morning rush hour by 24.8% and 11.7%, respectively. The OPV
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values for PM10 (in the morning and at noon) were, respectively, 50.9% and 34.1% lower than in the
afternoon. In general, the DTT activity depends on the presence of redox active species and atmospheric
dilution [15–17]. A possible reason for the maximal OPV
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of many groups such as RO2

·, RO·, OH., HOCl and ONOO- [19] contribute to the DCFH assay, while the
DTT assay is more sensitive to redox active organic compounds (such as phenanthroquinone) or
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some transition metals (such as Cu, Mn and Fe) [15]. As shown in Figure 4, the average normalized
values of DTT and DCFH during the three sampling periods were the opposite. This is also the direct
confirmation that these probes are sensitive to different species.
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The ratio of the OPV
norm

DCFH values for two PM fractions (OPV
norm

DCFH PM2.5/ OPV
norm

DCFH

PM10) was maximal in the afternoon (1.43 ± 0.57) and minimal in the morning (0.73 ± 0.24).
Finally, the average normalized OP value measured by BPEAnit was maximal at noon. Compared
to the noon value, the average normalized OPBPEAnit values (OPV

norm
BPEAnit) in the morning and in

the afternoon were 32.9% and 23.8% lower, respectively. The maximal OPV
norm

BPEAnit value at noon
indicated that the concentration of peroxyl, hydroxyl, carbon and sulfur-centered free radicals were
the highest during the noontime [21]. Besides, it can be seen in Figure 5 that the OP determined by
DTT and DCFH assays was higher for smaller particles.

In order to compare the OP measured by the BPEAnit probe with the two other probes (DTT and
DCFH), the BPEAnit readings were averaged over the same sampling period as for the other two probes.
As can be seen from Figure 5, the correlation between the BPEAnit and the DCFH probes is moderately
strong (r = 0.64), which is expected considering that these two probes detect similar species in the air
(e.g., peroxy radicals) [13,19,55]. Additionally, the agreement between the OP trends measured by
BPEAnit and DCFH is much better than between BPEAnit and DTT. On the contrary, the correlation
between BPEAnit and DTT is modest (r = 0.14), and again related to the sensitivity of these probes
and the difference in the sampling approach. The correlation between DTT and BPEAnit found in
this study is much lower than previously reported in the study by Hedayat et al. [56], which can be
attributed to the difference in the particle composition between real-world and laboratory-controlled
emissions. In addition, Hedayat et al. [56] measured fresh emissions directly coming from one source
(a diesel vehicle), while in this study the emissions from a number of different vehicles, both petrol
and diesel, were thoroughly mixed before sampling. There is also the possibility of some atmospheric
aging that could have further influenced this correlation. The advantage of BPEAnit in comparison to
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the other two assays is its sensitivity to a broad range of ROS and stability towards auto-oxidation and
light. Furthermore, the sampling technique enables direct detection of PM-bounds ROS and also ROS
contained in the gas-phase, which was shown to carry toxic potential comparable to the one found
in the particle phase. In addition, DCFH and DTT assays require longer reaction time, even when
applied in real-time measurements [57,58]. Both DTT and DCFH have shown association with various
toxicological effects, while a similar association has not yet been investigated in the case of BPEAnit.
For this reason, future research should be focused on more extensive investigation of the association
of the ROS obtained by BPEAnit with potential health and toxicological effects. Appling several
probes parallel provides more comprehensive insight into the toxicity of particles and artifacts of
individual probes could be minimized. Although these methods cannot directly provide insight into
the toxicological effects, they represent a good tool for predicting ROS formation and estimation of
potential health risks. Since BPEAnit and DCFH assays measure the amount of ROS that is present
on and/or within PM while DTT assay measures the ability of PM to generate ROS, they represent
complementary methods.
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4. Conclusions

In this study, the OPDTT and OPDCFH of two PM fractions were assessed and compared with the
OP results obtained by BPEAnit probe. To the best of our knowledge, this is the first study that directly
compares the performance of these offline probes with the online BPEAnit probe. The sampling was
done in the proximity of a busy urban tunnel and at an urban background site.

The average concentrations of both PM fractions and their OC and EC concentrations were
44.8 ± 13.7, 9.8 ± 5.1 and 9.3 ± 4.8 µg·m−3 (PM2.5) and 75.5 ± 25.1, 16.3 ± 8.7 and 11.8 ± 5.3 µg·m−3

(PM10), respectively. The WSOC fraction accounted for 42 ± 14% and 28 ± 9% of OC in PM2.5 and
PM10, respectively. It was observed that the total organic content of PM does not necessarily represent
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the oxidative capacity and that depending on the source, it can correlate with the OP in different
ways. The correlation between the OPDCFH and the organic content was higher than the corresponding
correlation between the OPDTT and the OC. Since the correlation between the OP and EC was positive,
the traffic is attributed to be the main source of EC; however, EC was not the carrier of the OP. A strong
relationship between the OP and WSOC was not observed. The average normalized OP values for
three assays depended on both the sampling periods and PM fractions. Most of the detected OP was
contained within the PM2.5 fraction. The OPDCFH and OPBPEAnit results demonstrated a moderately
strong correlation (r = 0.64), while there was no good agreement between OPBPEAnit and OPDTT (r =

0.14). Still, considerable work remains to be done in order to standardize the sampling methodology
and the detection of a wide range of ROS species.
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