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Abstract: Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from
the manufacture of plastics to food contact applications, children’s toys, and medical devices. People
and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic
exposure), as these compounds can be easily released from plastics to water, food, soil, air, making
them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites
have proven to be of concern, particularly in products for pregnant women or children. Moreover,
many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil,
ready-to-eat meals, and other products, as a possible consequence of their accumulation along
the food production chain and their accidental release from packaging materials. However, due
to their different physical and chemical properties, phthalates do not have the same human and
environmental impacts and their association to several human diseases is still under debate. In this
review we provide an overview of phthalate toxicity, pointing out the health and legal issues related
to their occurrence in several types of food and beverage.

Keywords: phthalate acid esters; food and beverage contamination; phthalate exposure and
health outcomes

1. Introduction

The continuous exposure to different types of chemicals present in the environment and to
which humans are exposed during their daily activities may adversely affect human health, and thus
represents a global issue. Phthalates (PAEs) are esters of phthalic acid widely spread in many industrial
applications, being the main plasticizers used in the polymer industry since the 1930s. They are
usually added to plastic materials, such as polyvinyl chloride (PVC), polyethylene terephthalate (PET),
polyvinyl acetate (PVA), and polyethylene (PE), at the percentage of 10% up to 60% of PAEs by weight,
in order to improve extensibility, elasticity, and workability of the polymers.

PAEs are of great economic and commercial interest thanks to their diverse applications in
plastic-based consumer products, such as building materials (flooring and wall coverings, and electric
cables), baby toys, clothing, printing inks, packaging materials, pesticides, personal care and cosmetics,
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pharmaceuticals, as well as medical devices. The structure of the most commonly used PAEs is shown
in Table 1.

Table 1. Chemical structure of common phthalates and their main applications.

Chemical
Name Structure Use

Diethyl
phthalate

(DEP)
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Table 1. Cont.

Chemical
Name Structure Use

Di-n-butyl
phthalate

(DBP)
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There is a mounting concern about the ability of PAEs to disrupt hormones and negatively
regulate reproductive apparatus [1]. Moreover, due to their environmental persistence and, therefore,
bioaccumulation along the food chain, they are considered highly risk pollutants for their negative
impact on the environment and living organisms. PAEs can enter food via several routes, i.e., oral,
nasal, and transdermal [2]. In addition to their release into the environment during the productive
up to the elimination route of plastic-based products, these compounds can easily migrate into food
and beverage from various food contact materials during processing, storing, transportation, and
preparation. Therefore, in recent years, the diet through PAEs-contaminated food intake and drinking
water has been considered the major route of human exposure [3], accounting for more than 67% [4].

In addition to incidental intake of environmental contaminants present in the soil, water, and
air, mouthing of phthalate-containing products, other sources of exposure are the dermal route,
through skin absorptions from cosmetic and clothing, and intravenous injection [5]. In a recent
cross-sectional study, a number of PAEs metabolites have been evaluated in pregnant women’s hair
in Crete, namely monoethylhexyl phthalate (MEHP, 68%) and monoisobutyl phthalate (MiBP, 40%)
that were likely associated with the use of cosmetics and plastics [6]. Recently, the importance of
determining the presence of PAE in food, beverages, and in their packaging has become increasingly
evident. Thus, different analytical methods have been developed to determine PAEs in different
matrices [7–16] and many studies have been carried out in order to determine the risk correlated to
phthalate contamination in foodstuffs, even though their association with the onset of several diseases
is still controversial [17–19].

Based on these premises, this review is aimed at provide an overview about the variable presence
of phthalates within beverages (alcoholic beverages, soft drink, and mineral water) and food items
(edible oils and fats, dairy products, meat and poultry, and edible plants); thus, contributing to
the current knowledge and understanding about the migration of phthalates along the food chain, and
by taking into account their impact and adverse health effects.

2. Physical-Chemical Properties and Applications

Phthalates are a wide class of diesters (dialkyl or alkyl/aryl esters) of ortho-phtalic acid
(1,2-benzenedicarboxylic acid) (Table 2) with different physical-chemical properties accounting for
many potential uses.
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Table 2. List of abbreviations of the most common parent phthalates and their metabolites.

Phthalate Abbreviation Formula

Benzyl-butyl Phthalate BBP C19H20O4

Di-butyl Phthalate DBP C16H22O4

Di-cyclohexyl Phthalate DCHP C20H26O4

Di-ethyl Phthalate DEP C12H14O4

Di-etylhexyl Phthalate DEHP C24H38O4

Di-isobutyl Phthalate DIBP C16H22O4

Di-isodecyl Phthalate DIDP C28H46O4

Di-isononyl Phthalate DINP C26H42O4

Di-methyl Phthalate DMP C10H10O4

Di-n-octyl Phthalate DnOP C24H38O4

Mono-n-butyl phthalate MnBP C12H14O4

Monobenzyl phthalate MBzP C15H12O4

Monocarboxy-isononly phthalate MCNP C18H24O6

Monocarboxyoctyl phthalate MCOP C17H22O6

Mono-(3-carboxypropyl) phthalate MCPP C12H12O6

Mono(2-ethyl-5-carboxypentyl) phthalate MECPP C16H20O6

Mono(2-ethyl-5-hydroxyhexyl) Phthalate MEHHP C16H22O5

Mono(2-ethylhexyl) Phthalate MEHP C16H22O4

Mono(2-ethyl-5-oxohexyl) Phthalate MEOHP C16H20O5

Mono-ethyl phthalate MEP C10H10O4

Monoisobutyl Phthalate MiBP C12H14O4

Monoisononyl Phthalate MINP C17H24O4

Mono-methyl Phthalate MMP C9H8O4

Mono-methyl Phthalate MNOP C9H8O4

They are manufactured by a reaction of phthalic anydride with various alcohols starting from
methanol and ethanol for the smaller compounds, up to iso-decanol straight chain or with some
branching [20]. At room temperature, they are almost colorless, odorless oily liquids and are increasingly
fat soluble (lipophilic) depending on how long their chain is. Their low melting point and relative high
boiling point make them very useful as plasticizer, heat-transfer fluids, and carriers in the polymer
industry. Both linear and branched esters are used in the manufacture of plastic, in particular linear
esters provide superior flexibility at low temperature and have also lower volatility [21]. According
to the length of the R and R’ side chains, they are classified into Low Molecular Weight PAEs (LMW
PAEs) and High Molecular Weight PAEs (HMW PAEs).

LMW PAEs include those with 3–6 carbon atoms in their side chain, namely di-n-butyl phthalate
(DBP), benzyl butylphthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP). They are used in PVC
products, as well as medical devices, adhesive, paints, printing inks, and enteric-coated tablets. PAEs
with shorter alkyl chain, such as di-methyl phthalate (DMP) and diethyl phthalate (DEP), are widely
used as solvents and fixatives in fragrances, additives in cosmetics, medical devices, and household
and personal care products. DMP and DEP allow perfume fragrance to evaporate more slowly; thus,
making the scent linger longer [22].

HMW PAEs with R and R′ from 7 to 13 carbons include mainly di-isononyl phthalate (DINP) and
di-isodecyl phthalate (DIDP). They are largely used in industry as plasticizers to increase softness,
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flexibility, elongation, and durability of rigid polymers such as PVC. They represent the 80% of PAEs
used in Europe for plasticized products such as wire and cables, flooring, wall covering, self-adhesive
films or labels, synthetic leather, coated fabrics, roofing membranes, and automotive applications. For
PAEs with the same molecular weight, branched alkyl chains molecules such as DEHP, BBP, and DINP
are very suitable for manufacturing PVC and other resins in order to improve flexibility and general
handling properties of the polymer molecules [23]. PAEs act as lubricants because they are bound to
PVC through weak electrical bond, reducing the intermolecular forces and viscosity, lowering their
glass transition temperature, and thus permitting polymer molecules to slip and slide one another. In
PVC materials, the total amount of DEHP, DBP, and BBP used as plasticizers adds up to 30–60% [24,25].

Because of their widespread industrial application, PAEs are ubiquitous contaminants in
all the environmental compartments: air (atmospheric aerosols and indoor air), river, marine
water/sediments, soil (sludge from sewage and wastewater treatments), and biota [4]. Indeed,
they have no chemical linkage with the polymer system and can be lost over time and released
into the surrounding environment during production, transport, storage, manufacture, and use and
disposal of plastic polymers. The behaviour and fate of PAEs in the environment or in the food chain,
as well as their exchange between the different reservoirs depend on a few physico-chemical properties
including water solubility (Sw), vapor pressure (Vp), Henry’s-constant (H), air–water partitioning,
octanol–air partitioning (Koa), octanol–water partitioning (kow), organic carbon partitioning (koc),
their degree of lipophilicity, and abiotic degradation/biodegradation processes [26].

In aquatic system, leaching, drainage, and atmospheric deposition are the major source of PAEs.
They are present both in dissolved phase and associated with the Suspended Solid Matter (SSM).
DMP, DEP, DBP, BBP, DEHP, and di-n-octyl phthalate (DnOP) are among the most frequently detected
in surface water (seawater and freshwater). DBP and DEHP are predominant in fresh and marine
water. Biodegradation is the most important process from the removal of PAEs from waters. Thus,
the biodegradation of PAEs varies depending on the density and type of species. Generally, they are
likely to biomagnify up to the food chain [20]. In sediment, DBP and DEHP are found in abundance.
DEP, DBP, and DEHP are predominant in sludge and compost as they bind to organic particles.
Microbial action is thought to be the principal mechanism for PAEs degradation both in aquatic
and terrestrial systems. PAEs with short alkyl chains are more easily biodegraded and mineralized;
however, PAEs with longer alkyl chains could be transformed to compounds with shorter alkyl chains
during composting.

In soil, DBP and DEHP are the most abundant PAEs as a result of atmospheric deposition
and sewage sludge amendment. According to Vikelsøe et al., there is a correlation between PAEs
concentration in soil and the level of sludge amended [27]. Generally, non-cultivated soil contains lowest
PAEs, suggesting that these types of pollutants are largely derived from human agricultural activities.
Moreover, plastic films in agricultural production, such as plastic sheets and plastic greenhouses, are
considered important sources of PAEs in soil.

In air, PAEs are present both in the gas and dust phases. DIBP and DBP are abundant in the gas
phase, while DEHP is predominant in the dust phase. More specifically, their concentrations are
present at higher levels in urban center as a result of anthropogenic activities [28]. In addition to their
impact on the environment, PAEs remain under debate for their toxicity to animals and humans. Some
phthalates bioaccumulate and are found in aquatic invertebrates, fish, and amphibians that have lived
in phthalate polluted water environments. Numerous studies have focused on the ecotoxicology of
PAEs in biota including aquatic organism and rodents, a useful model to investigate toxicity in humans.

The aquatic toxicity of PAEs is strongly influenced by their physical-chemical properties Their
Sw, evaluated with the kow, influences their aquatic toxicity, bioaccumulation, and biodegradation.
The kow, a measure of lipophilicity, increases as the number of carbon atoms increases on side chain,
making PAEs with longer chain more bioaccumulative to organisms. However, high hydrophobic
compounds (log Kow > 6) do not follow the same patterns. The acute and chronic toxicity data show
that while the lower phthalates (<C6) demonstrate toxicity, the higher phthalates (≥C6) have a reduced
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toxicity to aquatic organism (fish, algae, and invertebrates) even at concentrations up to the limit
of solubility.

To sum up, LMW phthalates display bioaccumulation factors (BAFs) that are greater than
predicted from a lipid–water partitioning model and there are specie-specific differences in metabolic
transformation capacity across aquatic organisms. On the other hand, PAEs with intermediate
molecular weight (i.e., DBP and BBP) have bioaccumulation patterns that are consistent with the general
lipid–water partitioning model, whereas HMW phthalates, such as DEHP, tend to have lesser BAFs
as a result of tropic dilution in aquatic organisms. At higher log Kow and, consequently, log Koc,
chemicals are less absorbed by aquatic organisms; hence, BAFs are reduced resulting from both
lower permeability and increased rates of biodegradation or metabolism. Therefore, the ecotoxicity
of HMW PAEs is lower than those of LMW PAEs and their effective concentration in body decreases
with increasing alkyl chain length [29,30]. PAEs that end up with three to eight carbons in their
alkyl side chain have received the most scrutiny since they have been associated to reproductive and
developmental effects in lab animals [31].

3. Toxicological Aspects and Human Health Effects

Widespread exposure to PAEs is posing a great concern regarding their impact on human health.
Over the last two decades accumulating evidence suggest that these compounds, upon transformation
into primary and secondary metabolites, would act as suspected endocrine disrupting chemicals (EDC),
by interacting with different endocrine molecular signaling pathways. Thanks to several methods
of human biomonitoring, which allow the detection of biomarkers, see parent compound and their
derived metabolites in biological matrices, many researchers tried to highlight the suspected role of
PAEs in a wide range of pathophysiological human conditions (Figure 1).
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Figure 1. Effects of Phthalates on Human Body.

So far, exposure to PAEs has been correlated to a number of health issues, i.e., endocrine and
reproductive dysregulation, [32], early puberty, endometriosis, sex anomalies, infertility, altered fetal
development, breast and skin cancer, obesity, type II diabetes [33,34], attention-deficit hyperactivity
disorder, autism spectrum disorders, cardiotoxicity [35], hepatotoxicity, nephrotoxicity [36], asthma,
and allergy [37]. Once absorbed, PAEs undergo chemical transformation via hydrolyzation by esterase
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or lipase into their respective monoesters or PA and, in a second phase, via sulphonidation or
glucuronidation before being excreted [38]. In the attempt to assess the risk referred to phthalate
exposure, US EPA and other scientific bodies established a reference dose (the tolerable daily intake;
TDI) expressed in microgram (µg)/kilogram (kg) body weight (bw)/day (d) of phthalate as follows: 3500
for mono-methyl phthalate (MMP), 800 for DEP, 100 for DBP, 200 for BBP, 80 for ΣDEHP metabolites,
120 for DINP, and 3500 for DnOP. Phthalate esters (DEHP, BBP, DNBP, and DIBP) are present in
the Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) Candidate List
within the section “Substances of Very High Concern” (SVHC). That is, levels of exposure to DEHP
metabolites (mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), MEHP, and mono(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP)) should be within 20 µg/kg bw/d [39]. It has been estimated that, in normal life,
humans are exposed to ≥1.0 g/day of phthalates. As PAEs are quickly metabolized and excreted,
the assessment of these compounds in urine is considered appropriate. Noteworthy, children and
adults respond in a different manner to PAEs exposure, as a consequence of children’s hand-to-mouth
habit that would easily make them ingest DEHP [40,41].

In this work, we reported several epidemiological, as well as in vitro and in vivo studies evaluating
phthalate impact in different human health systems, and the putative molecular mechanisms underlying
their toxicity.

3.1. Phthalates and Endocrine Toxicity

The decline in human fertility over the past decades, putatively associated with environmental
causes, has aroused worldwide attention to this issue. Subfertility represents a health and social issue
affecting an increased number of individuals, 25–30% of which are males. Interestingly, in a study
carried out by Minguez-Alarcon et al., they analyzed, in a population of American males, the correlation
between PAEs exposure and the decline of sperm concentration and count of 37% and 42%, respectively,
in a specific temporal range (2000–2017) [42]. Many studies reported the role of PAEs in the reproductive
toxicity, through the modulation of testicular Leyding and Sertoli cell functions, which are responsible
for spermatogenesis, steroidogenesis, and structural/metabolic support of developing germ cells; thus,
leading to reproductive failure [43–45].

PAEs are considered as endocrine disruptors, being able to negatively modulate hormonal
functions and pathways [46,47]; thus, interfering with estrogens and thyroid hormones [48,49]. Indeed,
DEHP/MEHP and DBP/BBP/mono-n-butyl phthalate (MBP) can interact with estrogen receptor-1
(ESR1) in humans [50]. Moreover, these metabolites are able to bind to progesterone receptor (PR);
thus, competing with endogenous steroid hormones [50].

In males, PAEs can be responsible of the so-called “phthalate syndrome” or “testicular dysgenesis
syndrome”, accounting for cryptorchidism hypospadias [44], reduced anogenital distance, altered
seminal parameters, infertility [46], and testicular cancer [51]. The molecular mechanism underlying
the “phthalate syndrome” might be referred as the ability of these compounds to interact with
the hypothalamic-pituitary-gonadal axis (HPG axis) and to take part in signaling pathways involved in
steroid homeostasis and biosynthesis [52]. The mentioned syndrome may also occur upon functional
impairment of Sertoli, resulting in the inhibition of meiosis, spermiogenesis, and testosterone production
by Leydig cells mediated, among others, by oxidative stress [53] and insulin-like growth factor 3(Igf-3)
suppression [54]. In particular, it has been shown that cell exposure to MEHP (200 µM for 24 h)
triggered an oxidative stress response in rat prepubertal Sertoli cell cultures by increasing lipoperoxides
and Glutathione S-Transferases activity while decreasing glutathione levels, and by disrupting
adherent cell junction proteins (i.e., N-Cadherin, occluding, ZO-1, and catenin) [53]. Accordingly, it
is plausible that DEHP, at doses of 500 mg/kg or more, causes atrophy of seminiferous tubules and
decreased ATP-dependent sperm motility, inhibiting DNA replication, decreasing SIRT1, and inducing
ROS-mediated apoptotic cell death [55]. ROS overproduction is considered a major player in sperm
dysfunction, as assessed by the significant increase in malondialdehyde (MDA) formation (derived
from lipid peroxidation and a marker of oxidative stress) in the testis following DBP treatment in male
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rats [56]. Noteworthy, ROS are thought to disrupt plasma membranes of the sperms that are rich of
highly sensitive polyunsaturated fatty acid [57], to decrease testosterone levels and to elicit apoptosis
of spermatogenic cells and disruption of their mitochondrial membranes; thus, impairing sperm
quality [58]. Furthermore, they observed a DEHP-elicited phenotypic testicular alteration in vivo [59].

Another PAE metabolite, namely DBP, has been demonstrated to induce testicular toxicity in
rats [56]. Indeed, oral treatment with increasing doses of DBP (0, 200, 400, or 600 mg/kg/day for
15 consecutive days) in male rats caused a decrease in sperm count in the epididymis, amount of
sperm in the testes, likely due to a decrease in serum levels of follicle-stimulating hormone as well
as levels of testosterone and activity of testicular lactate dehydrogenase activity, the latter being
a crucial enzyme for Sertoli cells to produce ATP necessary for spermatozoa motility and to prevent
apoptosis of testicular germ cells. A dysfunction of testicular activity is likely due to PAEs-mediated
decrease in levels of serum testosterone, as well as other key regulators of sperm production, namely,
follicle-stimulating hormone (FSH) and lactate dehydrogenase (LH). A recent work reported a positive
correlation between MEHP and FSH/LH [60].

In a recent study, the role of PAEs as modulator of sperm epigenetic modification has been
investigated [61,62]. Specifically, low-doses of PAEs (MMP, mono-ethyl phthalate (MEP), MBP,
monobenzyl phthalate (MBzP), MEHP, and MEOHP in the range from 0.85–20.53 µg/g), measured in
urinary samples of selected male participants, were analyzed by multiple linear regression models
to assess the impact of these compounds on semen quality parameters. Interestingly, they found
that while several PAEs correlated with sperm motility, the latter was negatively regulated by DNA
hypermethylation. It is well known that DNA hypomethylation plays a crucial role in spermatogenesis
by modulating the expression of developmental genes and it is positively associated with higher quality
of sperm [63]. On the contrary, DNA hypermethylation may cause oligoasthenoteratozoospermia due
to abnormal chromatin/DNA integrity [64]. Another epigenetic mechanism by which PAEs would
exert their endocrine disruption includes abnormal hypomethylation of paternally imprinted H19 gene
and hypermethylation of maternally imprinted LIT1 gene [65]. A plausible explanation may rely in
the PAEs-mediated oxidative stress that would prevent the interaction of methyl CpG-binding proteins
to the CpGs; thus. leading to DNA demethylation [66].

It has been reported that direct or indirect maternal exposure to DEHP decreases in utero expression
of mineralocorticoid receptor (MR) in rat Leydig cells [67] as well as in the expression of fetal testicular
mRNA levels of 17α-hydroxylase and cytochrome P450 17A1, all accounting for reduced testosterone
levels in adult rats [68]. However, in a study carried out in Germany by Herr et al., the increased
exposure to DEHP metabolites (40.56 µg/L) was not correlated to altered semen profile [69].

In women, it is possible to detect phthalates from different biological matrices [70,71]. Furthermore,
unconjugated PAEs, namely DEHP, DEP, DBP, BBP, MEHP, MEHHP, MEP, MBP, and MBzP, are also
able to cross the placental barrier; thus, affecting post/pre-natal development [72]. Of note, exposure to
phthalates, mainly monoesters, correlates with reduced gestational age of fetus [73], follicular atresia [74],
endometriosis [75], infertility [76], and pubertal development [77] increased birth loss [19], reduced
yield of oocytes [78]. Maternal exposure to DEHP (0, 50, or 200 mg/kg) during pregnancy caused a fetal
growth restriction and lowered placental weight in a gender-independent manner [79]. The inhibition of
placental cells’ proliferation likely involves the MEHP-mediated decrease of progesterone receptor level,
which in turn would cause the down-regulation of Cyclin D1 and induce progesterone synthesis [80].

These compounds have been demonstrated to cross the human placenta and reach the umbilical
cord [81] and the amniotic fluid [82]. The altered placental development might be due to a peroxisome
proliferator-activated receptor (PPAR)γ-mediated disruption in placental lipid metabolism, accounting
for modified glycerolipids and glycerophospholipids levels, with a marked accumulation of
triacylglycerols [83]. Furthermore, the presence of DEHP was also detected in maternal milk; thus,
exposing newborns to these contaminants during breast feeding [84]. In mice, DEHP administration
between the weaning period and maturity has been shown to disrupt ovarian function and decrease
the expression of follicular development factors (i.e., C-KIT, KITL, GDF9, and ATM), as well as ovarian
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microRNAs (miR-17-5p, let-7b, miR-181a, and miR-151) that are responsible for inhibition of follicular
granulosa cell proliferation and for bax/bcl2-mediated apoptosis [32].

The effect of phthalates on women reproductive system likely relies on MEHP formation [85].
Importantly, PAEs can mimic hormone activity through the binding to a number of human receptors.
They bind to hERα,β, thus eliciting either estrogenic or anti-estrogenic effects [86]. DEHP would be
able to decrease expression of the Arom gene and, consequently, E2 levels in vitro; thus, affecting
follicle growth [87]. Moreover, they form a complex with human peroxisome proliferator-activated
receptor α, β or γ subtypes (PPARs) and, in turn, interact with follicle stimulating hormones. This
indirect effect would provoke estradiol inhibition and suppression of aromatase as a consequence of
cyclic adenosine monophosphate (cAMP) decrease in granulosa cells [88]. Finally, they are able to
regulate aryl hydro-carbon receptor (AhR) as well as the activity of metabolic enzymes involved in ER
metabolism [89]. PAE have been also taken into consideration as risk factors for thyroid endocrine
system disruption [90]. Furthermore, as thyroid system is strongly connected to the reproductive one,
an association between urinary concentrations of PAEs and thyroid hormones has been investigated
in a cross-sectional study [44]. The study outlined the inverse relationship between higher doses
of MEP or MEHP and lower serum free thyroxine (FT4) or serum thyroid-stimulating hormone
(TSH), respectively.

In juvenile rats were sub chronically exposed to low doses of DEHP (0.3–3 mg/kg) from their
weaning to maturity, this compound significantly increased expression of genes related to thyroid
regulation, namely thyrotropin releasing hormone (Trh) parathyroid hormone (Pth) in females and
thyroid hormone responsive (Thrsp) in males. On the other hand, higher doses of DEHP (30 and
150 mg/kg) were shown to induce hyperplasia and hypertrophy of thyroid glands [91].

According to the human biomonitoring study from the national health and nutrition examination
survey (NHANES, 2007–2008), urinary DEHP is negatively associated with total thyroxine (T4),
free T4, and total triiodothyronine (T3), whereas positively associated with thyroid-stimulating
hormone (TSH) [92]. Conversely, among the adolescents, DEHP metabolites correlated with T3
concentration. In contrast with these findings, Baralić et al. and Sun et al. have not found a significant
relationship between oral exposure to DEHP (50 mg/kg bw) in rats for 28 days and T3 or T4 serum
levels, although the same parameters decreased at higher doses of DEHP (500 mg/kg b.w.) [93,94].
The reduction of serum thyroid hormones is likely due to a DEHP-mediated modulation of biosynthesis,
biotransformation, biotransport, TSH receptor levels, and metabolism of thyroid hormones.

3.2. Phthalates and Cancer

Phthalates have been extensively correlated to several human cancer, i.e., skin, liver, prostate, and
breast cancer [95–97]. Noteworthy, PAEs (i.e., BBP and DEHP) would increase the expression of vascular
endothelium growth factor (VEGF) and, consequently, angiogenesis and tumor progression in breast
cancer cells [98]. In a Mexican study (N = 233), they detected significantly higher MEP concentration
(169.58 g/g creatinine) in women with breast cancer compared to healthy ones (106.78 g/g). One possible
mechanism might rely on the ability of PAEs to provoke DNA damage in mammary epithelial cells [99],
and on the induction of PPARs signaling associated to BARC gene activation [100]. In both hepatic and
breast carcinoma, PAEs likely induce Phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB) or cyclic
adenosine monophosphate (cAMP)-Protein Kinase A (PKA)- cAMP response element-binding protein
(CREB) signaling cascades, the latter responsible for the activation of the AhR-evoked proliferation of
mammary cancer cells [101,102]. In particular, the increased Histone Deacetylase 6 (HDAC6) expression
induces the activation of the nuclear β-catenin-lymphoid enhancer binding factor 1 (LEF1)/T-cell
factor-4 (TCF4) transcriptional complex and, in turn, that of the oncogene c-Myc [103]. Interestingly, in
a study carried out by Ito Y. et al., they observed a PPARα-independent effect of phthalates that would
elicit hepatic cancer via c-jun/c-fos/Activator protein-1 (AP1) signaling [104]. In addition, it has been
hypothesized that phthalates deregulate several miRNAs involved in breast cancer progression (i.e.,
miR-34b-5p, miR-7686–5p, and miR-1291) [105].
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As one of the PAEs’ target is thyroid, these compounds seem to play a major role in the onset of
thyroid cancer, being able to activate estrogen receptor, induce VEGF-mediated angiogenesis [106].

Noteworthy, several PAEs (i.e., DEHP, BBP, and DBP) are suspected to interfere with cell
cycle-related genes responsible for prostate cancer cell proliferation [97]. Indeed, PAEs would promote
the growth of PC3 and 22RV1 prostate cancer cells via up-regulation of MAPK, c-fos, and c-Jun, three
proteins involved in AP1-mediated cell proliferation. Collectively, numerous data from literature
revealed that exposure to phthalates would exert a tumorigenic activity through the activation of
different signaling pathways (cAMP/PKA/CREB, PI3K/PKB, c-jun, HDAC6/c-myc) mediated by their
interaction with AhR, PPAR, and ER, beyond a putative epigenetic modulation.

3.3. Phthalates and Metabolic Disorders

It is well known that insulin resistance is a common feature of many diseases, i.e., type-2 diabetes
(T2D), atherosclerosis, and non-alcoholic fatty liver disease (NAFLD) [107,108].

Among other compounds, DEHP and its metabolites have been correlated to the onset and
progression of (T2D) [33]. In a study carried out in USA, MBP has been associated with poor insulin
secretion, and MEP and MMP to insulin resistance assessed by Homeostatic model assessment of
insulin resistance (HOMA-IR) index [109,110]. In a cross-sectional study (Canadian Health Measures
Survey (CHMS, 2009–2011)) carried out by Dales et al., the authors measured the association between
PAEs exposure (from urinary PAEs metabolites) and a number of parameters such as fasting blood
glucose, glycosylated hemoglobin (HbA1C) levels, and insulin [111]. They found a possible link
between PAEs exposure and increased concentration of pre-diabetes-related markers. Indeed, MBzP,
mono-(3-carboxypropyl) phthalate (MCPP), MEHHP, MEHP, MiBP, and total DEHP metabolites
correlated with increased HbA1C and reduced blood glucose control. Moreover, DEHP metabolites
were correlated to increasing fasting glucose, insulin, increase of HOMA-IR of 0.15 (95% CI 0.04, 0.26)
and of HOMA-β of 10.24 (95% CI 3.71, 16.77). In a recent study, they investigated the putative role
of PAEs in insulin resistance and risk for the development of obesity and NAFLD, the latter being
the hepatic manifestation of metabolic syndrome [112]. The results showed that PAEs correlated
with hyperglycemia—a risk factor for early phase NAFLD according to [113]—in all the examined
groups of both genders, namely patients affected by obesity or type-2 diabetes mellitus, and even
non-obese non-diabetic volunteers. The derived parameters, namely triglycerides glucose (TyG)
index [114] and TyG-BMI, considered as prognostic markers of insulin resistance and NAFLD in
non-obese individuals [115], were found positively related to MEP exposure in non-obese healthy
volunteers [112].

Noteworthy, the modulation of primary and surrogate markers in all the above studies, from
anthropometric parameters to glycemia or insulin resistance (HOMA-IR), reflect the need to evaluate
them not as individual markers but, in a wider perspective as potential risk factors for early identification
of type-2 diabetes mellitus, atherosclerosis, and cardiovascular diseases [116]. The hypothesis of
phthalate-induced insulin resistance relies on their ability to induce mitochondrial dysfunction and
oxidative stress, leading to the onset of the disease [117]. Several epidemiological studies also reported
an obesogenic activity of PAEs (i.e., MEP, MEHP, MBzP, MEHHP, and MEOHP), which seems to
depend on age and gender [118]. According to Buser et al., low MW phthalate metabolites (MBP, MEP,
and MiBP) were able to cause obesity in male children and adolescents whereas high MW phthalate
metabolites (mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), MEHHP, MEOHP, MEHP, MBzP,
monocarboxy-isononly phthalate (MCNP), and monocarboxyoctyl phthalate (MCOP)) and DEHP
(MEHHP, MEOHP, MEHP, and MECPP) contributed to obesity in all adults [119]. In a Chinese study,
children exposure to MEHP elicited an increase in the body-mass index (BMI) and waist circumference.
Interestingly, MEHHP and MEOHP resulted to be correlated to BMI in the 8–11-year age group [120].

The national Puberty Timing and Health Effects in Chinese Children (PTHEC) study reported
a correlation between environmental PAEs exposure and metabolic changes (i.e., obesity and
overweight) in children (OR = 1.586, 95% CI: 1.043, 2.412) [121]. The presence of different PAE
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monoesters (MMP, MEP, MBP, MEHP, MEOHP, and MEHHP), measured with an electrospray
triple quadrupole mass spectrometer (ESIMS/MS) and revealing the metabolomic profile of urine
samples, corresponded to higher concentration of metabolic markers related to disrupted arginine and
proline metabolism and fatty acid reesterification (monostearin, 1-monopalmitin, stearic acid, glycerol
3-phosphate, 5-methoxytryptamine, d-alanyl-d-alanine,pyrrole-2-carboxylic acid, and butyraldehyde);
thus, contributing to the onset of overweight and obesity in school-age children. Of note, a link
between visceral obesity (measured as waist circumference and waist-to-height ratio) and MEHP was
also found in healthy normal-weight individuals [122,123].

Another study comparing PAEs and metabolic syndrome was a cross-sectional study from
the National Health and Nutrition Examination Survey (2003–2014) data carried out by Gaston and
Tulve [124]. The authors observed the putative association between the presence of main urinary
PAEs’ metabolites (i.e., MiBP, MEP, MBP, MBzP, DEHP, and MCPP) and risk factors for the metabolic
syndrome; data were also adjusted for the socioeconomic status of adolescents (mean age = 16 y.o.),
although this variable did not affect the overall findings. The results revealed that the prevalence of
metabolic syndrome in the total population of adolescents was 5.3%, being males but not females
with higher MnBP concentrations affected to a greater extent by dyslipidemia. The latter has been
also associated with MEHP exposure in other studies enrolling both obese and healthy adults [112],
and consisted in increased triglyceride and decreased low high-density lipoprotein (HDL) cholesterol
serum levels, likely due to the lipolysis in the adipose tissue, followed by the entering of free fatty acid
to the liver and the hepatic efflux of triglycerides and hyperlipidemia [125].

As PPAR are known to be key players in lipid and glucose homeostasis [126], it is plausible
that phthalate involvement in metabolic disorders likely correlate to their binding to PPAR-α, γ,
the latter associated to adipogenesis, and controlled by neuroendocrine pathways involved in
the hypothalamic-pituitary-adrenal axis [127], but also to other receptors such as steroid hormone
receptors, thyroid hormone receptors, retinoid X receptors, liver X receptors, and farnesoid X
receptors [107]. Specifically, MEHP can interact with PPAR-α and -γ and induces PPARγ adipocyte
differentiation as well as the selective activation of different PPARγ co-regulators including Mediator
1 (Med1) and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), but
not p300 and Proto-oncogene tyrosine-protein kinase Src (SRC) [128]. Other mechanisms linked
to phthalate-induced adipogenesis may involve their interaction with thyroid hormone channels,
androgen and estrogen receptors, and pregnane X receptors, all linked to lipogenesis [123,129].

3.4. Phthalates and Neurotoxicity

Although very few studies have been carried out on their neurotoxic effects, phthalates putatively
affect the onset of several neurological disorders [130].

They observed that early-life PAEs exposure (i.e., DEHP, MEP, and MCPP) was able to negatively
affect cognition (child IQ) especially at age 3 years, whereas no proof of association was detected during
gestation or in >3 years old children [131]. Another study provided evidence of a DINP-mediated
negative effect in child psychomotor skills following prenatal exposure [132].

Of note, DEHP would induce teratogenic effects (disruption of normal fetal brain development)
due to its ability to cross the placenta [133,134]. Low-dose DEHP exposure (50 and 200 mg/kg/d)
decreased the levels of the N-methyl-d- aspartic acid (NMDA) receptor subunits NR1 and NR2B in
the hippocampus in offspring mice; thus, contributing to impair spatial learning and memory [135].
MnBP (46.7 g/L urine), but not MEHP (3.4 g/L), have been also correlated to attention-deficit
hyperactivity disorder (ADHD) in humans [136].

Accordingly, exposure to PAEs seems to provoke behaviors overlapping with ADHD, namely
emotional hyperreactivity, aggression, and impairment in working memory [137,138].

In the U.S. children (N = 1493) of 6–15 years of age, with reported attention deficit disorder (ADD)
or Learning Disability (LD), it has been demonstrated an association between phthalates and these
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disorders, with a prevalence in girls than boys [139]. The mechanism underlying this effect may rely
on the disruption of thyroid system during pregnancy [140,141].

Neurotoxicity may also derive from phthalates-induced ROS production and down-regulation,
in hippocampus, of brain-derived neurotrophic factor (BDNF), a key player in dendrite outgrowth
and synaptic plasticity associated to cognitive and learning functions. They observed that low-dose
DEHP exposure (10 mg/kg) decreased dorsal hippocampal BDNF expression and dendritic spine
density [142].

3.5. Phthalates and Immune System

Phthalates comprise a group of xenobiotics that have been shown great effects on immunological
system [143], by mimicking natural hormones that are responsible for the normal functioning of
the body like development, reproduction, homeostasis, and behavior.

When the impact of phthalates on immune responses was evaluated no consistent results
emerged, in fact, several studies have reported the potentiation of immune responses or inflammatory
reactions, other studies were unable to show effect, while other studies have shown inhibitory
or immunosuppressive effect [144–146]. Few studies have estimated the impact of phthalates on
the Th1/Th2 balance and their cytokine products. Increased production of IL-4, by Th2 cells, was
described by Lee and Maruyama [145,147]. Badr et al. reported that dietary exposure of rats to
DEHP shift the Th1/Th2 cytokines balance towards Th2 type phenotype, with a liver protection
against Th1-response induced by Mycobacterium bovis protein [148]. The study by Greene et al.
reported that Di-(2-ethylhexyl)phthalate (DEHP) may act directly on MΦs increasing chemokine and
cytokine gene expression altering their responses, and in women may drive alteration of uterine
and/or MΦ factors involved in develop of endometriosis [149]. Studies that have investigated
the influence of phthalates on cytokine secretion by primary human peripheral blood mononuclear
cells (MNC) and lymphocytes T showed that phthalate diesters influence cellular signal pathways
that lead cytokine production, enhancing the secretion of interleukin (IL)-6, IL-10 and the chemokine
CXCL8 and impairing release of tumor necrosis factor (TNF)-α, IL-2, IL-4, and interferon-γ [150],
which could hypothetically prime a decreased synthesis of antibodies, albeit impact of phthalates
on cytokine expression was nor confirmed in other studies [143,151]. Other immune parameters,
such as weight of lymphoid organs, thymus histology, and antibody levels were evaluated and no
effects [151] or immunosuppression were observed [152]. The oral administration of DnOP at low doses
to albino mice caused significant pathomorphological and immunological alteration [153]. Studies
in experimental animals that focused on effects of phthalates on inflammatory processes suggest
enhanced inflammatory responses and increased chemokines expression [154]. Phthalates inactivate
peroxisome proliferator-activated receptor-γ (PPAR-γ), a nuclear transcription factor that mediates
the resolution of inflammation, MEHP was able to inhibit chemotaxis, induce oxidative metabolism,
stimulate the production of IL-1β and VEGF, and inhibit production of MIP-1β [155,156].

In addition, the in vitro effects of phthalates were evaluated using both cell lines and primary
immune cells, yielding conflicting results on expression of cytokines [145] or decreased macrophages
production of nitric oxide and tumor necrosis factor, pointing out an immuno-suppressive effects [157,
158], or apoptosis in B cells, suggestive of down-regulation of antibody responses [159,160].

Many studies have highlighted that adjuvant-like properties of phthalates may be responsible
for increased risk of development of allergies and asthma [37], and MEHP, MNOP, and MINP,
at different doses, showed immunosuppressive and adjuvant effects [161]. Jepsen et al. showed
the structure-related intensity of adjuvancy; thus, monophthalates may be weak or potent cytokine
inducers, and that several monophthalates could increase of IL-6 and IL-8 concentration-dependently,
while at high concentrations all phthalate suppressed cytokine production [162].

Previous studies have shown that phthalates with eight carbon atoms in two esters group,
total having sixteen carbon atoms that may be unequally distributed in the esters group, did not
affect its adjuvant activity, and thus may have the highest adjuvant effect. Phthalate metabolites
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and plasticizers boosted the effect of immunogens [161]. The structure–activity relationship (SAR)
studies of immuno-stimulatory effects of the most commonly used phthalate plasticizer DEHP
revealed that the minor alteration in Phthalates structure results in remarkable affects in adjuvant
activity. Such types of effects are defined as the inborn ability of compounds to enhance the humoral
immune response [163]. Thus, the serum concentration of antibodies was investigated in several
studies [143,145,146]. Furthermore, the physiochemical and stereo chemical properties highly affected
the adjuvant activity of Phthalates and it is limited to formation of IgG1 antibody. In addition to this,
it is also noted that phthalates also play a key role in elicitation phase of allergy [164]. The study
by Larsen and Nielsen revealed that no effect was observed on IgE antibodies [144] or IgE allergy
promoting effects of DEHP [165], as well as its key metabolites, MEHP [166]. It is well know that
chronic low-grade inflammation contribute, together with immunosenescence, to neurodegenerative
diseases [167], and that phthalate modulating molecular signaling pathways that underlie inflammation
and inflammation-related disease risk, may play a key role in the promotion of inflammatory activity
via multiple mechanisms.

4. Biochemical Regulation of Phthalates Effects

As Phthalates belong to group of EDCs that have the capability of changing immune response
through various mechanisms. Of them the most commonly studied receptors are estrogen receptor
(ER), estrogen related receptor (ERRs), Peroxisome Proliferator-activated Receptor G (PPAR-G), TLRs,
and NLRs. Studies revealed that phthalates change the level of cytokines by mediating through
estrogen receptors [168]. An in-vitro study revealed that DINP altered the activation of mitogen
activating protein kinase (MAPK) signaling pathway through an estrogen receptor (ER) dependent
pathway [169]. The in vivo studies showed that in males rats the ERa gene expressions were reduced
as compared to females’ first and second generations offspring, which is associated with low level of
IL-2, IL-12, IFN-g, and TNF-a in spleen [170]. In continuation with these proceedings, a new study
was reported that first and second male generations offspring have low ERa gene expressions in islets
which is linked with augmented proinflammatory cytokine levels in pancreatic lysates [171]. Thus, it is
considered that ERa has anti-inflammatory effect, that is, it can block NFkB signaling and decrease
expression of inflammatory genes [172].

The results of in-vivo studies showed that DnOP caused immunotoxicity in rodents [173,174].
Several studies revealed that DBP and BBP in estrogen receptor (ER) negative breast cancer cells
provoked proliferation, invasion, and formation of tumor in breast [175]. The DBP and BBP
caused tumor formation in breast by stimulating aryl hydrocarbon receptor (AhR) [176]; thus,
activating the downstream cyclic AMP/PKA, CREB1 [176], and HDAC6 signaling pathway [177,178].
The mineralocorticoid receptor (MR) in the interstitial cells of Leydig of adult rat are reduced due to
exposure to utero DEHP. This results in the decrease production of testosterone due to alter formation
of androgen [67]. In a study it was revealed that in vitro contact of DEHP in male rats, at a dose of
100, 300, and 750 mg/kg/day decreased about 50% of testosterone and aldosterone level while it did
not affect the corticosteroids levels [179]. This phenomenon can be described by a decrease in weight
of adrenal tissue after a dose of 750 mg/kg/day of DEHP. The weight loss of adrenal tissue is related
to decrease levels of angiotensin II receptors. It was noted that there was no significant change in
the components renin-angiotensin-aldosterone system (RAAS) in the serum. DEHP is found to be
highly toxic in zebra fish with an LC 50 of 0.50 ppm leading to no touch response, tail curvature,
embryo mortality, cardiac edema, and necrosis. At a concentration of 1.5 ppm DHP can increase
estrogen activity, both in vitro and in vivo [101].

The expression of steroidogenic acute regulatory protein (StAR) mRNA is diminished by DEHP in
pregnant mice. This decreases steroidogenesis significantly in both humans and mice. 17α-hydroxylase
and cytochrome P450 17A1 are key enzymes in the steroidogenic pathway the in utero mRNA levels
of which are lowered by DEHP exposure. The above two situations can take place from either direct
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exposure of fetal testis or indirect maternal exposure. Aldosterone can activate MR in rat Leydig cells,
which potentiates testosterone synthesis by an aldosterone mediated MR mechanism [68].

Phthalates are found to promote allergy by deviating the T-helper 2 (Th2) response and interfere
with immunity against infection. Phthalates act on human Plasmacytoid dendritic cells (PDCs) and is
involved in the suppression of Interferon-α (IFN-α) and Interferon-β (IFN-β) expression, and hence
modulate the capability of T-cell responses [180]. DEHP and BBP have the ability to suppress CpG
induced IFN-α/IFN-β expression in PDCs. PDCs are principal cells that secreting type I interferon
(IFN), like IFN-α and IFN-β, and are significant in host Th1 responses in immunity against viral
infection [181].

DEHP suppressed CpG induced IFN-α/IFN-β appearance in pDCs and the outcome was
inverted by aryl hydrocarbon receptor (AHR) antagonist. DEHP suppressed CpG-activated
mitogen-activated protein kinase (MAPK)-MEK1/2-ERK-ELK1 and NFҡB signaling pathways. DEHP
suppressed CpG-induced interferon regulatory factor (IRF)-7 appearance by suppressing histone
H3K4 trimethylation at 1RF7 gene promoter region through inhibiting translocation of H3K4-specific
trimethyltransferase WDR5 from cytoplasm into nucleus. BBP or DEHP-treated pDCs suppressed
IFN-γ but enhanced IL-13 production by CD4+ T cells [180].

5. Phthalate Regulations

Over the few past decades, migration of compounds from food packaging to food has become
the main source of putative food toxicity. In fact, PAEs present worldwide concern for human health
and environmental risk. In order to harmonize various legislations, and to facilitate and protect
consumers, there are several directives and a “threshold policy” implemented by EC and FDA [182].

Framework Directive 89/109/EEC (CEC 1989) establishes two basic principles for food-contact
material and articles such as “inertness” and “safety”. The principle of inertness states that any material,
article, or its components should be inert enough not to pose any health hazard, unacceptable change
in food composition, or deterioration of food qualities. However, Directive 89/109/EEC was repealed by
1935/2004/EC and focuses on general rules for some new topics related to active food-contact materials
and safety provisions. Directive 2002/72/EC addresses basic rules and guidelines related to food-contact
plastics. This directive is focuses on the materials only made of plastics and plastic gasket in lids
(10/2011/EU) and does not consider plastics with other multi-material multilayers [183]. Recently,
the latter Regulation 10/11/EU has replaced Directive 2002/72/EC (Commission Regulation No 321/2011)
and addresses the use of phthalates in plastics likely coming into contact with food and beverages.
The regulation specifically focuses on certain phthalates, listed as toxic for reproduction in annex IV of
regulation EU No. 143/2011 EC (CMR category 1B) and states that they are to be completely banned,
starting from 1st January 2015. The concerned compounds are BBP, DBP, and DEHP. DnOP, DINP, and
DIDP were already prohibited in childcare articles by Directive 2005/84 EC and order 2006-1361 of
November 2006.

Consumer’s protection against high exposure to phthalates has been achieved in the EU via
the definition of a Candidate List of Substances of Very High Concern (SVHC) because of their
endocrine disrupting properties in humans. Moreover, in the USA, they are included in the Priority
Toxic Pollutant List of the U.S. Environmental Protection Agency (US EPA). Thirteen phthalates are
included in the candidate list of Registration, Evaluation, Authorization and Restriction of Chemicals
(REACH). Four of these (DEHP, DBP, BBP, and DIBP) are also on the authorization annex (Annex XIV
REACH-ECHA 2009). On the basis of the European Regulation (EC) No. 1907/2006 on the REACH
and its amendments (until February 2017), the four phthalates DEHP, BBP, DBP, and DIBP, which are
classified as very dangerous substances, shall be produced and sold only after a specific authorization.
Furthermore, as resulted from animal studies, European Authorities classified LMW PAEs such as DBP,
BBP, and DEHP in Category 1B, namely substances regarded as toxic to reproduction and prohibited for
use in toys, children articles, cosmetics, and medical devices [36]. More specifically, toys, and childcare
products containing phthalates in a concentration greater than 0.1% of the plasticized material weight
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shall be marked. DEHP is classified as “priority hazardous substance” under the EU Water Framework
Directive and as “toxic to reproduction” in the EU. While there is inadequate evidence in humans
for the carcinogenicity of DEHP (IARC Group 3 classification for carcinogenicity), the US EPA has
classified DEHP as a Group B2, namely, probable human carcinogen (United States Environmental
Protection Agency, 2012). A recent EU risk assessment for DEHP has highlighted the need for more
information on the risks for new born babies raised by DEHP contaminated breastmilk. To minimize
the health and environmental risk, DEHP has been replaced by DINP and DIDP, which are considered
not hazardous according to REACH. HMW PAEs such DINP and DIDP are included in REACH but
are not toxic to human health [36].

DINP, DIDP, and DnOP have only been banned in toys and childcare products that children could
suck and chew on (1999/815/EC and directive 2005/84/EC). To protect human health, the European
Food Safety Authority (EFSA) has set Tolerable Daily Intakes (TDI) for several PAEs: 50 µg kg−1 body
weight (bw) for DEHP, 10 µg kg−1 bw for DBP, 150 µg kg−1 bw for DINP and DIDP, and 500 µg kg−1

bw for BBP (EFSA 2005 a–e).
According to the regulation No. 10/2011 EC of 14 January 2011 the European Union established

limits for many compounds used in packaging and set regulations specifying migration tests using
food simulants to determine their probable migration into food. While DIBP is not allowed in food
contact materials, EU has set the Specific Migration Limits (SMLs) in plastic food and beverage contact
materials for five phthalates, namely DBP, DEHP, BBP, DINP, and DIDP. The SMLs is the Maximum
Accepted Concentration (MAC) of a given substance released from a material or article into food and
food simulants. For example, the SMLs for DBP, DEHP, and BBP are 0.3 mg Kg−1, 1.5 mg Kg−1, and
30 mg kg−1, respectively, while for DIDP and DINP is 9 mg kg−1. Regarding those without SMLs,
a limit of 60 mg kg−1 in food product is applied. Overall, the plastic packaging must not be released
to food simulants more than 10 mg of all compounds in 1 dm2 of contact surface between food and
packaging (Overall Migration Limit or OML) (Reg 10/11) [7].

Food simulants are used instead of the actual foods in order to simplify the analysis (no matrix
effects) and to improve the reproducibility of results [183,184]. Food simulants are usually categorized,
based on their chemical properties, as hydrophilic, lipophilic, and amphiphilic. The most commonly
used simulants are classified with letters from A to E [185]:

A: Ethanol 10%, simulates hydrophilic foods,
B: Acetic Acid 3%, simulates hydrophilic foods with pH < 4.5,
C: Ethanol 20%, simulates hydrophilic foods with alcohol < 20%,
D1: Ethanol 50%, simulates lipophilic materials, foods with alcoholic contents > 20%, and oil and
water in oil emulsions.
D2: Vegetable oil and lipophilic foods.
E: Tenax and dry foods.

DBP and DEHP are only to be used as “Plasticizer in repeated use materials and articles contacting
non-fatty foods”; “Technical support agent in polyolefins in concentrations up to 0.05% in the final
product”.

DINP, DIDP, and BBP are only to be used as “Plasticizer in repeated use materials and articles”;
“Plasticizer in single-use materials and articles contacting non-fatty foods except for infant formulae
and follow-on formulae as defined by Directive 2006/141/EC or processed cereal-based foods and baby
foods for infants and young children as defined by Directive 2006/125/EC”; “Technical support agent
in concentrations up to 0.1% in the final product” [186].

6. Occurrence of PAEs in Food

Since food is the major source of exposure to phthalates in humans, it is of great importance to
assess toxicological levels of phthalates within it.
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First of all, food packaging materials could represent an important source of PAEs in retailed food
through migration and leaching. The amount of certain plasticizers that migrate from food contact
materials into food is regulated for ESBO (epoxidized soya bean oil) but not for PAEs [187]. Due to
their affinity for fat, PAEs are soluble in oil, and therefore they are commonly found in food high in
fat. In particular, the latter is expected to be contaminated by HMW PAEs that are more lipophilic.
The EC No. 11/2011 states that DEHP, DBP, BBP, DINP, and DIDP are not allowed in the production of
fat containing food. According to Cao results, phthalates can migrate into food from plasticized PVC
materials such a lid gasket for glass jar, food packaging films-paper, and board packaging (also made
from recycled materials) and aluminum foil-paper laminates. Food may be contaminated also during
processing and transport, quite often due to the use of PVC gloves in food handling or PVC tubing in
olive oil industry or for milking and processing milk. PAEs can migrate during storage from printing
inks or adhesives on food wrappers as well as from coatings on cookware that have been contaminated
by packaging [188].

In this review we reported the most recent scientific literature of phthalate occurrence in a great
variety of food (edible oils and fats, dairy products, meat and poultry, and edible plants) and beverages
(alcoholic beverages, soft drink, and water).

6.1. Alcoholic Beverages

Alcoholic beverages have high susceptibility to contamination by PAEs as a consequence of their
ethanol content (Table 3).

Table 3. Occurrence of phthalates in alcoholic beverages (µg L−1).

Matrix Phthalate Average
Concentration Reference

Wines in glass bottle

DIBP 0.099

[189]

DBP 0.053
DEPH 0.076
BBP 0.040

Wines in polyethylene coupled film brick
DIBP 0.076
DBP 0.115

DEHP 0.078

Wine in glass bottles with one-piece cork
DEP 4.22

[190]

DBP 2.21
BBP 4.29

Wine in glass bottles with synthetic stoppers
DEP 2.95
DBP 1.02

DEHP 5.22

Wines in cartons
DBP 2.22

DEHP 3.90

Wines in bag-in-box
DMP 0.61
DEP 1.78
DBP 0.30

Commercial white wines in tetrapak box
DBP 10.0

[191]

BBP 1.0
DEHP 16.0

Commercial red wines in glass bottles
DBP 7.3–23
BBP 0.1–5.2

DEHP 3.1–15.8

Commercial white wines in glass bottles
DBP 19.3–21.3
BBP 0.4–7.0

DEHP 9.2–15.1



Int. J. Environ. Res. Public Health 2020, 17, 5655 17 of 45

Table 3. Cont.

Matrix Phthalate Average
Concentration Reference

Home-prepared red wines
DBP 22.8
BBP ND

DEHP 2.4

Commercial red wine samples (Australia)

DIBP 5.3–10.7

[192]

DBP 3.4–9.3
DEHP 1.7–4
BBP 3.5–6.3

Commercial white wine samples (Australia)

DIBP 4.6–9.1
DBP 2.9–3.7

DEHP 2.3–4
BBP 0.3–1.1

Commercial wines (France)
DBP 0.273

[193]

BBP 0.008
DEHP 0.134

Commercial spirits (France)

DBP 0.314
BBP 0.026

DEHP 0.513
DIBP 0.103

Glass bottled plum spirits

DBP 414.5

[194]DEHP 423.8
BBP 79.0

DIBP 38.8

Red wine samples
DBP 334.0

[195]

DEHP 80.3
DEP 56

Stout beer
DBP 74.7

DEHP 16.6
DEP 4.7

Lager beer
DBP 1.1

DEHP 18.2
DEP ND

Schnapps
DBP 76.6

DEHP 28.0
DEP 4.7

Cachaca
DBP 40.5

DEHP 140.0
DEP 25.8

Base wine samples DBP 12.0–79.0

[196]DEHP 5.0–41.0

Brandy samples DBP 620.0
DEHP 470.0

In fact, ethanol may favor the migration of PAEs acting as solvent for PAE extraction. Plasticizers
may contact wine during all stages of winemaking: fruit transportation, crush, and storage involve
all manner of equipment and materials like pumps, hoses, fining agents, and filtration for final
packaging [197].

Del Carlo et al. examined the concentration of various PAEs in 36 commercial red and white
wines, 18 wines from local producers, and 8 wines from an experimental pilot plant. Samples were
contaminated by DIBP and DEHP at high detection frequency [189]. Commercial wines showed
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higher detection frequency of total PAEs, DBP, and BBP, than those produced from winemakers and
on a pilot plant. No significant influence of the packaging material on the total PAEs content was
found. Commercial wines packaged with polyethylene coupled film brick and glass bottles contained
significant quantities of DBP, while DBP was found to be under its Limit of Quantification (LOQ) in
wines from winemakers and on a pilot plant. The authors suggested that DIBP and DEHP can migrate
from the environment during grape growing (plastic foils and laces) as confirmed by the higher content
of DIBP in red wines due to the prolonged contact between grape skins and must. On the contrary,
DBP and BBP contamination may happen during the winemaking process as a result of migration
from materials that could come in contact with wine [189].

In accordance with the previous study, Carrillo et al., found that DBP was the main PAE in
ten Spanish wines, followed by DEHP and DEP with total PAE concentrations between 2.7 and
15 µg L−1 [189]. However, no statistically significant differences were found in data obtained from
different packages (glass bottled with cork and synthetic stoppers, wines in cartons, and wines bag in
a box); thus, indicating that contamination occurred prior to packaging. Russo et al. detected DBP,
BBP, and DEHP in six commercial wines packed in glass bottles and Tetrapak box and a sample of
home-prepared red wine [191]. In addition, 11 commercial wine samples were analyzed and were
found highly contaminated [198–200].

Noteworthy, Hayasaka analyzed 10 red and white commercial wines from Australia. According
to the previous studies, DIBP and DBP were the most widespread, followed by DEHP and BBP in both
red and white wines [192].

Chatonnet et al. investigated over 100 commercial French wine samples and 30 grape spirits [193].
DBP, DEHP, and BBP were the most frequently detected compounds. Grape spirit samples were much
more contaminated than wine ones, with DBP and DEHP detectable in 90% of samples. Measurable
DIBP concentrations were detected in spirits over 20 years old and only rarely in wines. Authors also
evaluated PAEs migration from materials that could come in contact with wine and spirit production.
The major source of contamination by DBP and DIBP in wines and spirits was the internal coating of
wine storage and fermentation vats, made of epoxy resins or polyester-and-glass-fiber. In fact, epoxy
resins revealed high level of DBP (0.08%) and DIBP (0.002%). The migration rate was found almost
proportional to the storage time. Moreover, the hoses used for pumping contained high concentration
of DEHP and DINP and certain synthetic corks presented small quantities of DIBP. The authors also
analyzed the plastic bags used to package wines and found small levels of DINP, although in view
of the mass and surface of these containers it has not been found the risk of problematic migration.
According to the authors, it is advisable for producers to conduct a risk assessment of materials that
come in contact with alcoholic beverages; contaminated coatings should be eliminated and the vats
should be renovated with modern resins that do not contained undesirable PAEs. Furthermore, several
alcoholic beverages such as wine, beer, sangria, and brandy were analyzed [201,202]. The DBP and DEP
concentrations were proportional to the ethanol content of the samples. The most highly contaminated
sample was the brandy with 65 µg L−1 of DBP and 5 µg L−1 of DEP.

Jurica et al. carried out a study to determine PAEs contamination in 20 glass bottled plum spirit
samples from different Countries of Central and Eastern Europe [193]. The highest concentrations were
reported for DBP and DEHP. The authors observed also PAEs migration during five different phases in
the plum spirit production process. PAEs were presumably released from the plastic bags used during
the plum picking and storing even before the beginning of the production process. At the admission
and pureeing phase, DEHP was found to a lesser extent (<20% of the samples). In the final phase of
plum spirit production (distillation), mean concentrations of BBP and DEHP increased by 68.8 and
52.9%, respectively, compared to their concentration in the penultimate phase (transfer tank). It seems
that the plum distillate, being a more acidic medium, might have drawn out BBP and DEHP from
the plastic and rubber components of the pumps or other equipment used during the production phase.

Interestingly, Pellegrino Vidal et al., monitored the occurrence of plasticizers in different kinds of
beverages, including red and white wines, beers, and distilled beverage samples with two different
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analytical methods [194]. One red wine was found to contain high amount of DBP (334 µg L−1) above
the EU permitted level, while another red wine and a white wine sample were below legislative limits.
The irregular red wine showed higher results for DEHP and DEP than the other two samples with 26.8
and 18.2 µg L−1 of DEHP. DEP was detected only in the red wine samples (23.6–56 µg L−1). Among
the alcoholic beverage, beers (Lager and Stout) were found to contain less amounts of the three PAEs.
The DBP content was higher for the stout beer, while the DBP concentration was lower for the Lager
beer. The DEHP content was similar for the two beers, whereas DEP was detected only in the Stout
beer sample. Moreover, the Schnapps and Cachaca samples showed higher amounts of DBP, and
DEHP, and DEP were found at high levels in the Cachaca.

A complete historical brandy series (27 years old) was analyzed by Montevecchi et al. The analyzed
samples were within the legal limits, except for some very ancient brandies where the higher level
of PAEs was probably due to the base wines, to the long ageing and use of plastic pipelines no more
operative. An investigation of the repartition of PAEs during the distillation was made in a further
study [195]. The concentration of DBP and DEHP in the base wine ranged from 12–79 µg L−1 and
5–41 µg L−1, respectively. DDBP, having the lowest molecular weight and the lowest boiling point,
was entirely carried over into the distillate during the première chauffe and during the distillation
of the seconds in the bonne chauffe. The brandy showed DBP and DEHP values of 620 µg L−1 and
470 µg L−1, respectively. The authors suggested that a rectification step would allow a reduction of
PAE concentration in order to reintroduce this valuable fraction cleaner in the distillation process.

Similarly, Plank and Trela suggested that Hazard Analysis and Critical Control Points (HACCP)
approach practices such as hazard analysis of critical control points (CCPs) in wine production processes
and labelling, to note any specific precautions taken that may help mitigate health risks from plastic
additives, effects wine flavor and quality, and ultimately improve consumer confidence, marketability,
and wine sales [196].

6.2. Mineral Water

Many studies reported the presence of PAEs in bottled mineral water that can be attributed
to (i) the quality of the raw material and the technology used in bottle production [203], or
perhaps to the chemicals used in the production process [204]; (ii) the use of recycled PET [205];
(iii) the contamination of the water sources with decomposed plastic wastes of dumps [206]; (iv)
the cross-contamination in the bottling factory as PAEs are ubiquitous in the environment [207];
(v) the contamination with cap sealing resins [208]; and (vi) the existence of PAEs in the source of
water (ground water or tab water). However, according to Bono-Blay et al., PAEs are not relevant
contaminants of protected groundwater intended for bottling [209].

Casajuana and Lacorte analysed bottles of mineral water of different trades in PE and PET. DEP,
DBP, and DEHP were present at very low initial concentration in both PET and PE bottles, whereas
they found increased concentration after storing in PET bottles for 10 weeks up to 30 ◦C. (Table 4).

According to Keresztes et al., DEHP was the most abundant PAE in PET bottled non-carbonated
water followed by DBP and DIBP [210]. The level of PAEs, particularly DEHP, significantly increased
during storage at 22, 40, 50, and 60 ◦C. Moreover, the authors observed the highest PAE concentration
in 0.5 L PET containers due to the higher surface/volume ratio.

In another study, the effect of storage time and condition on PAE migration has been
investigated [17]. A pronounced increase in the concentration of DEHP, DBP, and BBP was observed
at +40 ◦C after different exposure periods from 24 h to 45 days. On the contrary lower values of
increasing concentration for DEHP and DBP was found during freezing condition of 0 ◦C and −18 ◦C.
In addition to temperature, PAE migration into water resulted to be affected by the duration of
exposure. The authors concluded that among the different storage conditions, storage at +40 ◦C and
−18 ◦C resulted to be the highest and the lowest condition, respectively, responsible of PAE migration.
Considering the steady growth of consumption of bottled water and the toxicological effect of PAEs in
the field of drinking water, the WHO and EPA set a maximum concentration level (MCL) for DEHP at
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6/8 µg L−1 [211]. According to these guidelines, exposure to DBP, DEHP, and BBP via consumption of
bottled water under condition of common use is well below the MCL stated by WHO and EPA [203]
and, in particular, PAE exposure through water intake has been evaluated extremely low for children
(0.002–1.1% TDI) [16].

In summary, different conditions such as pH [203,212], storage time [17,207], storage temperature
(30–60 ◦C) [16,213,214], and exposure to sunlight [214] may influence the PAE concentration of PET
bottled mineral water. Luo et al., analyzing the frequency of the five targeted phthalates in bottled
water of twenty-one countries and more than three hundred different brands, found that the highest
concentration of DEHP are detected in bottled water from Thailand, Croatia, the Czech Republic,
Saudi Arabia, and China. In bottled waters from Pakistan average levels of BBP, DBP, DMP, and DEP
were high. Lou’s study revealed also the phthalates-associated potential risks in both human daily
intake and estrogenic effect. According to the authors despite drinking bottle water posed low health
concern, the adverse estrogenic effects of phthalates in bottled water from some countries appeared to
be significant [215].

Abtahi et al. examining the occurrence of PAEs (DEHP, BBP, DBP, DEP, DMP, and DNOP) in water
resources, bottled water, and tap water samples from Tehran Iran, observed that DMP and DEHP
were the dominant compounds causing a contribution to the total phthalate levels higher than 60% in
all the water sources. In particular, the phthalate levels of drinking water significantly increased by
contact of hot water with disposable plastic and paper cups and by sunlight exposure of bottled water.
Moreover the authors studied also the health risk of exposure to the phthalates through drinking water
and found that drinking water posed a low concern for health determining the hazard quotients (HQs)
of DEHP, BBP, DBP, and DEP for all ages both sexes combined Moreover, both the carcinogenic and
non-carcinogenic health risks of the phthalates in drinking water were considered to be very low [216].

6.3. Soft Drinks

Soft drinks have higher susceptibility to contamination by PAEs than mineral water packed in
identical containers [3] (Table 4).

Table 4. Occurrence of phthalates in non-alcoholic beverages (µg L−1).

Matrix Phthalate Average
Concentration Reference

Water in PET bottles
DEHP 0.196

[213]DBP 0.046
DEP 0.432

Mineral water
DMP ND

[217]

DBP 11.33
DEHP 8.79

Soft drink K sorbate
DMP 759.80
DBP 9.00

DEHP 36.60

Soft drink K sorbate and Na benzoate
DMP 500.88
DBP 26.75

DEHP 15

Water in PET bottles
DBP 0.21

[212]DEP 0.17
DEHP 0.02

Bottled water
DEHP 0.35

[203]DBP 0.044
DEP 0.033
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Table 4. Cont.

Matrix Phthalate Average
Concentration Reference

Water in PET bottles, non-carbonated
DEHP 0.016–1.7

[210]DBP 0.007–0.08
DIBP 0.003–0.02

Water in PET bottles
DEHP 0.217

[17]

DBP 0.135

Room temperature DEHP 0.411
DBP 0.116

Refrigerator DEHP 0.423
DBP 0.124

Freezing DEHP 0.317
DBP 0.079

40 ◦C
DEHP 0.917
DBP 0.303

Mineral water DEHP 248

[218]
Orange flavored soda DMP 74

DEP 91

Cola
DMP 105
DEHP 1123

Sport drinks DEHP 15–98

[219]Tea DEHP 16–1263
Coffee DEHP 28–159

Fruit juices DEHP 22–126

Espresso coffee surrogates from pre-packed
metal capsule

DEHP 220

[1]

DIBP 240
DEP 230
DBP 4

Espresso coffee surrogates from pre-packed
plastic capsule

DEHP 1560
DIBP 7
DBP 7

Espresso coffee surrogates from pre-packed
biodegradable capsule

DEHP 830
DIBP 330
DBP 120

Bosnir et al. investigated the migration of DMP, DBP, DEP, BBP, and DEHP in PET-bottled soft
drinks and mineral water with different pH and type of preservative used (sodium benzoate and/or
potassium sorbate) [217]. They reported that the PAE migration from PET to soft drink was 5 to 40 times
higher than mineral water. First of all, phthalate levels found in mineral water free of preservatives
were low (20.22 µg L−1) as a consequence of the weak acidity (pH = 5.8) of mineral water. The strong
acidity (below pH = 3) of soft drinks increased PAE migration; thus, accounting for greater risk.
The highest phthalate levels were found in soft drink with K-sorbate (819.40 µg L−1), followed by one
and a half times lower levels in drinks preserved with Na-benzoate and K-sorbate (116.93 µg L−1),
seven times lower levels in drinks with Na-benzoate, and nine times lower in drinks preserved with
orthophosphoric acid (91.67 µg L−1). DMP was found at the highest level of migration into drinks,
whereas all other PAEs were measured in levels lower than 19%, and high concentrations of DEHP and
DBP has been also observed.

The influence of the type of preservatives and storage times has been also investigated in a study
conducted by Ustun et al. They studied the PAE contamination of different brand of beverages
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taken from different local markets in Turkey. The mean PAE concentration was between 95 and
633 µg L−1 in soda (orange flavored), 18 and 1219 µg L−1 in lemonade, 19 and 1123 µg L−1 in
cola, and 85 and 312 µg L−1 in mineral water. The level of DMP varied from 74 µg L−1 (orange
flavored soda) to 105 µg L−1 (cola). DEHP showed the highest level of migration into soft drink with
average concentration between 248 µg L−1 (mineral water) to 1123 µg L−1 (cola). DBP was found in
concentrations between 91 µg L−1 (orange flavored soda) and 367 µg L−1 (cola). The total PAE amount
also increased with the lengthening of the duration of the duration of soft drinks contamination [218].
In contrast with Bosnir et al. [217], the highest PAE concentrations were measured in soda samples with
Na-benzoate and K-sorbate used as preservative. The PAE level in the soda samples preserved with
K-sorbate seemed to be similar to samples preserved with Na-benzoate. The authors observed very
high concentrations of PAE in mineral water likely due to the presence of preservatives (K-sorbate).

Wu et al. examined different commercial non-alcoholic beverages, including sport drinks, tea
drink samples, coffees, and fruit juices purchased in China, and the predominant PAE was DEHP. [219].

Pellegrino Vidal, et al. monitored the PAE content in different alcoholic and non-alcoholic
beverages, including mineral and tonic water. DEHP was detected above the allowed MCL (6/8 µg L−1)
in one sample of mineral and tonic water with concentrations of 12 µg L−1 and 14 µg L−1. Levels of
DEHP were 21 µg L−1 in an apple juice sample [202].

In many sport drinks, concentrated juice beverages, tea drinks, jam, jelly, and powder nutraceuticals
from Taiwan have been reported to be contaminated by high concentrations of DEHP and DINP. DEHP
along with DINP have been illegally used in replacement of the approved clouding agents such as
palm oil and Arabic gum, which would normally be added to emulsify the components in the drinks
in order to achieve a natural and appealing appearance. The clouding agents made with DEHP could
be preserved up to a year differently from those made using palm oil; thus, leading to increased
profits. This contamination event has been known as the Taiwan Food Scandal, and consequently
many efforts have been made to test the level of phthalates in drinks, and TDI have been developed for
different phthalates.

A recent research on the release of PAEs in coffee brewed from pre-packed coffee products was
carried out by De Toni et al., which investigated the level of PAEs in coffee prepared using coffee
packaged in metal, biodegradable, and two different plastic capsules. DIBP and DEHP were detected
in all the surrogates. DIBP and DEHP were the most represented PAEs. Surrogates from biodegradable
capsules showed higher concentrations of DBP compared to plastic and metal capsules. DEP was
the less represented plasticizer being detected only in surrogates from metal capsule [1].

Recently, phthalate concentrations in 32 commercial tea products (Camellia sinensis) from various
markets in Naples and on-line shops, were analyzed by Troisi et al. [220]. The most abundant phthalate
homologues in the infusions were DBP, DIBP, and DEHP. Despite phthalates are fat-soluble substances
and their concentration in water infusions is generally expected to be low, the high temperature of
tea infusion preparation can partially overcome the low water solubility. The most likely source of
phthalates in commercial tea products seems to be the plastics of the packaging in contact with the tea
and/or the tea bag itself. Tea bags are often either made of plastic or have a plastic lining in the case of
filter paper-based tea bags.

6.4. Edible Oils and Fats

PAEs have been detected in high amount in oily bottled food in a Swiss market survey conducted
in 2005 [221]. Levels of DEHP, DINP, DIDP, and DEHA, as a result of migration from PVC gaskets and
the material underneath the seal in the closures of glass jars are shown in Table 5.
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Table 5. Occurrence of phthalates in vegetable oils from different plant sources (µg Kg−1).

Oil sources Phthalate Average Concentration Reference

Extra virgin olive
DEHP 1134

[222]

DINP 1722
DBP 90

Olive
DEHP 1262
DINP 2884
DBP 360

Sunflower
DEHP 134
DINP 971
DBP 35

Various seed
DEHP 132
DINP 1361
DBP 30

Corn
DEHP 81
DINP 2982
DBP 23

Peanut
DEHP 334
DINP 1518
DBP 41

Soybean
DEHP 77
DINP 1017
DBP 22

Olive pomace
DEHP 1643
DINP 6480
DBP 224

Peanut oil
DEHP 1250

[223]

DBP 250

Teaseed oil
DEHP 1250
DBP 1610

Rice bran oil
DEHP 650
DBP 1060

Sunflower oil
DEHP 260
DBP 140

Soybean oil DEHP 140
DBP 60

Corn oil
DEHP 100
DBP 20

Rapeseed oil DEHP 160
DBP 470

Cottonseed oil
DEHP 350
DBP 270

Olive oil
DEHP 850
DBP 110

Wheat germ oil DEHP 1110
DBP 21,290

Grape seed oil DEHP 930
DBP 1690

Walnut oil
DEHP 1590
DBP 1206
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Table 5. Cont.

Oil sources Phthalate Average Concentration Reference

Sesame
DEHP 290

[223]

DBP 80

Corn
DEHP 150
DBP 170

Rapeseed DEHP 400
DBP 90

Teaseed
DEHP 140
DBP 20

Soybean DEHP 190
DBP 120

Marega et al. examined the PAEs contamination level of olives before harvesting, and the presence
of phthalates after each production step, in order to define critical points [224]. The authors observed
a higher contamination level (DIBP, DBP, and DEHP) in olives collected at mills than in olives directly
collected in the olive orchard. These results indicate that the contamination may occur during
the harvest and the transport of the olives to the mill. Furthermore, an increase in PAEs levels was
observed along the olive oil production chain, probably due to the contact of the olives, paste and oil
with pipes, and other plastic materials. However, in most of the cases, contamination levels were lower
than the EEC Directive 2007/19/CE suggested limits.

Nanni et al. reported marked differences in the PAEs concentration of vegetable oils sold in Italy
deriving from different plant sources (olive, sunflower, peanut, corn, or mixed seeds) and in oils that
have undergone different degrees of processing [222]. DINP, known to have replaced DEHP in many
industrial applications, was much higher than DEHP, DBP, and DIBP in the edible oils considered in
the study. DINP was found at high levels with percentage ranging from 57% (extra virgin olive oil)
to 95% (corn oil) of the total PAEs content, followed by DEHP, which was present from 3% in corn
oil to 37% in extra virgin olive oil. The olive-derived oils (extra virgin olive oil, olive oil, and olive
pomace oil) showed the highest levels of PAEs, being DINP and DEHP, had levels statistically higher
in olive pomace oil and in all the three olive-derived oils, respectively. The authors suggested that
the phthalate content of oils can decrease during refining (extraction, neutralization, discoloration,
and deodorization) so that the oils extracted through pressure are generally more contaminated.
The particularly high phthalate content of virgin olive oil was attributed both to the relatively low
degree of processing and to the relatively high level of contamination of unprocessed oil derived from
a perennial plant (with greater potential for bioaccumulation) in comparison to the ones derived from
annual crops. The dietary intakes of DINP, DEHP, and DBP for the Italian consumption of vegetable
oils modelled by Nanni et al. accounted for 0.6, 1, and 0.6%, respectively, of TDIs fixed by the EFSA
(2005) with any concern for PAE contamination from oil consumption [222].

Bi et al. found 15 plasticizers in 21 edible vegetable oils purchased from a U.S. retail market. DEHP
and DIBP were identified in all oil samples [225]. The detection rates for all other plasticizers ranged
from 0 to 57.1%. The content of total plasticizers in oil samples was determined to be 210–7558 µg kg−1,
which was comparable to the content range in oil marketed in Italy. The authors observed a wider
range and higher average of total content of plasticizers in olive oil than other oil species (soybean,
canola, and corn), indicating the inconsistence of plasticizer contamination from oil packaging and
a possible priority for olive oil quality monitoring. DEHP content in two olive oils exceeded relevant
SMLs of Europe and China.

In the study conducted by Oh et al., the level of phthalates in different types of oils contained in
PET bottles was probably due to the use of adhesives, offset printing inks, and lacquers. DBP was
detected in only two olive oil samples (16.7%) at concentrations of 13.2 ± 2.29 and 40.6 ± 2.30 µg kg−1.
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Among the 12 analysed oils, a total of 9 samples (75%) were contaminated with DEHP at slightly high
concentrations of 25.0 ± 1.77 (soybean oil) to 806 ± 10.1 µg kg−1 (grape seed oil) [226].

According to Lacoste et al., DEHP was observed in several vegetable oils and fats. Some samples
such as virgin olive oil, refined grape seed oil, and walnut oil presented DEHP content higher than
1 mg/kg. The authors suggested that chemical refining (low temperature 200 ◦C vs. 240 ◦C) conducted
to variable elimination of phthalates depending on their molecular weight while physical refining
conducted to the total elimination of phthalates (BBP, DEHP, and DIDP) [227].

Sungur et al. investigated the content of phthalates in edible oil sold in Turkish markets. Mean
phthalate concentrations were between 102 and 3863 µg L−1 in virgin olive oil; 172 and 6486 µg L−1 in
olive oil; 501 and 3.651 µg L−1 in hazelnut oil; 457 and 3415 µg L−1 in canola oil; 2227 and 6673 µg L−1

in sunflower oil; and 1585 and 6248 µg L−1 in corn oil. The highest phthalate levels were measured in
sunflower oil, whereas the lowest phthalate levels were determined in virgin olive oil and hazelnut oil.
In particular, the highest phthalate levels were determined in oil samples contained in polyethylene
terephthalate (PET) [228].

Furthermore, Long-Kai et al. found many highly contaminated edible vegetable oil (i.e., peanut,
tea seed, rice bran, sunflower, soybean, corn, rape seed, olive, cotton seed, and wheat germ oils) from
China. Total PAE concentration ranged from 40 to 2249 µg kg−1. Wheat germ oils were the most
contaminated among all tested samples, whereas corn oils were the best varieties. DMP, DBP, and
DEHP concentrations in tested wheat germ oils were 90, 21, 290, and 1110 µg kg−1, respectively. Five
oil samples (one rice bran oil, one peanut oil, two tea seed oils, and one walnut oil) exceeded the MRL
1500 µg kg−1 for DEHP set by China. In addition, 13 oil samples (2 rice bran oil, 1 sunflower oil, 2
peanut oils, 2 rape seed oils, 1 cottonseed oil, 2 tea seed oils, 1 wheat germ oil, 1 grape seed oil, and 1
walnut oils) exceeded the MRL 300 µg kg−1 for DBP. Among seed oils samples rape seed samples were
the most contaminated, while tea seed samples were the best. The authors compared also the effect of
packaging material (glass, iron, and PET) on the PAEs content of some samples without finding any
high correlation between them [228].

Recently, DEHP and DBP were also detected in four major edible vegetable oil sources from
a total of 1016 samples collected throughout China: an edible oil blend, soybean oil, peanut oil, and
rapeseed oil. The phthalate with the highest detection rate was DBP (13.48%), followed by DEHP
(7.78%). Nevertheless, the two phthalates had the lowest detection rates in soybean oil, which were
1.94% (DEHP) and 5.16% (DBP) [229].

Luo et al. investigated the presence of seven major phthalates in nine different kinds of edible
oils (i.e., olive, rapeseed, peanut, sesame, tea seed, corn, soybean, sunflower, and blended oil). DINP,
DEHP, DIDP, DBP, DIBP, DEP, and BBP were the main phthalates detected with average concentration
of 900, 810, 790, 710, 220, 170, and 100 µg kg−1, respectively. The authors revealed the estimated
maximum human daily intake (EDI) of DEHP, DBP, BBP, and DIBP through consumption of edible
oils were 2.92, 6.79, 1.24, and 1.06 times higher than those via bottled water, respectively. According
to the authors edible oils have severe potential adverse estrogenic effects on human 45–396 times of
bottled water [230].

6.5. Dairy Products

Milk and in particular dairy products have high tendency to be contaminated by phthalates since
they are classified as high-fat foods (Table 6).
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Table 6. Occurrence of phthalates in dairy products (µg kg−1).

Matrix Phthalate Average
Concentration Reference

Milk DEHP 20–480
[231]

Milk samples from Scandinavian
countries

Milk in silo and tanker DEHP 60–140

Cream 35% fat DEHP 1060–1670

Milk <1% fat DEHP 20–40

Milk DEHP 10–40 Milk samples from Spain
Cream DEHP 480–550

Milk DEHP 10–90
Milk from UKCheese DEHP 600–3000

Cream DEHP 200–2700

Summer milk

DEHP ND–787.6

[232]

DIBP ND–15
DBP ND–15.3
BBP ND–15.5

Winter milk

DEHP 201.3–499.7
DIBP 17.2–51.5
DBP ND–15
BBP 10–20.5

Milked by hand

DEHP <60
DIBP 29
DBP <15
BBP <10

Milked by machine

DEHP 123.5
DIBP 15.1
DBP ND
BBP 14.3

Raw milk cooling tank

DEHP 364

[233]

DIBP <15
DBP ND
BBP ND

Pasteurized milk cooling
tank

DEHP 426
DIBP ND
DBP ND
BBP <15

Milk powder before filling

DEHP 478
DIBP 32
DBP 28
BBP ND

Milk after filling (can)

DEHP 630
DIBP 56
DBP 52
BBP 12

Milk after filling (pouch)

DEHP 523
DIBP 31
DBP 60
BBP 53
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Table 6. Cont.

Matrix Phthalate Average
Concentration Reference

Milk powder at retail (can)

DEHP 566
DBP 75
DBP 53
BBP 12

Milk powder at retail (pouch)

DEHP 526
DIBP 75
DBP 53
BBP 12
DBP 80
DBP 170

Milk samples DEHP 57 [234]
DBP 30

The contamination can occur along the entire milk production chain from farm to fork [233].
Sharman et al. analyzed the levels of DEHP and total phthalates (expressed as DEHP equivalents)
in products (milk, cream, butter, and cheese) from Norway, Spain, and UK [235]. Samples of milk
from Norway, obtained at various stage of collection, processing and distribution chain, contained
DEHP from 20 to 480 µg kg−1 and total phthalates from less than 40 to 5120 µg kg−1. The levels of
contamination did not increase during the transportation from the storage tank to factory, with DEHP
levels of 60–140 µg kg−1 being found in both the silo and the tanker. The processing of the milk into
products ranging from cream to light milks had the most significant effect on levels of DEHP, whereby
the highest levels were found in creams and the lowest levels in the light milk.

Retailed milk and cream samples obtained from Spain resulted to be contaminated with DEHP
from less than 10 to 550 µg kg−1 and with total phthalate levels from less than 40 to 3040 µg kg−1

in cream samples. DEHP appeared to be the predominant contaminant, with over 40% of the total
phthalate contribution being attributable to this chemical. This could be explained by the fact that
DEHP was the main plasticizer used in food contact materials in Spain. UK pooled milk samples
obtained from glass bottles for doorstep delivery contained low levels of DEHP levels (10–90 µg kg−1)
and the total phthalate (60 to 320 µg kg−1) [234].

Retail UK samples of cheese, butter and other fatty products varied considerably in their
levels of contamination, the highest being cheese samples containing 17,000 µg kg−1 of DEHP and
11,400 µg kg−1 total phthalates. However, the majority of samples contained 600–3000 µg kg−1 DEHP
and 4000–20,000 µg kg−1 total phthalates. UK cream samples contained levels of 200–2700 µg kg−1

DEHP and 1800–19,000 µg kg−1 total phthalates. The levels of phthalate esters observed in UK retail
cream and cheese samples were significantly higher than those detected in samples from both Norway
and Spain. It is unlikely that the raw milk used for the production of these cheeses was more heavily
contaminated, since the levels of DEHP and total phthalates in UK milks was in fact lower than
Norwegian one. Sharman et al. suggested that the main route of contamination probably occurs
during processing and/or from packaging [231].

Fierens et al. studied the contamination of DMP, DEP, DIBP, DBP, BBP, DEHP, di-cyclohexyl
phthalate (DCHP), and DnOP in raw caw milk collected from different Belgian farms [233]. Raw
caw milk was found contaminated by DIBP and DEHP due to the ingestion of contaminated feed
(i.e., silage and pasture) and, interestingly, the levels of these contaminates changed with seasons.
DIBP was detected in winter milk, ranging from 17.2 to 51.5 µg kg−1 fat. DEHP levels varied during
summer from ND to 787 µg kg−1 fat (mean concentration of 400.1 µg kg−1 fat) and between 201.3 and
499.7 µg kg−1 fat during winter (mean concentration of 298.3 µg kg−1 fat). Concentrations of BBP were
found in one summer milk sample (15.5 µg kg−1 fat) and in four winter milk samples (from 15 to
20.05 µg kg−1 fat). The authors revealed that contact materials like PVC tubing during the mechanical
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milking process had to be considered as additional important contamination points. In fact, DEHP
levels increased in the mechanical milking process and cooling tanks, although contamination seemed
to be farm dependent. As a result of this study, the decrease of DEHP level in European cows’ milk was
also observed because of the substitution of DEHP into the polymers with other types of plasticizers.
In contrast, DEHP concentrations in milk outside Europe remain still very high, namely 1410.9 µg kg−1

fat on average in milk from South Korea and 5357.2 µg kg−1 fat in Canadian milk. Moreover, BBP
increased during the mechanical milking process as a result of migration from contact materials.

The contamination of milk and dairy products was investigated at dairy industry and retail level
by Fierens et al. [232]. Contamination of these products with phthalates, especially DIBP, DBP, BBP,
and DEHP, at some stages of the milk chain was observed. The possible sources of the contamination
were labelled as mechanical milking process and intake of the feed by the cattle [232]. The authors
revealed that almost no extra phthalate contamination took place during the transportation of milk from
the farm cooling tank to the dairy plant cooling tank. During pasteurization, the DEHP content in milk
increased from 364 to 426 µg kg−1 fat (mean level) and the reason of this increase was most likely due to
DEHP containing food contact materials (tubings and sealants). The DEHP migration might have been
facilitated by increasing temperature during pasteurization. Once the cooled milk was concentrated,
pasteurized, homogenized, and spray dried, the mean DEHP concentration increased from 426 to
476 µg kg−1 fat. The milk powder contained also higher level of DIBP and DBP (32 and 28 µg kg−1

fat). In addition to those, packaging materials were also identified as another source of contamination.
Indeed, DEHP, DIBP, DBP, and BBP were found in packaging materials (can and pouches) used for
milk and characterized by a large contact surface. DEHP levels considerably increased in canned milk
powder (630 µg kg−1 fat); DBP concentrations were 52 and 60 µg kg−1 fat in milk powder packed in
cans and pouches, respectively, whereas BBP was detected at 53 µg kg−1 fat in pouches.

By retail milk examination, DMP and DBP were not detectable on the contrary DIBP increased
from ND in raw milk to 18 µg kg−1 fat in retail low fat milk, being DEHP mainly detected in retail milk
bought in winter. Considering butter packed in foiled paper no specific contamination sources could
be detected since the samples were only collected in the beginning and at the end of the milk chain.
DEHP was the only detected phthalate with concentration in line with the levels determined in raw
summer milk. The same phenomenon was observed for DEHP in cheese. Due to a longer production
time, it is conceivable that phthalates present in the products could have been already degraded [233].

According to MeeKyung et al., 15 out of 30 raw bovine milk samples monitored in their
study contained DEHP concentrations in raw milk ranging from ND to 154 µg kg−1, and the mean
concentration was 57 µg kg−1. DBP was observed at concentration from ND to 99 µg kg-1 in
twenty samples and the mean concentration was 30 µg kg−1. The estimated and average intake
for a 24-month-old-child is luckily beyond the EU TDI corresponding to the 24% and 8% of TDI
respectively [235].

6.6. Meat and Poultry

The content of phthalates in thermally processed meat products, after storage at +4 ◦C in different
packages exceeding the limits of the concentration established by EU Commission Regulation 10/2011,
was evaluated by Jarosova and Bogdanovicova [236]. DBP and DEHP were ND in the five raw meat
samples, whereas there was highly statistically significant evidence of migration of DBP and DEHP
depending on the fat content (10 and 50% of fat, respectively) and on the period of storage. The SML
for DBP (300 µg kg−1) already exceeded after the first day of storage in two samples with 10% of fat,
and after the seventh day of storage in one sample. In samples with 50% of fat there was the SML
exceeded already after the first day of storage in four samples and after the 14th day of storage in
one sample. The concentration of DEHP was comprised from ND to 3570 µg kg−1 and from 1260 to
11,670 µg kg−1 in meat with 10% and 70% of fat, respectively. In the case of DEHP, in the sample with
10% of fat there was SML exceeded after the first day of storage in one sample, and after the seventh
day or 21st of storage in another two samples. The samples with 50% of fat, showed excess of DEHP
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(1500 µg kg-1 SML) already after the first day of storage. The authors revealed that the DBP content in
packages contributed by 20% and, in case of DEHP, by 80% to the overall content of PAEs. They also
concluded that the leaching of PAE was 2–21 times higher in samples with 50% of fat than in samples
with 10% of fat [236].

Tsai et al. examined the residues of DEHP, BBP, DIDP, DBP, and DINP in unpackaged pork (30
samples) and chicken samples (30 samples) in Taiwan [237]. Thus, eliminating packaging-related
contamination, the phthalates detected in the study may have originated from crops cultivated
for feed or may have leached from materials in the production process. The major compound
detected was DEHP in two pork samples and in three chicken samples. Collectively, 8.33% of
the phthalate-residue-containing samples tested positive for DEHP. Although the highest risk of
exposure to DEHP was derived from pork consumption, the estimated dietary intake of DEHP residues
from both pork and chicken samples was <1% of the TDI value. However, Tsai et al. revealed that
the toxicity of phthalates derived from ingesting farmed pork and chickens is not a risk to human health.

6.7. Edible Plants

Daily vegetable consumption can pose potential risks to human health since soil PAEs could be
taken up and accumulated by plants. As reviewed by Lü et al., PAE compounds in China were widely
detected in both urban and agricultural soils as well as in contaminated areas with DBP and DEHP
being the predominated compounds. The source identification of PAEs showed that plastic, especially
film mulching, is one of the most important sources of PAEs in soil, wastewater irrigation, application
of fertilizer, and sewage sludge could also elevate the levels of PAEs in soil [238].

Sun et al., carried out a study to evaluate the uptake and translocation of DEHP, DBP, and their
corresponding monoester metabolites by whole plants of lettuce, strawberry, and carrot in order to
assess their potential human health risks through dietary intake [239].

The mean PAE concentrations, based on dry plant mass, ranged from 128 to 2391 µg kg−1 for DBP
and from 654 to 1371 µg kg−1 for DEHP in leaves and roots of the three species.

Uptake of both DBP and DEHP was observed in the three plant species, with the overall levels
following an order of carrot > strawberry > lettuce. The differences in the uptake of PAEs between
plant species may be attributed to the different lipid contents, among other factors. In plant roots,
accumulation of DBP (1126−2712 µg kg−1) appeared to be greater than that of DEHP in carrot and
strawberry, and the concentrations of both DBP and DEHP in roots were significantly higher than
those in leaves. Roots, with a higher lipid content than most other plant tissues, may preferentially
accumulate hydrophobic compounds. In addition to the higher log Kow (log Kow = 4.45 for DBP and
7.50 for DEHP), DEHP has lower water solubility than DBP and so the plant uptake is lower than DBP.
The mean bioconcentration factor (BCF) values of the leaf or root of the three species ranged from 0.26
to 4.78 for DBP and 1.31 to 2.74 for DEHP. The BCF values of DBP in roots of strawberry and carrot
were larger than those of DEHP, whereas the BCF values of DBP in leaves were smaller than those
of DEHP.

Sun et al., also observed uptake of MBP and MEHP in the three plant species. The MBP
concentrations in both leaves and roots of carrots were slightly higher than the others. The concentration
of MEHP was also higher in carrot leaves, while the root of lettuce showed the highest MEHP
accumulation. In addition, concentrations of MBP in leaves and roots of all three plants species were
consistently higher than those of MEHP, and the difference may be attributed to their physicochemical
properties, such as Kow and pKa [239]. Once they have been taken up, PAEs are readily transformed
into their monoesters. Incubation of PAEs and monoalkyl phthalate esters (MPEs) in carrot cell culture
showed that DBP was hydrolyzed more rapidly than DEHP, while the monoesters were transformed
more quickly than their parent precursors.

In conclusion according to Sun et al., food plants may accumulate PAEs as a result of the large use
of plastic films in agricultural production. Plastic films are extensively used as surface mulch, soil tarps
after fumigation and row covers. In addition, the use of plastic greenhouses serves many functions,
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such as extending the growing season, conserving water, controlling weeds, and maintaining high
quality produce. The estimated amounts of plastic mulch films and greenhouse covers are 0.7 and 1.0
million tons per year, respectively.

Results from this study clearly demonstrated that human exposure calculated using the whole
plant data was well below the reference doses for individual PAEs. However, given the extensive
metabolism of PAEs to monoesters in both whole plants and plant cells, metabolites such as MPEs
should be considered when assessing human exposure via consumption of vegetables grown in
PAE-contaminated soils [219,239,240].

Chen et al. investigated PAE contamination levels in vegetables both sold on the market and grown
in greenhouses. Vegetables growing in greenhouse agriculture had higher DBP and DEHP content than
those growing in open fields [240]. Moreover, there was more accumulation of PAEs in vegetables leaf
compared to PAEs in soils. The concentrations of DEHP, DIBP, and DBP in the air inside the greenhouses
were much higher than those outside. These results suggested that vegetables may absorb PAEs not
only through their roots from soil but also through their leaves from air. The mean concentrations of
DIBP, DBP, and DEHP were no significantly higher in vegetables growing in greenhouses covered with
plastics than in open fields.

Chen et al. revealed that the mean concentrations of total PAEs in the vegetables from the markets
were slightly higher than those in leaves of vegetables from greenhouses, such as bokchoy, eggplant,
green bean, green pepper, and tomato, in which more DIBP and DBP were detected. The total
concentration of PAEs in vegetable leaves from greenhouses and vegetables sold on the market were in
the ranges of 1580–8090 and 950–6360 µg kg−1 (fresh weight), respectively.

The results of statistical analysis showed that the concentration of DEHP positively correlated
with greenhouses cultivation time, suggesting that DEHP may be derived from plastic films, while
DBP from fertilizer and pesticides. People in northern cities in China had higher exposure of PAEs
from vegetables than those in southern cities. In conclusion, the high detection frequency of PAEs in
vegetables sold on the Chinese market indicates that exposure pathway of PAEs to humans through
vegetable consumption should be of concern in cumulative risk assessments. A special attention
should be given to individuals who work in greenhouses due to high DEHP concentration inside
greenhouse air [240].

7. Conclusions

PAEs are ubiquitous compounds and food contaminants that became of great concern a few
decades ago, when they started to be regarded as a global threat for human health. In particular, LMW
PAEs have shown highly endocrine-disrupting properties (European Union Risk Assessment Report
2003) and have been classified as harmful substances in Europe and in REACH. Since then, many efforts
have been made by the European Commission (EU) and the United States Environmental Protection
Agency (ES EPA) to regulate and limit their distribution and application in different industrial fields,
including food contact materials. Although there exist a threshold policy establishing Specific Migration
Limits (SMLs) and Tolerable Daily Intake (TDIs) for individual phthalates per person, it is not so easy
to estimate their contribution and discriminate them among other environmental pollutants to which
people are simultaneously exposed every day.

According to the Agency for Toxic Substances and Disease Registry (2002) the average daily
human exposure to DEHP is about 0.003–0.03 mg/kg/day (7.7–77 µmol/kg/day) with children being
the most vulnerable subjects due to the ability of PAEs to penetrate into placenta, excreted into breast
milk, and used in the fabrication of toys [84].

Because of the noncovalent binding, PAEs can easily leach out of the various matrices; thus, entering
the food and other commodities. Once ingested, DEP is absorbed as a monoester and transformed into
lipophilic xenobiotic chemicals that are likely responsible for health dysfunctions. These compounds
become unsuitable part of dietary intake as a possible consequence of accidental contamination
during food processing and packaging, agrochemical treatments (wastewater irrigation, sewage sludge
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disposal, and film mulching), leached pesticides, chemical industrial waste, or inappropriate transport
of goods. In the attempt to monitor their concentration along the food chain, many studies have been
carried out to detect the extent of phthalates in a great variety of food (edible oils and fats, dairy
products, meat and poultry, and edible plants) and beverages (alcoholic beverages, soft drink, and
water). What emerged from all the studies is that the migration of these chemicals from packaging
into food depends on the type of packaging materials (polyethylene terephthalate; polyvinylchloride;
gaskets of lids for glass jars; and carton), the high-fat composition of food, the ethanol content, the pH
of the medium, the degree of lipophilicity, and biodegradation processes. Noteworthy, it has been
evaluated that the concentration of these compounds seems to increase along the food chain, from
the animal or vegetal sources to the distributed food products, i.e., dairy products (milk, cheese, and
butter) [232,233], oils [230], and wines [196]. Interestingly edible plants can pose cumulative risk for
both animal and human consumption [240].

In the present review, we examined PAEs contamination in foodstuffs and beverage from an
analytical and toxicological point of view, highlighting the molecular mechanisms underlying their
putative involvement in several human diseases, as well as the critical aspects of the contamination
raised by the different type of food matrices, packaging, storage time, pH influence, and temperature
variations [210,236].

It has to be emphasized that in defiance of the need to limit PAEs distribution, it is really complicated
to substitute them as plasticizers for their excellent characteristics (i.e., increasing flexibility, durability,
and workability). Hence, it is of fundamental importance to identify advanced processing technologies
able to ameliorate the quality of food packaging, so to minimize chemical migration and contamination
of food, drinks, oils, and other consumer products.

The greatest challenge remains the difficulty in harmonizing various legislations in different
Countries as well as standardizing test conditions and methods of human biomonitoring.

This review increases the body of knowledge regarding on PAEs impact on human health and
highlights the importance of studying the role of these chemicals in the onset and progression of many
human pathological conditions. Many of their toxic effects (i.e., reproductive and developmental)
are mediated through the interaction with xenosensing receptors, although they would also activate
receptor-independent signaling pathways that have been correlated to various diseases, such as cancer
(i.e., breast, skin, and liver), endometriosis, infertility, sex anomalies, asthma, hypertension, type II
diabetes, obesity, nephron- and hepato-toxicity, as well as neurological disorders [241]. It is plausible
that phthalates are not the only players in the onset or progression of these pathologies, but they may
give a huge contribution as additional risk factors together with other environmental contaminants.

So far, it is still an open question whether PAEs are positively [42,56,242], negatively [243,244], or
in any way [245] associated with the levels of reproductive hormones and fertility in general, being
epidemiological studies quite controversial and inconsistent about it. As it is now recognized that
environmental chemical exposure during fetal development may induce diseases in the adult life, more
studies at various life stages are needed in order to establish a biologically plausible causal relationship
between PAEs exposure and the induced adverse effects; thus, helping to assess the risks on clinical
and public health.

It should be underlined that PAEs-mediated effects on reproductive system may largely vary
depending on PAEs exposure (low vs. high), wherein low-doses level were consistent with changes in
steroidogenesis pathway (stimulation of testosterone production and prevention of infertility) [62,246]
whereas higher-level inverted this effect [247]. This antipodal behavior of PAEs associated to their
non-monotonic effects in spermatogenesis and male fertility makes it difficult to estimate the risk
following human exposure. Another critical aspect is linked to the choice of the study design, often
recruiting individuals with confounding abnormalities regarding reproductive system or genetic
polymorphisms [248]. If in vitro or in vivo studies may not represent realistic conditions regarding
the doses of single or mixed PAEs used in the experiments, epidemiological studies appear often
limited and not generalizable to the general population because of the non-representative sample
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size, which would restrict the statistical power of the findings and would not allow an effective
prediction. Therefore, additional larger population studies will be of great help to further identify
not only the individual weight of PAEs in human health but also the sum with other compounds,
having in mind that in real-life scenarios, it is impossible to control people exposure to a wide variety
of chemicals from the numerous sources [249], and that these chemicals nowadays coexist in natural
environments. Noteworthy, many endocrine disruptors, such as PAEs and Bisphenol-A, can act
together in a synergistic way to produce additive effects in the human body [250].

In view of the growing evidence conferring to epigenetic mechanisms a key role in PAEs-mediated
effects in reprotoxicity, tumorigenesis, and metabolic diseases, the evaluation of the risk correlated to
PAEs exposure through high throughput in silico computational analysis, enabling the integration of
data from urine or blood with genomics, and the establishment of a dose-response relationship, would
elucidate the effective role of PAEs in the onset of endocrine, metabolic and neurological disorders,
among others.

In conclusion, more studies should be addressed in order to overcome crucial issues related to
heterogeneous methodologies, short-term studies, lack of human samples, and few matrices, and
to better understand the impact of phthalates on human health; thus, protecting consumers from
hazardous chemicals in foodstuffs and put in place more health-protective regulations.
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