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Abstract: Predictive factors for fatal traffic accidents have been determined, but not addressed
collectively through a predictive model to help determine the probability of mortality and thereby
ascertain key points for intervening and decreasing that probability. Data on all road traffic
accidents with victims involving a private car or van occurring in Spain in 2015 (164,790 subjects and
79,664 accidents) were analyzed, evaluating 30-day mortality following the accident. As candidate
predictors of mortality, variables associated with the accident (weekend, time, number of vehicles,
road, brightness, and weather) associated with the vehicle (type and age of vehicle, and other types
of vehicles in the accident) and associated with individuals (gender, age, seat belt, and position in the
vehicle) were examined. The sample was divided into two groups. In one group, a logistic regression
model adapted to a points system was constructed and internally validated, and in the other group
the model was externally validated. The points system obtained good discrimination and calibration
in both the internal and the external validation. Consequently, a simple tool is available to determine
the risk of mortality following a traffic accident, which could be validated in other countries.

Keywords: accidents; traffic; mortality; death; models; statistical

1. Introduction

Road traffic accidents are a serious public health problem, with estimates using data from recent
decades suggesting they could become the fifth leading cause of death worldwide by 2030 [1,2].
In addition, traffic accidents are an important socioeconomic problem because of the need to treat
victims, the loss of productivity of those who die or are disabled as a result of the accident, the years of
life lost and the time spent by families caring for victims due to the sequelae [3].

Attempts to reduce the number of accidents have involved great effort but have nevertheless
met with very varied results, depending partly on the idiosyncrasy and culture of the countries
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involved [4,5]. Although specific measures associated with comprehensive intervention packages
or more complex regulations have had a considerable impact in terms of reducing the number of
accidents, they have had less impact on the reduction in the number of victims (driver/passenger) [6].
They have, however, had a very important effect on the decrease in the mortality rate of pedestrians
involved in accidents. This aspect is closely associated with the specific country in which the study is
carried out [7].

Factors that are decisive in relation to mortality in traffic accidents include driver-dependent
factors, such as being male and young, or environmental factors, such as low brightness, dawn or
dusk, and adverse weather conditions. In addition, the most frequent accidents involve pedestrians
being struck or run over, or head-on collisions, the most common causes of which are negligence or
recklessness, in both industrial and emerging countries [8–17]. Obesity, as a driver-dependent factor,
has also been found to significantly increase the risk of death in the event of a traffic accident [18].

Analysis of transport data [19–25] has led to detailed study of the association of accident density
and severity, assessing various methodologies and such factors as congestion, flow, speed, and
road geometry (curvature and gradient), which are all relevant for the consequences of an accident.
The results of these studies show that a greater density of vehicles (vehicles per hour) is not directly
associated with greater severity, after controlling for the previously mentioned confounding factors.
In addition, with these methodologies we can determine road segments where the probability of
having a fatal traffic accident is higher.

However, just knowing the factors associated with mortality does not provide information about
the specific weight of each factor in the prediction. This is where prediction models play a key role,
since they determine, through complex mathematical formulas, the probability that a subject with
certain characteristics will experience a certain event, in our case that the subject will die as a result of a
traffic accident.

In 2014, an international consensus of experts on predictive models was published, indicating
which aspects should be taken into account when developing a new model or validating an existing
model when carrying out a systematic review of predictive models [26]. Subsequently, in 2019, a quality
assessment system was established for predictive models, similar to that of the Cochrane tool for
randomized clinical trials, to assess the risk of bias and applicability (Prediction model Risk Of Bias
ASsessment Tool, PROBAST) [27,28]. These statements are based on the best available scientific
evidence, and following them is essential to obtain a prediction model that can be used in practice
and thereby take appropriate measures to reduce the risk of a subject experiencing the event of
interest [27,28].

In the scientific literature, we found only one study that developed a model for predicting traffic
accident mortality [29]. In this publication, there were only 54 events (people killed in the accident)
out of a total of 3922 people involved in accidents who had gone to the emergency department of a
hospital in Belgium in 2008–2011. The individuals who sustained no injuries during the accident were
not included in the study. Furthermore, adherence to the recommended statistical methods was not
high, which increases the risk of bias and reduces applicability [27,28].

In order to develop and both internally and externally validate a prediction model to determine
30-day mortality after a traffic accident, all private car and van accidents occurring in Spain in 2015 were
analyzed, involving 164,790 subjects and 79,664 accidents. All analyses were performed applying the
methodology indicated since 2014 [26–28]. This provided a tool whereby we can see the specific weight
of each factor to produce a traffic accident fatality, and thus determine where we need to intervene.
In addition, after the publication of the prediction model, we intend to integrate it into a mobile
application for Android, which will be free for all Google Play users (“Traffic accident mortality”).
This app could be used by the police and emergency services, as well as hospital emergency teams,
to estimate the mortality risk directly and improve decision making.
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2. Materials and Methods

2.1. Setting

Since 1993, the Directorate General of Traffic, with the collaboration of the Directorate General of
the Civil Guard and the autonomous and municipal police, all have the obligation to collect, at least
annually, records of all traffic accidents occurring in Spain. Each of these collections must include a
series of explicit characteristics, such as the type of road, the number of vehicles involved, the place,
the type of accident, the most important determining factor of the accident, and whether anyone
died [30]. The individual accident questionnaires must be completed by the agents in charge of traffic
surveillance and control, who, after the appropriate review and in order to avoid possible omissions or
errors, send them directly to the corresponding Provincial Traffic Headquarters within five days of the
accident. Since that same year, these data are computerized and are available to the public, along with
all the reports prepared by the Directorate General of Traffic. However, the latest data as of June 2019
are from the year 2015 and these, therefore, have been used to carry out this study.

The Directorate General of Traffic defines an accident with victims as one in which the following
circumstances are present: it occurs on or has its origin on a road or land subject to the legislation on
traffic, motor vehicle circulation, and road safety; it also involves at least one vehicle in motion, and as
a result, one or more persons are killed and/or injured. Thus, any person who dies immediately or
within thirty days of a traffic accident is deemed to have died as a result of a traffic accident. Confirmed
cases of natural death or suicide are excluded. These definitions are contained in Order INT/2223/2014,
of 27 October, which regulates the communication of information to the National Register of Traffic
Accident Victims [31].

2.2. Study Design and Participants

The study design involves a cohort of subjects traveling in a private car or van who were followed
from the time of having an accident with victims in 2015 in Spain up to a maximum period of 30 days.
Mortality is reflected in the database in binary form, unless the data is unknown, in which case a
probability of death is indicated. The 2015 data were complete, which implies that there was no loss
to follow-up.

2.3. Ethical Aspects

All data are free and open access, and completely anonymized, identifying each person as well as
the accident with a unique code. The data analysis was approved by the Project Evaluation Body of
Miguel Hernández University with reference DPC.ALC.01.19 on 11 April 2019.

2.4. Variables and Measurements

The main study variable was death within 30 days of the accident. This is the period recorded by
the Directorate General of Traffic, though no indication is given of the exact date of death within this
period after the accident. Note that this variable is completely objective and knowledge of it would
not interfere with the measurement of the predictors (blinding of outcome), which are detailed below.
The selected candidate predictors were those factors concerning the accident that could affect mortality
with a completely objective and simple measure: (1) Accident-related variables: weekend (yes, no;
starting on Friday at 12 noon), time of the accident (hour), number of vehicles in the accident, road
(urban, interurban), brightness (daylight, dusk, night (sufficient lighting), night (insufficient lighting))
and weather (good, fog, rain or hail, snowing, high wind); (2) Vehicle-related variables: type (private
car, van) and age of the vehicle (years), and other vehicles in the accident (private car, van, truck,
bicycle, motorbike or moped, heavy equipment or tractor, bus); and (3) People-related variables:
gender (male, female), age (years) and using a seat belt (yes, no). All variables were obtained from
the database described above. Since all predictors are objective, bias due to lack of blinding of



Int. J. Environ. Res. Public Health 2020, 17, 9518 4 of 13

predictors is completely minimized. In addition, all predictors are known at the time of an accident
involving victims.

2.5. Sample Size

To develop a prediction model, according to the PROBAST initiative, at least 20 events-per-variable
are necessary, including variable transformations, while to externally validate a model, 100 events,
and 100 non-events are required [27,28]. Our sample was divided into two groups, one to develop and
internally validate the model and the other to externally validate it. This division was done using the
accidents that occurred in odd months for development and internal validation, and the rest for external
validation. This process was not carried out in a completely random manner, as it is recommended to
divide the samples by temporal criteria, location, etc. [26]. The first sample consisted of 84,502 people
and 399 deaths, which enabled construction of a predictive model with up to 19 predictors (399÷20),
while the second sample comprised 80,288 individuals and 379 deaths, which met the standard to
externally validate a predictive model [27,28].

2.6. Statistical Methods

Categorical variables were described using absolute and relative frequencies, while quantitative
variables were described using means and standard deviations. The descriptive analysis was performed
stratifying by group (development/internal validation and external validation). The missing data
in some of the predictors were imputed, as recommended in PROBAST [27,28], using multivariate
imputation by chained equations [32]. The continuous predictors were transformed by means of cubic
splines, to study the functional form of the variable [33]. The knots for age were 25, 50, and 75 years, for
time of occurrence of the accident 06:00, 12:00, and 18:00, and for age of the vehicle 5, 10, and 15 years.
The knot points were pre-specified in order to divide the complete interval into similar parts. Firstly,
we compared the spline models with ones assuming a linear form for the relationship, determining
whether or not spline modelling is necessary. This was done performing graphs of the relationship
between time, person age, vehicle age and outcome. We selected the spline functions when graphical
differences were apparent between the two curves. The process of converting a variable via splines
equates to that variable being transformed into 6 independent spline variables (this will depend on the
number of knots selected). Each of these variables is then considered as a candidate predictor in the
construction of the model, and there may be some that are significant and some that are not. After this,
all the variables were introduced in a binary logistic regression model, substituting the continuous
linear variables for spline transformations, which totaled 41 predictors. It was not possible, therefore,
to introduce all the predictors in the model and the final list was selected using a forward method
based on the likelihood ratio test (p-value < 0.25 as the criterion to be included). The mathematical
model, which is difficult to use in practice, was adapted to a points system (Framingham Heart Study
methodology), which weighs the coefficients and groups the values of the predictors to make it much
easier to apply, although accuracy is lost [34]. Following this transformation, the model was internally
validated by bootstrapping, determining both discrimination and calibration. This procedure consists
of taking many random samples with replacement of the original sample (generally 1000) and through
them constructing the distribution of a statistic, thus calculating its mean, standard deviation, etc [35].
Discrimination was evaluated by calculating the area under the receiver operating characteristic curve
and calibration by means of a calibration plot, obtaining the observed probabilities of death by means
of cubic splines, as recommended in the literature [36]. The same method was applied for the external
validation, using the sample comprising accidents that occurred in even months, evaluating the area
under the receiver operating characteristic curve (AUC) and the calibration plot. All analyses were
performed with a significance of 5% and for each relevant parameter its associated confidence interval
(CI) was obtained. The statistical packages used were IBMS SPSS Statistics 25 (IBM Corporation,
Armonk, NY, USA) and R 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria).
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3. Results

The development and internal validation sample comprised a total of 41,082 accidents
and 84,502 individuals, while the external validation sample consisted of 38,682 accidents and
80,288 individuals. Great similarity was observed between the two samples in the accident-related
variables (Table 1), highlighting that a quarter of the accidents occurred on weekends, a third on
interurban roads, generally with good lighting and good weather. We also observed this homogeneity
in the people-related variables, with a similar mortality (~0.5%), a majority being men, with a mean age
close to 40 years and the majority of vehicles being private cars. The number of missing data for each
sample and predictor, which were later imputed, is also shown in Table 1. Finally, the transformation
of continuous predictors is presented in Supplementary Materials Tables S1–S3. We selected the spline
functions based on the results obtained in Figures S1–S3 (great differences in all cases).

Table 1. Main characteristics of the two cohorts for developing and externally validating the predictive
model for 30-day mortality.

Variable Development Cohort
n(%)/x ± s

Validation Cohort
n(%)/x ± s

Accidents (Development n = 41,082; Validation n = 38,682)
Weekend:

Yes 9567 (23.3) 8965 (23.2)
No 31,515 (76.7) 29,717 (76.8)

Time (hours) 1 14.0 ± 5.2 14.0 ± 5.2
Number of vehicles 1 1.9 ± 0.7 1.9 ± 0.7

Road:
Urban 26,649 (64.9) 24,659 (63.7)

Interurban 14,433 (35.1) 14,023 (36.3)
Brightness:

Daylight 29,531 (71.9) 27,605 (71.4)
Dusk 2267 (5.5) 2195 (5.7)

Night (sufficient lighting) 6728 (16.4) 6334 (16.4)
Night (insufficient lighting) 2556 (6.2) 2548 (6.6)

Weather:
Good 34,219 (83.3) 31,818 (82.3)
Fog 280 (0.7) 292 (0.8)

Rain or hail 3036 (7.4) 2816 (7.3)
Snowing 50 (0.1) 54 (0.1)

High wind 185 (0.5) 130 (0.3)
Other 1372 (3.3) 1780 (4.6)

Missing 1940 (4.7) 1792 (4.6)
Vehicles (Development n = 59,807; Validation n = 56,302)

Type:
Private car 54,502 (91.1) 51,202 (90.9)

Van 5305 (8.9) 5100 (9.1)
Age of the vehicle (years):

x ± s 10.3 ± 5.8 10.3 ± 5.9
Missing 16,580 (27.7) 15,488 (27.5)

Other vehicles in the accident:
Private car 31,573 (52.8) 29,554 (52.5)

Van 3821 (6.4) 3732 (6.6)
Truck 2243 (3.8) 2179 (3.9)

Bicycle 2042 (3.4) 1971 (3.5)
Motorbike or moped 10,899 (18.2) 10,074 (17.9)

Heavy equipment or tractor 129 (0.2) 114 (0.2)
Bus 561 (0.9) 518 (0.9)
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Table 1. Cont.

Variable Development Cohort
n(%)/x ± s

Validation Cohort
n(%)/x ± s

People (Development n = 84,502; Validation n = 80,288)
30-day mortality:

Yes 399 (0.5) 379 (0.5)
No 84,103 (99.5) 79,909 (99.5)

Gender:
Male 50,488 (59.7) 47,898 (59.7)

Female 32,717 (38.7) 31,199 (38.9)
Missing 1297 (1.5) 1191 (1.5)

Age (years):
x ± s 39.6 ± 17.1 39.4 ± 17.1

Missing 3294 (3.9) 3130 (3.9)
Seat belt:

Yes 61,687 (73.2) 58,811 (73.3)
No 1984 (2.3) 2001 (2.5)

Missing 20,651 (24.4) 19,476 (24.3)
Position in the vehicle:

Driver 59,731 (70.7) 56,192 (70.0)
Front passenger 14,274 (16.9) 13,708 (17.1)

Rest of passengers 10,497 (12.4) 10,388 (12.9)

Abbreviations: n(%), absolute frequency (relative frequency); x ± s, mean ± standard deviation. 1 no missing data
in these variables. The development cohort consists of the accidents that occurred in January, March, May, July,
September, and November. The validation cohort consists of the accidents that occurred in February, April, June,
August, October, and December.

The model coefficients, together with their standard errors and p-value, are shown in Table 2,
with significantly higher mortality (p < 0.05) associated with fewer vehicles involved, interurban roads,
poor visibility, men, and people not wearing a seat belt. Mortality was greater when a truck or a bus
was involved in the accident, and less with another private car, motorbike or moped. The adaptation
of this model to the points system is depicted in Figure 1.
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Table 2. Predictive model for 30-day mortality after having a traffic accident.

Variable B (SE) p-Value

Number of vehicles −0.27 (0.11) 0.012
Interurban road 2.53 (0.20) <0.001

Brightness:
Dusk 0.96 (0.19) <0.001

Night (insufficient lighting) 1.03 (0.13) <0.001
Weather:

Rain or hail −0.35 (0.20) 0.075
Gender male 0.43 (0.12) <0.001

Other vehicles in the accident:
Private car −0.43 (0.18) 0.013

Motorbike or moped −2.67 (0.72) <0.001
Van −0.48 (0.27) 0.08

Truck 1.32 (0.18) <0.001
Bus 1.00 (0.45) 0.028

Age (years):
S2 1.29 (0.56) 0.022
S3 1.16 (0.34) 0.001
S4 2.77 (0.54) <0.001
S5 3.92 (0.54) <0.001
S6 2.92 (1.43) 0.042

Time (hours):
S5 −0.95 (0.28) 0.001

Seat belt −2.54 (0.13) <0.001
Age of the vehicle (years):

S3 0.25 (0.18) 0.168
Intercept −6.26 (0.43) <0.001

Abbreviations: B, regression coefficient; SE, standard error; S, splines. We transformed the continuous predictors
into cubic B-splines. The knots were 25, 50, and 75 years for the age variable; 6, 12, and 18 h for the time variable;
and 5, 10, and 15 for the age of vehicle variable. Number of vehicles was not transformed using splines, because
most of accidents involved fewer than four vehicles (97.9%). Events-per-variable rate of the model: 399/19 = 21 > 20.

Regarding validation, the discrimination is shown in Figure 2 and the calibration in Figure 3 and
Table 3. The AUC (discrimination) had a mean value of 0.88 in the internal validation and 0.87 in the
external validation (standard deviation of 0.1 in both cases). The smooth calibration curve is illustrated
in Figure 3 and may appear to have a problem with fit in the external validation. However, we have
indicated all the probabilities (observed and expected) and frequencies (cumulative and absolute) in
Table 3, where we see that the difference between the observed and expected probability is almost
always less than 5% (99.9% of the cases) and a greater deviation is seen only in the cases with high
scores, though this is highly unlikely (this would be an accident with all the conditions with the highest
scores: no seat belt, fewer than four vehicles, interurban road, etc.) as they would be subjects who
would sum nearly the maximum possible score in all the predictors. In other words, the model has a
good fit in all the scores for the internal validation and for the external validation when the score value
is between −5 and 3, with a greater margin of error when the subject has 4 (6.81%) or 5 (18.91%) points.
With these scores the model appears to adjust incorrectly, especially with 5 points, but we are talking
about 49 subjects out of a total of 80,288.
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Table 3. Probabilities for 30-day mortality in the scoring system and calibration results using splines.

Score
Expected
Risk (%)

Internal Validation External Validation

Absolute
Frequency

Relative
Frequency

(%)

Cumulative
Relative

Frequency
(%)

Observed
Risk (%)

Risk
Difference

(%) 1

Absolute
Frequency

Relative
Frequency

(%)

Cumulative
Relative

Frequency
(%)

Observed
Risk (%)

Risk
Difference

(%) 1

−5 0.00 162 0.2 0.2 0.00 0.00 127 0.2 0.2 0.00 0.00

−4 0.00 7895 9.3 9.5 0.00 0.00 7335 9.1 9.3 0.00 0.00

−3 0.01 2809 3.3 12.9 0.00 0.01 2662 3.3 12.6 0.01 0.00

−2 0.03 30,050 35.6 48.4 0.02 0.01 27,660 34.5 47.1 0.04 0.00

−1 0.12 9496 11.2 59.7 0.10 0.01 8755 10.9 58.0 0.12 0.01

0 0.39 20,779 24.6 84.2 0.40 0.01 20,462 25.5 83.5 0.40 0.01

1 1.28 10,869 12.9 97.1 1.35 0.07 10,815 13.5 96.9 1.25 0.03

2 4.18 1925 2.3 99.4 4.15 0.03 1977 2.5 99.4 3.89 0.28

3 12.75 471 0.6 99.9 11.85 0.90 446 0.6 99.9 11.25 1.50

4 32.90 39 0.0 100.0 30.53 2.37 46 0.1 100.0 26.10 6.81

5 62.19 7 0.0 100.0 61.26 0.93 3 0.0 100.0 43.28 18.91

6 84.66 0 N/C N/C N/C N/C 0 N/C N/C N/C N/C

7 94.87 0 N/C N/C N/C N/C 0 N/C N/C N/C N/C

8 98.42 0 N/C N/C N/C N/C 0 N/C N/C N/C N/C

9 99.52 0 N/C N/C N/C N/C 0 N/C N/C N/C N/C

N/C, not calculated because we had no subjects with this score. 1 This is the difference in absolute value between the expected and observed risk.
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4. Discussion

4.1. Summary

This study was developed and validated, both internally and externally, on a national sample
of about 165,000 individuals, with a model that predicts 30-day mortality for the victim of a traffic
accident traveling by private car or van. This model has been adapted to a points system to increase
its applicability and will be integrated into an Android application, which will allow the immediate
calculation of the risk.

4.2. Strengths and Limitations

The main strength of this study is the innovative idea developed, which is weighing the already
known mortality factors in a single model [8–17] that is very easy to use. In addition, by following
all the PROBAST requirements to construct our model [27,28], the risk of bias was reduced, and the
applicability increased. Finally, a sample size of approximately 165,000 people gave our results
high precision.

Selection bias was minimized since, by law, all accidents involving victims must be recorded by the
appropriate bodies, which provides maximum representativeness of the population, to which is added
the large number of individuals. Concerning information bias, we must accept this in our study to a
certain extent as we worked with data collected retrospectively. However, the percentage of missing
data was minimal and the variables are completely objective, with no possibility of interpretation
by the police. Moreover, confusion bias was minimized by applying a multivariate model with the
most recommended techniques and assessing the functional form of the variables age and time of the
accident. Another limitation could have been the lack of inclusion of certain factors related to the
vehicle, like the airbag, or more general factors (driver response, alcohol/drugs, types of road with
more subtypes than just interurban or urban roads, types of road section (bridge, tunnel, embankment,
trench, etc.) or collision and speed limit), as these are not registered in the database. However, the good
discriminative capacity and calibration mean that we can obtain predictions even without these other
factors. Nonetheless, if more information was available about the more general variables we could
improve the precision of the model, which is in fact already very satisfactory. Finally, the model is
strongly conditioned by the specific country analyzed in our study, and for that reason should be
externally validated in other countries. However, taking into account these limitations, we could
design other studies with primary sources adding more relevant prognostic factors, in order to achieve
better accuracy to make predictions and, consequently, take measures to prevent a fatal accident.

4.3. Comparison with the Existing Literature

Comparing our results poses difficulties because, to the best of our knowledge, no predictive
models with these characteristics have been published, since the above-mentioned model [29] did
not work with this type of data, and the individuals were those who attended their own hospital.
Furthermore, the model of these authors did not follow the PROBAST indications, which limits its use,
since as early as 2014 indications were available on the procedure to develop a predictive model [26].

Analyzing the factors found in our model, we obtained expected results: not using the seat
belt, unfavorable lighting, interurban roads where greater speed is reached and small vehicles drive
alongside buses or trucks, which in the event of a small vehicle rollover could cause the death of
its occupants [8–17]. However, considering victim age, since its functional form was not studied by
other researchers as it was in our study [8–17], we must analyze the association found more closely.
This makes sense, since higher mortality appears in subjects of very advanced age, who are at greater
risk, as seen in a meta-analysis published in 2018 [37]. It is also noteworthy that individuals younger
than 60 years had lower mortality rates. This fact should be confirmed with other studies assessing the
functional form of age in mortality.
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4.4. Implications to Public Health and Research

Over the years, campaigns have been put in place to prevent fatalities in road accidents, such as
the use of seat belts, the use of helmets for two-wheeled vehicles and blood alcohol and narcotics
checks [37–39]. As a result of our findings, we see that there are other types of factors on which we can
intervene and thus reduce traffic accident mortality, highlighting that areas with inadequate lighting or
poor lighting should be corrected to avoid this problem.

Our predictive model has been validated both internally and externally. We therefore have a
tool to indicate the risk of death of a person involved in a traffic accident in a private car or van
involving at least one victim. This model is also very useful for clinicians who receive injured victims
at the hospital, as they will be able to stratify patient risk and thus improve therapeutic performance.
Moreover, the emergency coordinating center can assess the circumstances of the accident and prioritize
emergency health resources for individuals at greatest risk of death.

Concerning future research on traffic accidents, a highly relevant public health topic, we recommend
the external validation of our predictive model in other countries using PROBAST methodology [27,28].
All this with the aim of reducing mortality due to traffic accidents and annulling the forecast of an
increase in the following decade [1,2]. On the other hand, the next studies, in addition to following the
PROBAST checklist, should also consider new fundamental parameters such as types of road, types of
road section, speed limits and collision speed. This will improve our model over the years and reduce
the mortality risk in a traffic accident with victims.

5. Conclusions

A predictive model of 30-day mortality after a traffic accident with victims traveling in a private
car or van has been developed and applied in a simple manner through a points system. The system
considers as parameters age, use of a seat belt, and the type of vehicle in which the individual was
not travelling, as well as the characteristics of the accident itself (brightness, number of vehicles
involved and type of road). Overall, good validation indicators were obtained both internally and
externally, and the model should be implemented systematically and be used to design interventions
to reduce mortality from traffic accidents. This model has a great practical implication, as it clearly
indicates the factors with the greatest weight when there is a death in a traffic accident with victims.
This information could be used for both the police and the health services to make predictions, as well
as to determine where to undertake possible interventions to reduce the risk of death. This would
be done by analyzing the factors in the model, attempting to prevent them reaching the categories
with higher scores. For example, avoiding areas with poor illumination, increasing controls to check
the use of seat belts, or establishing regulations for large vehicles or on roads where faster speeds are
reached. We also encourage other authors to validate our model following PROBAST methodology to
determine whether it is applicable to countries other than Spain.
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