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Abstract: Background: Disentangling renal adverse drug reactions from confounders remains a
major challenge to assess causality and severity in neonates, with additional limitations related to the
available tools (modified Kidney Disease Improving Global Outcome, or Division of Microbiology
and Infectious Diseases pediatric toxicity table). Vancomycin and amikacin are nephrotoxic while
still often prescribed in neonates. We selected these compounds to assess their impact on creatinine
dynamics as a sensitive tool to detect a renal impairment signal. Methods: A recently developed
dynamical model that characterized serum creatinine concentrations of 217 extremely low birth
weight (<1000 g, ELBW) neonates (4036 observations) was enhanced with data on vancomycin and/or
amikacin exposure to identify a potential effect of antibiotic exposure by nonlinear mixed-effects
modelling. Results: Seventy-seven percent of ELBW patients were exposed to either vancomycin
or amikacin. Antibiotic exposure resulted in a modest increase in serum creatinine and a transient
decrease in creatinine clearance. The serum creatinine increase was dependent on gestational age,
illustrated by a decrease with 56% in difference in serum creatinine between a 24 or 32-week old
neonate, when exposed in the 3rd week after birth. Conclusions: A previously described model
was used to explore and quantify the impact of amikacin or vancomycin exposure on creatinine
dynamics. Such tools serve to explore minor changes, or compare minor differences between
treatment modalities.

Keywords: creatinine; vancomycin; amikacin; renal impairment; acute kidney injury; adverse
drug reaction

1. Introduction
1.1. How to Recognize the Signal in the Noise

There are numerous reasons why approval of drugs for use in (pre)term neonates
is still lagging behind. A major issue is the more difficult demonstration of efficacy
and safety, as this commonly needs assessment tools tailored to this population [1–3].
Related to safety and adverse events, this includes assessment of seriousness, causality,
and severity within the framework of regulatory requirements [1,3]. For both causality
as well as severity, disentangling adverse drug reactions from confounders (associated
morbidity, multi-pharmacotherapy, and maturational changes in laboratory values) remains
challenging [1,3], and this results in inconsistency in the documentation of safety-related
issues to, e.g., data monitoring committees or authorities [1,4]. In an effort to improve
standardization of adverse event severity, a neonatal adverse event severity scale has
recently been developed within the International Neonatal Consortium (INC) [5]. Adverse
event severity in neonates was defined by the effect of an event on age-appropriate behavior,

Int. J. Environ. Res. Public Health 2021, 18, 662. https://doi.org/10.3390/ijerph18020662 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-9921-5105
https://doi.org/10.3390/ijerph18020662
https://doi.org/10.3390/ijerph18020662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18020662
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/2/662?type=check_update&version=3


Int. J. Environ. Res. Public Health 2021, 18, 662 2 of 11

basal physiologic functions, and care changes in response to the adverse event, and was
applied to 35 common neonatal adverse events (neurological, respiratory, cardiovascular,
gastrointestinal, infectious, or general). In this initial version, adverse events related to
laboratory values were explicitly not yet included because reliable reference values for
(pre)term neonates were not available [5].

Very recently, we reported on serum creatinine dynamics in the first 6 weeks of
postnatal life in a relevant cohort with 2814 creatinine observations in 148 extreme low
birth weight (<1000 g, ELBW) neonates [6]. Besides maturational changes (gestational age,
postnatal age), caesarean section, and ibuprofen exposure, neither exposure to inotropic
agents nor prenatal lung maturation (betamethasone) affected these dynamics, in line with
previous observations [7,8].

The same dataset and approach can be used to assess the incidence and severity
of renal impairment for other commonly used medicines in neonates [9]. As recently
described by Al-Turkait et al. in this special issue on drug utilization studies in pediatrics,
both aminoglycosides and vancomycin are in the top 10 of most commonly prescribed
drugs in neonates, and are nephrotoxic [10]. We, therefore, selected these compounds to
assess their impact on creatinine dynamics as a likely more sensitive tool to detect and
quantify a signal of renal impairment.

1.2. Aminoglycosides and Vancomycin Related Acute Kidney Injury: Developmental Toxicology

Toxicity has limited the use of aminoglycosides, but there is a consistently lower rate
of acute kidney injury (AKI) in neonates when compared to adults [11]. This suggests
either developmental toxicology (less in neonatal life), or poorer performance to recognize
the signal in neonates (inaccurate AKI tool), or both. Renal tubular cell toxicity starts with
binding to acidic phospholipids of the cell membrane (aminoglycosides are charged nega-
tive), followed by cellular uptake, facilitated by megalin and cubulin ligands [11]. These
ligands-related uptakes display saturation, explaining the practice of extended time inter-
val dosing of aminoglycosides to avoid toxicity, and improve efficacy (peak concentration
related) [9,11,12]. Intracellular accumulation in endosomes and mitochondrial stress subse-
quently occurs (related to ribosomal inhibition, similar to the bacterial ribosomal inhibition).
Because of the maturational expression of these ligands, it seems that aminoglycosides are
much better tolerated in neonates compared to adults. In neonates, Nestaas et al. reported
an incidence of 8.4% for nephrotoxicity (increased creatinine, urinary aminopeptidase,
50/589 events) in neonates exposed to aminoglycosides [13].

Vancomycin exposure is also associated with a higher risk of AKI in adult critical
care, with a relative risk of 2.45 (95% confidence interval, 1.69 to 3.55) [14]. Based on both
in vitro and in vivo observations, the assumed mechanism also relates to dose-dependent
intracellular accumulation and oxidative damage in the renal tubular cells [15]. In neonates,
the evidence on vancomycin nephrotoxicity has been summarized and is suggested to
occur in 1–9% of exposed cases [16–18]. These incidences are supported by two more recent
reports [19,20]. In the Leroux prospective validation study, only 2/190 cases displayed
nephrotoxicity (either 2-fold increase, or +0.6 mg/dL in creatinine over 48 h after start),
both associated with hemodynamic instability and vasopressor need, and with subsequent
normalization [19], while Germovsek et al. observed nephrotoxicity (neonatal Kidney
Disease, Improving Global Outcomes (KDIGO) definition) in 4/77 neonates [20]. Target
attainment for vancomycin exposure (AUC24h > 400) was common in both recent cohorts,
indicating that these findings better reflect contemporary target exposure. This is of
relevance, as toxicity relates to the exposure (AUC24h > 800) and the duration of vancomycin
administration (cumulative exposure, AUCcum) [15,21]. Finally, there are to the very best
of our knowledge only a limited number of observations on renal impairment during
simultaneous administration of aminoglycosides and vancomycin in neonates [21–23].

A key issue is hereby the limitations of the currently available tools to qualify and
quantify renal impairment or AKI in (pre)term neonates [24,25]. Almost a decade ago,
Jetton and Askenazi suggested an adapted AKI definition (neonatal modified KDIGO)
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specific for use in neonates [24]. In essence, the definition is based on trends (increase) in
serum creatinine concentrations and in urine output to result in AKI staging (stage 0–3)
(Table 1).

Table 1. Definition of neonatal Acute Kidney Injury (AKI) by serum creatinine (Scr) and urine
output [24].

Stage Serum Creatinine (Scr) Urine Output

0 No change in Scr or ↑ < 0.3 mg/dL >1 mL/kg/h

1 Scr ↑ ≥ 0.3 mg/dL within 48 h or
Scr ↑ ≥ 1.5–1.9-fold change vs. Scr * within 7 days >0.5 and ≤1 mL/kg/h

2 Scr ↑≥ 2 to 2.9 vs. reference Scr * >0.3 and ≤0.5 mL/kg/h

3 Scr ↑≥ 3-fold change reference Scr * or
Scr ≥ 2.5 mg/dL ** or dialysis ≤0.3 mL/kg/h

* Reference Scr is the lowest prior Scr measurement; **, a Scr ≥ of 2.5 mg/dL in neonates reflects an estimated
glomerular filtration rate <10 mL/min/1.73 m2

, ↑ = increase.

However, as the dynamics in serum creatinine are most pronounced in ELBW neonates
with an initial physiological increase up to day 3 and a subsequent progressive decrease
over the next weeks, these trends are difficult to capture within a ‘fixed or proportional
increase to former creatinine observation’ approach, and perhaps does not provide the
granularity needed to detect ‘minor changes’ [25]. This absence of sufficient granularity
to capture the complex dynamics of serum creatinine in (pre)term neonates is even more
prominent when considering the Division of Microbiology and Infectious Diseases (DMID)
pediatric toxicity table specific to creatinine. Although relevant to the assessment of
antimicrobial agents (Table 2) in drug registration studies, there is only one single cut off
value to grade creatinine adverse events, only driven by postnatal age (in the first week of
life, day 7–60, and day 61–90, respectively) [26].

Table 2. Creatinine ranges as suggested to grade adverse event severity (grade 1–4) in the Division
of Microbiology and Infectious Diseases (DMID) pediatric toxicity table [26].

Postnatal Age Grade 1 Grade 2 Grade 3 Grade 4

<7 days 1.0–1.7 mg/dL 1.8–2.4 mg/dL 2.5–3.0 mg/dL >3 mg/dL

7–60 days 0.5–0.9 mg/dL 1.0–1.4 mg/dL 1.5–2.0 mg/dL >2 mg/dL

61–90 days 0.6–0.8 mg/dL 0.9–1.1 mg/dL 1.2–1.5 mg/dL >1.5 mg/dl

The aim of this study was to quantify the effect of aminoglycoside and/or vancomycin
exposure on renal impairment reflected by the change in serum creatinine dynamics during
the neonatal period of ELBW neonates. This knowledge may inform and help clinicians
to recognize and examine the potential of renal impairment in their vulnerable patients
beyond the commonly used AKI definition.

2. Materials and Methods
2.1. Study Population, Clinical Characteristics and Ethics

The dataset consists of a pooled dataset of 4026 serum creatinine observations in 217
ELBW cases in the first 42 days after birth and admitted at the Neonatal Intensive Care Unit
of UZ Leuven, as recently published [6]. Serum creatinine was analyzed enzymatically by
Roche (Roche Diagnostics, Mannheim, Germany) in all cases, and all measurements were
isotope dilution mass spectrometry (IDMS) traceable. All clinical data (demographics, but
also information on co-medication like ibuprofen or inotropic agents and type of delivery)
were already available in this dataset [6].

For the purpose of this project, all individual electronic medical files were searched
for days exposed to vancomycin, amikacin, or both, as this is the established antibiotic
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regimen for suspected late onset sepsis (LOS) in the Leuven neonatal intensive care unit
(NICU) [27]. Vancomycin and amikacin were administered according to hospital guidelines,
as previously published [11,28].

Subsequent adaptations of this empiric treatment were made by the attending neona-
tologist, and were based on the pathogen isolated and the clinical assessment [29]. Another
indication for amikacin in this NICU, of relevance for the current study, is necrotizing
enterocolitis (co-treatment with piperacillin-tazobactam). Ethical approval of the current
study covered the additional data search (model development and evaluation, S63405) [6].

2.2. Refined Serum Creatinine Model

The recently developed and published model that characterized the serum creatinine
concentrations for ELBW infants was applied and further strengthened with data on indi-
vidual administration of vancomycin or amikacin exposure to identify a potential effect of
antibiotic (AB) exposure on individual serum creatinine concentration profiles and their
related creatinine clearance values [6]. The respective mean population parameters and
inter-individual variability were attained by nonlinear mixed-effects modelling analysis
(Appendix A). The original model was developed in 148 ELBW neonates from which 2814
serum creatinine concentrations were collected during the first six weeks after birth and
validated with a population of 69 ELBW neonates with 1212 serum creatinine concentra-
tions. In this previous study, the elimination rate of creatinine was characterized as the
ratio between creatinine clearance (Equation (1)) and volume of distribution.

CL(t) = CLBL +
emax × tHill

t50Hill + tHill , (1)

where t reflects postnatal age (days), CLBL reflects baseline creatinine clearance (L/day),
emax is the maximum additional achieved clearance (L/day), t50 corresponds to the time
point (in days) where half of emax is achieved, and the Hill coefficient describes the
steepness of the creatinine-time relationship. To include the physiological and crucial
weight changes during the early weeks of life, volume of distribution was based on the
current weight measurements. Gestational age (GA) and mode of delivery showed an
association with postnatal maturation of the creatinine clearance (faster clearance increase
with advancing GA and after C-section). Additional details on the dynamic model can be
found in the original paper [6].

In the current study, the potential effects of AB exposure on creatinine clearance (and
corresponding serum creatinine concentrations) for each postnatal day were identified
as (i) only vancomycin exposure, (ii) only amikacin exposure, (iii) either vancomycin
or amikacin exposure, and (iv) combined vancomycin and amikacin exposure. These
four conditions were investigated by applying a stepwise forward selection and back-
ward deletion approach based on the likelihood ratio test (p < 0.05) to identify significant
covariate-parameter relationships. Model evaluation was performed by precision of the
estimated parameters (residual standard error, RSE), the maximization of the likelihood
(decrease of objective function value (OFV) of at least 3.84 points for one additional model
parameter), goodness-of-fit plots (observed versus predicted creatinine concentrations),
and visual predictive checks. Software package Monolix (version 2019R1. Antony, France:
Lixoft SAS, 2020, http://lixoft.com/products/monolix/) was used to fit individual data
to the mathematical model. Data handling, graphical visualization and numerical calcu-
lations were performed in R (version 3.5.1; R Development Core Team, Vienna, Austria,
http://rproject.org).

To illustrate the effect of AB exposure on serum creatinine profiles in ELBW cases with
different gestational ages, model-based simulations, incorporating covariate relationships,
were performed in typical ELBW neonates, stratified for four gestational ages, namely of
24, 27, 29, and 32 weeks. The antibiotic exposure duration comprised of three constituent
days (clinical practice for suspected LOS) and was set to start on day 5 (first week of life),
day 19 (third week of life), and day 33 (fifth week of life) after birth. Comparison was

http://lixoft.com/products/monolix/
http://rproject.org
http://rproject.org
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performed between the predicted serum creatinine and creatinine clearance over a period of
six weeks for typical ELBW cases who were either or not exposed to AB. Simulations were
performed in a deterministic setting where no inter-individual variability is considered
and the predicted median profiles were illustrated as a function of included covariates.
Additionally, stochastic simulations, including inter-individual variability, were carried
out to assess the difference in predicted creatinine concentrations between patients being
exposed to AB exposure and those who are not. In total, 1000 simulations were performed
for each gestational age group.

3. Results
3.1. Population

The median gestational age and birth weight was 27 weeks (26–28 weeks IQR) and
830 g (720–910 g interquartile range (IQR)), respectively (Table 3). Of the studied ELBW
population, 72% and 71% received (at least one day) vancomycin or amikacin during
the first six weeks of life, respectively. Of these patients, 77% were exposed to either
vancomycin or amikacin, and 66% were simultaneously exposed to vancomycin and
amikacin for at least one day (Table 3). During the first six weeks after birth, patients were
exposed on average 6.8 days (0–10 days IQR) and 5.6 days (0–9 days IQR) to vancomycin
or amikacin, respectively. Patients with a lower gestational age were more often exposed
to AB, as compared to patients with a higher gestational age (Figure 1).

Table 3. Demographic data presented as median [interquartile range] or as number (%); obs, observa-
tions.

Patient Characteristics

ELBW neonates (obs.) 217 (4026)

Serum creatinine obs. per patient 19 [14, 24]

Gestational age (weeks) 27 [26, 28]

Birth weight (g) 830 [720, 910]

Current weight (g) 920 [790, 1130]

obs. per patient 5 [4, 6]

Antibiotic exposure (yes)

Vancomycin 72%

Amikacin 71%

Vancomycin or amikacin 77%

Vancomycin and amikacin 66%

Ibuprofen exposure (yes) 133 (61%)

Mode of delivery

Vaginal 70 (32%)

Cesarean 147 (68%)

Sex

Female 115 (53%)

Male 102 (47%)

Neonatal death 28 (13%)
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Figure 1. Percentage of extreme low birth weight (ELBW, <1000 g) cases (different gestational age, GA) receiving (a)
vancomycin or amikacin exposure and (b) simultaneous vancomycin and amikacin exposure for each postnatal day.

3.2. Refined Serum Creatinine Model

Antibiotic exposure, defined as receiving either vancomycin or amikacin, resulted
in a lower overall creatinine clearance and higher serum creatinine concentrations due
to a significant increase of 30% in t50 when exposed to AB (−40.6 points in OFV). The
parameter t50 reflects the time point in days where half of the maximum additional achieved
clearance is reached. A longer t50 corresponds with lower creatinine clearance values. The
combination of vancomycin and amikacin exposure did not indicate a synergistic effect
on the clearance parameters. For a typical ELBW patient of 24 weeks with or without
being exposed to AB, the t50 was estimated at 31.9 days and 41.7 days, respectively, and
decreased with approximately 10% for each increased week of gestation (Table 4).

Table 4. Parameter estimates of refined creatinine model together with effect size estimates. CV, coefficient of variation;
MOD, mode of delivery (1 for C-section and 0 for vaginal delivery); AB, antibiotic exposure present (1 for yes and 0 for no);
IBU, ibuprofen exposure (1 for yes and 0 for no). Creabirth, creatinine concentration at birth; Kinproduction, production rate of
creatinine; CLBL, baseline creatinine clearance; Emax, maximum additional achieved clearance; t50, timepoint where half of
Emax is achieved; Hill, hill coefficient. Median gestational age (GA) was set at 26.56 weeks.

Parameter (Unit) Estimates (RSE%) IIV (CV%)

Population parameters

Creabirth (mg/dL) 0.631 (1.95%) 0.256 (26%)
Kinproduction (mg/day) 4.11 (1.07%) -

CLBL (L/day) 0.0798 (2.98%) 0.274 (28%)
Emax (day-1) 0.995 (3.87%) -

t50 (days) 22.8 (7.76%) 0.449 (47%)
Hill 1.31 (4.76%) 0.476 (50%)

Covariate parameters

GA effect on Creabirth 1.35 (21.1%) Creabirthi
= Crea

birthpop×
GAi
GAm

1.35

IBU effect on CLBL
(no/yes) 3.3 (1.36%)/3.23 (1.85%) CLBLi = CLBLpop × (1 + 3.3) or CLBLpop × (1 + 3.23)

GA effect on t50 −3.09 (19%)
t50i = t50pop ×

GAi
GAm

−3.09× (1− 0.271×MOD)× (1 + 0.305× AB)MOD effect on t50 −0.271 (30.3%)
AB effect on t50 (yes) 0.305 (0.91%)

Residual variability

Proportional error 0.109 (1.27%) (11%)
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Predicted serum creatinine concentration time profiles for four typical ELBW neonates
are shown in Figure 2a. An increase in serum creatinine concentrations is observed during
AB exposure. Figure 2b mirrors this, as it illustrates increasing creatinine clearance during
the postnatal period, depending on gestational age and represents the diminished clearance
capacities when exposed to AB.
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The extent of the difference in predicted serum creatinine concentrations during AB
exposure at the end of first week of life is less pronounced when focusing on various
gestational age groups (Figure 3). This distinction is more obvious for AB exposure at
the end of the third and fifth week of life, with a higher difference in serum creatinine
concentrations for the youngest ELBW neonates. For exposure at the end of the first week
of life, the difference between being exposed to AB or not was on average 0.056 mg/dL
(Table 5). For exposure at the end of the third week, i.e., starting on day 19 until day 21
after birth, the difference in creatinine concentration for a neonate at 24 weeks gestation
amounts 0.05 mg/dL, and decreased with 56% for a 32-week-old neonate. For a typical
neonate of 24 weeks gestation, the creatinine clearance at day 21 after birth was estimated
to be 0.44 mL/min being exposed to AB and increased with 12% to 0.49 mL/min without
AB exposure. A similar trend was observed for exposure at the end of the fifth week, i.e.,
from day 33 to 35 after birth, where the difference in creatinine concentrations between
being exposed and not exposed, decreased with 60% between 24 and 32 weeks of gestation
(Table 5).

Table 5. Differences in serum creatinine concentration (mg/dL) calculated at the end of each period
of exposure for three antibiotic periods separated per gestational age group and starting at different
postnatal ages. Data presented as median and interquartile range (25th and 75th percentiles).

Gestational Age
Differences in Creatinine Concentration (mg/dL)

Week 1
(Day 5–7)

Week 3
(Day 19–21)

Week 5
(Day 33–35)

24 weeks 0.05 (0.04–0.08) 0.05 (0.03–0.07) 0.03 (0.02–0.05)
27 weeks 0.06 (0.04–0.08) 0.04 (0.03–0.5) 0.02 (0.02–0.03)
29 weeks 0.06 (0.04–0.09) 0.03 (0.02–0.04) 0.02 (0.01–0.02)
32 weeks 0.06 (0.04–0.08) 0.02 (0.01–0.03) 0.01 (0.01–0.01)
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4. Discussion

This study illustrates that antibiotic exposure, defined as either vancomycin or amikacin
treatment, is associated with an increase in serum creatinine concentrations due to a de-
creased creatinine clearance capacity in the ELBW neonatal population. These changes
can be quantified, but the increase in creatinine generally remained below the 0.3 mg/dL
threshold of the modified KDIGO tool, as the most recently developed AKI tool (Table 1
vs. Table 5). These increases are even less reflected when applying the (DMID) pediatric
toxicity table specific to creatinine (Table 2 vs. Table 5) [26]. This suggests that more tailored,
sensitive tools need to be used to fully quantify the incidence and extent of renal side effects
of drugs, like amikacin, vancomycin, or the earlier reported ibuprofen, and these may
serve for a tailored or comparative pharmacovigilance [6]. Of notice is that the absolute
increase in serum creatinine in ELBW cases depends on additional characteristics, further
illustrating the difficulty to ‘retrieve the signal’ based on (fixed) increments only [25].

The increase in serum creatinine due to antibiotic treatment is most pronounced when
administered during the first week of life (day 5 to 7 after birth), as a result of limited
clearance capacities due to immature kidney function [30]. This increase of serum creatinine
concentrations during the first week of life appears to be independent of gestational age.
When focusing on the difference in serum creatinine concentrations during the third week
after birth and fifth week after birth, a gestational age dependency is observed (Figure 3).
This is because a higher increase in serum creatinine is observed for the ELBW patient
with a lower gestational age. An increase of 0.05 mg/dL or 0.02 mg/dL is observed for an
ELBW neonate of 24 weeks gestational or 32 weeks gestation, respectively, when antibiotic
exposure occurs from day 19 to day 21 after birth.

With the current dataset, it was not possible to characterize the potential synergistic
effect of combination therapy of vancomycin and amikacin. This is most likely due to the
fact that the days that ELBW neonates are exposed to either vancomycin or amikacin (77%)
is almost similar to the days that these neonates are exposed to both antibiotics simulta-
neously (66%), as the combination is the standard treatment for LOS (Figure 1) [27]. The
estimated effect of receiving either vancomycin or amikacin on t50, one of the parameters
characterizing creatinine clearance, increased with 30% when exposed to an antibiotic,
resulting in a lower creatinine clearance. This effect did not significantly differ (27%) when
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assessing the combination therapy or improved the model fit. Interestingly, Salerno et al.
very recently reported on the association between nephrotoxic drugs (including amino-
glycosides, i.e., gentamicin or tobramycin, and vancomycin) and AKI, using the modified
KDIGO criteria in a larger cohort of preterm (22–36 weeks) cases [31]. Seventeen percent
of cases in this dataset were classified with at least stage 1 AKI (Table 1). However, based
on Odd ratios with the combined exposure to gentamicin + indomethacin as reference,
duration of therapy (days) and sepsis, but not combined exposure to aminoglycosides +
vancomycin, it was associated with an increased odd of AKI [31]. Related to this analysis,
we would like to repeat that the need for inotropic agents (as surrogate marker for sepsis)
was not an independent covariate in our model.

The small but quantifiable fluctuations observed in creatinine concentrations and
creatinine clearance can be identified as a limitation, but this study showed that the impact
of both maturational and non-maturational related effects-like exposure to antibiotics on
kidney function-can be recognized, including renal adverse drug reactions. Recognition
of such drug toxicity signals in neonates, especially considering the vulnerable ELBW
population, should be further developed, as we illustrated its feasibility.

5. Conclusions

A previously described model on creatinine dynamics has been used to explore and
quantify the impact of exposure to amikacin or vancomycin on creatinine dynamics. It
seems that such a tool is more sensitive to detect the signal of renal impairment beyond the
existing AKI grading system. In this way, such tools can be used to explore minor changes,
or compare minor differences between treatment modalities.
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Appendix A

Non-linear mixed effect modeling description
The population analysis was performed by applying non-linear mixed effect modelling

approaches. These models take into account both explained and unexplained variability
at inter- and intra-individual levels. Non-linear mixed effect models are characterized in
terms of:

1. Fixed effects: this is the population average of the model parameters θ. These parame-
ters are susceptible to various factors, such as physiological characteristics (gestational
age, body weight, etc.), genetic characteristics, or drug-drug interactions. These last
factors are the fixed effect covariates, zi.
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2. Random effects: this is the part of the variability that is not explained by the above
fixed effect and allows quantification of:

• The inter-individual variability (also called the between subject variability),
which is the variability between two different individuals. It is expressed byω2,
which is the variance of the fixed effect parameter θ. For an individual i,

θi = θ· exp(ηi), with ηi ∼ N
(

0,ω2
)

.

• The intra-individual variability (also called the residual unexplained variability),
which is the variability within the same individual over time, i.e., between two
given moments. It is expressed by σ2. For an observation j, the corresponding
prediction ŷ for an individual is

yi,j = ŷ + εi,j, with εi,j ∼ N
(

0,σ2
)

.

Thus, the general mixed effects model is written:

yi,j = f
(
xij,φi

)
× εi,j,

and the parameter model is:
φi = g(zi, θ) + ηi,

where yij is the jth observation in an individual i, xij are the design variables for an
individual i, φi is the vector of model parameters for an individual i, and εij represents the
residual error; g is a structural model which is function of fixed effects covariates zi, and
fixed effects parameters θ; finally, f represents the structural model. In this general model,
residual error εij is proportional and is assumed to follow a log-normal distribution with
mean 0 and a unit variance σ2.

Thereby, three parameters have to be estimated:

• the fixed effect vector: θi,
• the random effect parameter quantifying the residual unknown variability: σ2,
• the random effect parameter quantifying the inter-individual variability: Ω.
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