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Abstract: Depression is the most common and devastating psychiatric disorder in the world. Its
symptoms, especially during the pandemic, are observed in all age groups. Exercise training (ET) is
well known as a non-pharmacological strategy to alleviate clinical depression. The brain-derived
neurotrophic factor (BDNF) is one of the biological factors whose expression and secretion are
intensified in response to ET. BDNF is also secreted by contracted skeletal muscle that likely exerts
para-, auto- and endocrine effects, supporting the crosstalk between skeletal muscle and other
distant organs/tissues, such as the nervous system. This finding suggests that they communicate
and work together to induce improvements on mood, cognition, and learning processes as BDNF
is the main player in the neurogenesis, growth, and survival of neurons. Therefore, BDNF has
been recognized as a therapeutic factor in clinical depression, especially in response to ET. The
underlying mechanisms through which ET impacts depression are varied. The aim of this review
was to provide information of the biological markers of depression such as monoamines, tryptophan,
endocannabinoids, markers of inflammatory processes (oxidative stress and cytokines) stress and
sex hormones and their relationship to BDNF. In addition, we reviewed the effects of ET on BNDF
expression and how it impacts depression as well as the potential mechanisms mediating this process,
providing a better understanding of underlying ET-related mechanisms in depression.

Keywords: depression; BDNF; physical activity; exercise training; myokines; mood; cognition;
theories of depression

1. Introduction

Depression is currently the fourth most common health problem worldwide and it
will be shortly more prevalent, due to the Covid-19 pandemic, according to the World
Health Organization [1]. Today, over 350 million people worldwide suffer from depression,
accounting for 4.4% of the population. Including masked depression, this proportion rises
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up to 10%, especially in the adult population. The disease affects mainly adults and the
incidence depends on the age and region, being twice as often in women than men. The
symptoms of depression, described as chronic sadness, lack of interest, and pleasure in ac-
tivities, are commonly associated with other somatic diseases, meaning that approximately
10% of all adults experience the symptoms during a year [1–5]. Hu et al. [3] report that
in 1200 participants from China taking part in a study between January and February of
2020, 54% of responders reported they suffered moderate to severe psychological impacts
because of the Covid-19 pandemic, one-third of them suffered from moderate to severe
anxiety symptoms, and 17% obvious depressive symptoms. Eating and sleep disorders,
permanent fatigue, and lack of concentration are also reported [4]. Therefore, patients with
depression require support from their relatives and therapists, and very often pharmaco-
logical intervention [6]. In recent decades, a great deal of knowledge has been accumulated
about the neurological mechanisms involved in depression, including the influence of
inflammatory factors, the role of monoamines, and the influence of vascular disorders
and genetics on the physiopathology of depression, regardless of environmental factors,
eventually evolving to malfunction and/or damage to specific neural networks [7–11]. The
datasets of gene regulation in depression is created and a combined portrait was created for
men and women only [12]. Impairment of adult neurogenesis, altered nervous processes
and synaptic depression, and neuronal atrophy are just some of the neuroplasticity-related
processes that are at risk in patients with depression during clinical and experimental
studies [13–15].

The central mediator of neuronal plasticity, brain-derived neurotrophic factor (BDNF),
has been extensively studied for its role in synaptic formation and maintenance, and
for the ability of the central nervous system (CNS) to regenerate and adapt to possible
damage [16,17]. Higher BDNF levels are associated with better cognitive and psychiatric
states in both healthy subjects and depressed patients [18–20]. However, recent studies
have noted significant reductions in BDNF levels in depressed patients [21]. It has also been
documented that in elderly patients, reduction of BDNF in the blood has been recognized
as a biological marker of memory deficits and cognitive processes [20–25]. A number of
plausible physiological and neurological mechanisms/theories of depression have been
described [2]. The oldest postulated and biological mechanism is monoamine deficiency
(monoamine theory). Depression can also be explained by tryptophan deficiency and
disruption of the kynurenine pathway [26], metabolic stress with oxidative stress [27,28],
and hormonal, immunological disturbance [29]. Light deficiency and dysregulation of
circadian rhythms by serotonin deficiency are also important factors [30,31]. In addition,
depression in the elderly is caused by physiological failure of the body and deterioration
of the functions of the brain and its neurotransmitters [29]. It is well documented that
the aging brain retains a certain plasticity which can also be stimulated and corrected
by physical activity; however, there is also evidence of the processes of atrophy of the
brain structures with age. It has been shown that in people over 55 years of age without
dementia the hippocampal atrophy ranges from 1–2%, prefrontal cortex, caudate nucleus
and cerebellum 0.5–2%/a year, while stratum primary motor and sensorimotor regions
remain rather unchanged [32].

The benefits of ET for the human body and mental health have been well documented.
Regular ET has been described to be a preventive strategy against chronic disorders, such
as type II diabetes mellitus, overweight/obesity, and atherosclerosis [33–35]. In fact, several
benefits have been attributed to ET by improving cardiopulmonary function, stimulating
skeletal muscle and bone tissue growth, reducing fat mass, and regulating hormone and
whole-body lipid and glucose metabolism [35,36]. As a physiological regulator of BDNF
production [18,37,38], ET has been revealed as an alternative strategy for the therapy and
treatment of patients with disorders of nervous system, including depression [39,40]. Reg-
ular practice of ET facilitates everyday life, reduces everyday fatigue, positively influences
mood and emotional processes such as anxiety and the feeling of being lost [41], and is
currently recommended as an assessment strategy in the treatment and prevention of
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depression [42]. The effects of ET are widely recognized in brain function [43]; however,
the underlying mechanisms by which ET exerts its effects as an antidepressant method are
not fully understood.

2. Brain-Derived Neurotrophic Factor

BDNF belongs to a family of growth factors that also includes the nerve growth
factor, neurotrophin-3, and neurotrophin-4/5 [18]. BDNF is synthesized in the cell in
the form of a precursor molecule called pro-BDNF, converted into mature BDNF form
by post-translational cleavage, and then secreted into the extracellular space [44]. Both
molecular forms, mature BDNF and pro-BDNF, are biologically active and act through
specific receptors located in the cell nucleus and membrane [45]. BDNF binds to the
tyrosine kinase B (TrkB) receptor and the p75 neurotrophins receptor (p75NTR). BDNF
has a much greater affinity for the TrkB receptor than pro-BDNF, which, in turn, has a
greater affinity for p75NTR [46,47]. While the activation of the TrkB receptor produces
a protective and anti-apoptotic effect, the activation of p75NTR causes apoptotic and
neurodegenerative processes [18,44,45]. The TrkB receptor is largely expressed in the
neurons of the hippocampus [48].

According to Matthews et al. [49] and Rasmussen et al. [50], about 70–80% of circulat-
ing BDNF is produced in the brain at rest and in response to exercise training (ET). In the
central nervous system, BDNF is mainly synthesized in the hippocampus, and also in the
cerebral cortex, midbrain, thalamus (amygdaloidal body), hypothalamus, pons, or medulla
oblongata [51,52]. Thus, BNDF is able to cross the blood-brain barrier in both directions
and the variations of circulating BDNF concentration are likely come from both neurons
and glial cells of the central nervous system [50].

In blood, BDNF is stored mainly in platelets (99%) [53,54], which explains its higher
concentration in serum compared to plasma. Plasma BDNF levels decrease with age
and body mass gain, as opposed to the constant concentration of BDNF in serum and
platelets [55,56]. Other than by platelets, BDNF is also produced by T-cells, B-monocytes,
and endothelium cells [57]. In plasma, there is only a small amount of circulating free
BDNF [58].

In women, the BDNF content in platelets varies throughout the menstrual cycle.
BDNF possibly is secreted by endometrium cells and its accumulation may be associated
to the phase of menstrual cycle. In the follicular phase, the plasma BDNF accumulation is
higher than luteal phase [56]. Moreover, menopause seems to have an impact on BDNF
accumulation. Postmenopausal women showed lower levels of BDNF than premenopausal
women [56]. Very low concentrations of BDNF have been observed in women who had not
menstruated for at least 6 months, as compared with postmenopausal concentrations. These
data suggest that there is an affinity between concentration of BDNF and sex hormones
in women. It seems that the expression of the TrkB receptor, which demonstrates a large
affinity for BDNF, is under a positive regulation influence of some sex steroids such as
estrogen hormones [56,59,60].

In neurons, BDNF is present not only in the cytoplasm, but also near the dendritic
spines, influencing their development [61]. BDNF stimulates the processes of neuroplas-
ticity, which is manifested in neurogenesis, stimulation of the plasticity of serotoniner-
gic, dopaminergic, cholinergic, or noradrenergic neurons, dendritogenesis, and synap-
togenesis [62]. Additionally, BDNF facilitates the growth and survival of neurons and
microglia cells. It also participates in the differentiation of cells, potentiation of signal
transmission, induction, and the maintenance of long-term potentiation of synaptic en-
hancement [44,45,48,63]. Owing to these properties, BDNF improves cognition and takes
part in emotional processes, spatial orientation, and learning, as well as body coordina-
tion [48,61–66].

The BDNF gene is a single nucleotide polymorphism that was found to substitute va-
line (Val) to methionine (Met) at position 66 in pre-pro-BDNF (Val66Met) [67]. The mutation
can weaken the activity of the molecule and change the BDNF/pro-BDNF ratio. This single
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nucleotide polymorphism can influence the secretion of BDNF and is probably associated
to neuropathology and cognitive deficiencies [67,68]. It has been stated that the mutation
of Val66Met is correlated with depression occurrence. In patients with this mutation are
characterized by a smaller hippocampus size and related memory impairments [68].

In patients with depression the DNA methylation of BDNF and negative relationship
between serum BDNF level and miR-132/miR-182 levels are observed. An increase of
miR-30e, miR-132, miR-185, and miR-212 in serum level was also observed in depressed
patients [69].

3. Depression, Exercise, BDNF

Exercise training is recognized as a useful non-pharmacological strategy to improve
the treatment of depression, and concomitantly decrease the somatic symptoms of this
pathology [70]. Previous studies have shown that both endurance [22,30,71] and short-
term high-intensity anaerobic exercise [72–75] can increase BDNF levels in healthy and
depressed patients. According to Murawska – Ciałowicz et al. [76] BDNF levels after one
bout of exercise are dependent on duration time, intensity, and type of test/exercise and the
intensity of previous training. According to Rasmussen, BDNF is released from the brain
during exercise [50] and is produced by skeletal muscle in response to contraction [49]
and is responsible for muscle-brain crosstalk [77]. The influence of BDNF on biological
mechanisms is described below and shown in Figure 1.

Figure 1. Potential mechanisms of ET impact on BDNF to decrease depression symptoms. (PGC1-α, peroxisome
proliferator-activated receptor-gamma coactivator; BDNF, brain-derived neurotrophic factor; CREB, cAMP-response element
binding protein).

ET promotes favorable adaptations in the brain by improving learning, memory and
cognitive processes in a depressed patient, as well as by an antidepressant effect [78].
However, the mechanisms behind this result are not clear and explained. It is thought that
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BDNF is a major factor since higher levels of this neurotrophin are seen after various ET
modalities [79].

In depressed patients, ET increased blood BDNF [22,80–82]. In most of these studies,
the increase of BDNF levels was also accompanied by an improvement in cognitive perfor-
mance, processing speed, working memory, and sleep quality. The sparse BDNF studies in
depressed patients participating in ET are shown in Table 1.

The most pronounced regulatory effect of ET on the brain is the oxygenation of the
brain tissue because an increase in blood pressure had an impact on vascular endothelial
activity and an increase in the diameter of the cerebral vessels [83]. Both endurance and
resistance ET have been shown to increase the secretion of neurotransmitters (monoamines
and noradrenaline), growth factors (vascular endothelial growth factor—VEGF, BDNF),
and myokines by contracted skeletal muscle [84]. Skeletal muscle metabolites secreted into
the bloodstream, a by-product of ET (lactate, β-hydroxybutyrate), also have a significant
effect on brain tissue [43,85,86]. These metabolites are transported into cerebral circulation
across the blood-brain barrier [43], and thus may contribute to several beneficial brain
cellular processes [83].

Interestingly, the most spectacular effect is the neurogenesis of the hippocampus [48],
which is the most essential component of neuronal plasticity, supporting the survival of
neuronal cells and the regulation of synaptic plasticity [40,87]. ET-induced BDNF secretion
has a positive regulatory effect on the neurogenesis-related mechanisms, stimulation of the
activity of brain structures, and an increase in the size of the hippocampus [65,66,87].

Table 1. Effects of exercise training on BDNF levels in depressed patients.

Reference Subjects ET intervention Main Findings

Kurdi et al., 2019
[80]

n = 70 elderly women; 35
with depression vs.

non-depressed women
Age: ≥50 y

Aerobic training:
15min/day on treadmill; speed at 6 km/h

Duration: 28 days

35.3% ↑ BDNF from initial value in
depressed and 16.3% from initial
value in non- depressed women

Gourgouvelis et al., 2018
[81]

n = 16 MDD patients and
physical inactive;

Age: 39.31 ± 7.02 y

Combined aerobic and strenght trainings:
20 min; 3x/week (1 session of aerobic and 2 sessions of

strenght)
Aerobic training: 60 min at 60 and 80% of their

age-predicted HRmax
Strenght training: 2/3 supersets (without rest) with 8–12

rpts; exercises for main muscle groups at 95% of the 10 RM
Duration: 8 weeks

↑ BDNF levels
↑ 31% in VO2max during exercise

↓ depression symptoms
↑ sleep quality and cognitive function

Vedovelli et al., 2017
[82]

n = 31 women independent
and non-demented

subjects;Age: 80 to 97 y
n = 22 subjects were
submitted to an ET

intervention

Combined aerobic and strenght trainings:
3x/week, 3 sets of 10 rpts and 30 s interval during 30 min.
Resistance bands exercises. Intensity: 50% of 1RM initially;

75% of 1RM in 3rd month
At the end of session: 30 min walk with 75–85% HRmax

Duration: 3 months

↑ BDNF
↓ depression symptoms
↑ cognitive performance

↑muscle strenght of lower limbs and
aerobic condtion

Kallies et al., 2019
[88]

n = 30 MDD outpatients
(n = 17 women); n = 7
patients with a single

depressive episode and
n = 23 patients with current

depressive disorder
Age: 39.2 ± 11.4 y

One bout of aerobic exercise:
Graded exercise test on a cycle ergometer starting at 25w

with progression of 25w every 2 min, until exhaustion

↑ BDNF
Larger BDNF increase in women with

smaller number of platelets.

Laske et al., 2010
[22]

n = 35 elderly women
Age: 61.1 ± 7.2 y with
depressive episode of

recurrent unipolar
depression

One bout of aerobic exercise:
Incremental exercise test on treadmill (initial walking speed

3km/h). Speed and inclination increased simultaneously
every 3 min.

↑ BDNF (immediately after exercise
cessation)

At 30 min of recovery, BDNF lower in
comparison to baseline levels and

immediately after exercise cessation

Meyer et al., 2016
[89]

n = 24 women with
depression

Age: 38.6 ± 14.0 y

One bout of aerobic exercise:
30 min stationary bicycle with intensity:

light (RPE = 11); moderate (RPE = 13); hard (RPE = 15)
Blood taken before and within 10 min after completion of

each session

↑ BDNF
Main effect of measurement, but not

an effect of intensity
Acute improvement in depressed
mood, but not intensity depended

Szuhany and Otto, 2020
[90]

n = 29 sedentary adults with
MDD or PDD with a current

major depressive episode
Age: 18–65 y

Stretching exercise:
9 sessions of stretching behavioral activityDuration:

12 weeks
Balke protocol consisting of 2-min stage with speed and
grade increasing over time. BDNF collection occurred

immediately prior to test completion, immediately
following test completion and at 4th, 8th and 16th week

↑ BDNF at 4th, 8th and 16th week
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Table 1. Cont.

Reference Subjects ET intervention Main Findings

Dopp et al., 2020
[91]

n = 13 adolescents with
depression and physically

inactive

Aerobic exercise:
3 supervised aerobic sessions in the 1st week, 2 supervised
aerobic sessions in the 2nd week, and 1 supervised aerobic

session in the 3rd week.
Blood take pre- and post-intervention.

Balke Fitness test at week 1 and 12
Duration: 12 weeks

After 12 weeks:
↑ BDNF

↓ depression symptoms
↓ CDRS-R score

Schuch et al., 2014
[92]

n = 26 depressed inpatients,
RCT

Age: 42.81 ± 12.4

Aerobic exercise:
3x/week, targeted dose of 16.5 kcal/kg/week of aerobic

exercise,
Single-stage submaximal treadmill walking test according

Ebbeling

↑ BDNF after 2 weeks.
= at discharge in comparison to 2

weeks.

Pereira et al., 2013
[71]

n= 451 community-dwelling
older women, RCT

Age: 65–89 y

Aerobic, strenght training and combinaed aerobic and strenght trainings:
Strenght training: 3x/week, six exercises for major muscles

at 50–75% RM;
Aerobic training: 5-min warm-up followed by 40 min of

aerobic exercises at 65% and 80% age-predicted maximum
heart rate, 3x/week
Duration: 10 weeks

Strenght training:
↑ BDNF

Both aerobic and strenght trainings:
↓GDS score

BDNF, brain-derived neurotrophic factor; MDD, major depressive disorder; VO2max, maximal oxygen consumption; HRmax, maximal
heart rate; RM, repetition maximum; PDD, persistent depressive disorders; CDRS-R score, children’s depression rating scale revised; RCT,
randomized controlled trial; GDS, geriatric depression scale.

4. Potential Mechanisms of Exercise Training Impact on BDNF in Healthy and
Depressed Patients

ET constitutes a very strong stimulus to the brain and other organs and brings many
beneficial health effects to the whole body on many levels of its organization, from the
molecular level, through the cells, to the organs [93]. Data from numerous studies showed
that ET potential protects in neurodegenerative diseases [42,94]. Research reveals that
acute and chronic adaptations of exercise training have been related to stimulation of
neurogenesis, which is essential for nervous system plasticity [43,95]. Exercise training
stimulates new nerve connections and increases the number of synaptic vesicles. The
higher secretion of neurotransmitters has also been reported [95]. Moreover, ET was able
to induce substantial improvements in mating and memory processes, as well as in the
emotional sphere [49,90,96].

In response to ET, constant monitoring of movement patterns is required from the
brain, especially at the stage of learning new motor activities [41]. The beneficial influ-
ence of ET on brain health is manifested by the intensified blood supply to the brain,
improvement in brain oxygenation, and activation of many regions of the brain structures.
These facilitate better brain function, secretion of neurotransmitters that communicate at
different regions of the brain, and secretion of different chemical substances with growth
factor activity [43,83,97,98]. Besides the local effect of BDNF in the brain, some authors
suggest that the brain is the major source of circulating BDNF at rest and during exer-
cise [50]. In this sense, ET is an effective stimulus for BDNF synthesis as reported by several
studies [22,71,89,92].

Skeletal muscle is widely recognized as an endocrine organ [77,97]. Contracted skele-
tal muscles produce and secrete various biologically active molecules, known as myokines,
including BDNF [77,84,97,99,100]. They likely act in an endocrine-dependent manner to
favor the communication between skeletal muscle and distant organs, creating a network
that integrates several signals coming from various organs [77,84,97,101]. Therefore, the
communication between skeletal muscle and the nervous system through BDNF may con-
stitute one of the strongest factors that stimulates neurogenesis [99]. BDNF is responsible
for organ communication and can act as auto-, para-, or hemocrine-like fashion. Thus,
BDNF is an example of neurokine, myokine, and adipokine, with a wide range of action
with other cytokines [77,99,102]. Of particular interest is the continuous flow of information
between the skeletal muscles and the brain, known as crosstalk [97]. It is also speculated
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that BDNF and its receptor play a key role in the central regulation of the energy balance
through the BDNF/TrkB axis in adipose tissue [103], suggesting an interesting role for the
regulation of whole-body metabolism.

The impact of physical activity on BDNF secretion and its participation in cognitive
processes’ improvement has been reported [104]. An increase of BDNF concentration has
been observed after physical activities that are single but of varying intensity and time,
single but intense, or systematic, aerobic, and anaerobic, and also those that last for several
weeks or several months [104]. Moreover, the increase of BDNF concentration remains
transitional and rapid as the levels return to resting values 10–60 min after the exercise
training cessation [105,106].

Different molecular mechanisms have been proposed to explain how exercise/ET can
impact on BDNF synthesis in brain and peripheral tissues. One of the suggested is an
increase in Ca2+ concentration in neurons and activation of signaling pathways: mitogen-
activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) and
Ca2 + /calmodulin-dependent protein kinase, which are responsible for CREB phospho-
rylation and CREB transcription activation, and, consequently, transcription of the BDNF
gene [107,108]. ET resulted in an increase in the level of the activated transcription fac-
tor and CREB phosphorylated [109]. Together, these are signaling molecules that play
critical roles in synaptic plasticity, including learning and memory. Furthermore, this
constitutes an important pathway for the cytoskeleton protein synthesis, dendrites’ growth,
and branching in hippocampal neurons as well as inhibition of apoptotic growth [110].
Both BDNF and TrkB are widely and strongly expressed in the human brain. Activation
of TrkB upon attachment of BDNF activates many intracellular pathways, including the
MAPK/ERK pathways [65,77,111,112]. ET can cause persistent increases in phosphory-
lated CREB and BDNF that continue throughout the exercise period [109]. According to
Finkbeiner et al. [113] CREB is a major mediator of neurotrophins’ responses.

Wrann et al. [99] reported that BDNF secretion by the hippocampus was possible
owing to the activation of the peroxisome proliferator-activated receptor-gamma coactiva-
tor (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) (irisin) pathway.
PGC-1α increases as a result of AMP kinase (AMPk) activation by a decrease in adeno-
sine triphosphate in the cell (↓ATP/AMP↑) [114,115]. Similar to PGC-1α, AMPK takes
part in the intensification of oxidative processes, including initiation of mitochondrial
biogenesis by stimulating uncoupling protein expression; this contributes to greater oxygen
uptake and utilization by skeletal muscle cells [116]. BDNF stimulates AMPK expression
acting as an autocrine or paracrine factor. Moreover, cathepsin B and irisin secreted by
skeletal muscles can cross the blood-brain barrier and mediate BDNF expression in the
hippocampus [117–120]. It is believed that the neuroprotective effect of BDNF results from
the activation of the TrkB/MAPK/ERK1/2/IP3K/Akt pathway, which inhibits apoptosis,
the neurotoxic effects of glutamate and nitric oxide, and the negative oxidative effects of
stress, which damage neurons [65,105,107].

Sleiman et al. [86] suggested a mechanism according to which β-hydroxybutyrate,
one of the metabolites classified as ketone bodies, forming during ET in conditions of
oxygen deficiency, can activate BDNF promotors, promotor I in particular, and stimulate its
secretion. The authors have observed that intraventricular injection of β-hydroxybutyrate
resulted in increased BDNF protein expression in the mouse hippocampus, as well as the
release of the TrkB receptor-dependent neurotransmitters.

Bergersen et al. [118] proposed very convincing and interesting mechanisms of a
quite possible contribution of lactate in BDNF secretion. Lactate, as an ET metabolite, can
activate several pathways leading to neuronal plasticity activation. It is also one of the
important metabolites produced during exercise, and assists as a fuel for the brain [119].
In the brain, it is produced by astrocytes and was able to cross the blood-brain barrier
from the periphery, and thus regulates many processes via specific monocarboxylate
transporters (MCTs). These transporters are spread within the brain in neurons (MCT-
2) or astrocytes (MCT-4) [120]. In the brain, lactate is transferred via MCTs to neurons,
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where it is converted to pyruvate for aerobic energy production in mitochondria. In
neurons, lactate is essential for the maintenance of long-term synaptic enhancement, a
phenomenon important in memory processes [121]. According to Descalzi et al. [121],
memory formation, as well as long-term potentiation, requires energy, which, in line
with the astrocyte-to-neuron lactate shuttle hypothesis, is formed from lactate transported
from astrocytes to neurons and converted into pyruvate. These findings suggest that
pyruvate and β-hydroxybutyrate can replace lactate if the transport of lactate is attenuated.
Pyruvate and β-hydroxybutyrate can enter the Krebs cycle to produce energy. Newman
and Verdin [122] maintain that β-hydroxybutyrate is not only an exercise metabolite but
also a significant releasing molecule. Yang et al. [123] reported that lactate takes part in
neuroplasticity through the expression of Arc, c-Fos, and Zif268 genes, as well as activation
of the N-methyl-D-aspartate receptor and the Erk1/2 release cascade.

El Hayek et al. [124] report that lactate-dependent increase in BDNF concentration is as-
sociated with the activation of the sirtuin1 (SIRT1) deacetylase. SIRT1 increases the concen-
tration of PGC-1α and the secretion of FNDC5, participating in the PGC-1α/FNDC5/BDNF
pathway [52]. This mechanism explains the role of effort-generated lactate in improving
spatial learning and memory processes. Systematically performed exercises can therefore
reduce the tension of the nervous system, increase the concentration of substances that
positively affect human emotions, and exert an antidepressant effect [125].

Considering all the findings explaining the effect of lactate on BDNF secretion and
its effect on cognition, we obtain another important argument in favor of being active and
participating in physical activity for health and recommending exercise as an important
therapeutic factor in mood disorders.

5. Neurobiological Mechanisms of Depression and BDNF
5.1. Monoamines

Several biological mechanisms underlying depression are shown in Figure 2. One
of the earliest explanations discussed was the monoamine theory, which relates to the
deficiency or disturbance of catecholamine (dopamine and norepinephrine) and serotonin
(5-hydroxytryptamine, 5-HT) secretion. In the light of this theory, depression is correlated
with the depletion or imbalance in the secretion of these monoamines [126]. Depression has
been treated with pharmacological agents such as selective serotonin and/or adrenaline
reuptake inhibitors to improve neurotransmission impulses in key areas of the brain—the
amygdala and hippocampus. However, at least 30% of depressed patients do not respond
positively to antidepressants based on monoamine reabsorption inhibitors [7].

5.1.1. Dopamine

This neurotransmitter, commonly known as the “pleasure hormone”, is the major
catechol neurotransmitter that is produced and secreted by dopaminergic neurons in the
human brain [127]. It is formed from the amino acid precursor of tyrosine that undergoes
several downstream conversions before the release of dopamine. Dopamine binds to a
series of receptors named dopamine receptors 1–5 (D1–D5) and participates in the regula-
tion of processes related to locomotion, learning, feeling pleasure, and motivation [128].
Dopamine does not cross the blood-brain barrier; therefore, it must be synthesized in the
central nervous system [129]. Increased dopamine concentration in the hypothalamus
nucleus accumbens, which is a component of the “reward system” in the brain, seems
to be a main biochemical mechanism of the “feeling of pleasure”, whereas disorders in
dopamine production, secretion, and function are common causes of Parkinsonian diseases
and schizophrenia [130].
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Figure 2. Biological markers of depression. (ROS, reactive oxygen species, BDNF, brain-derived neurotrophic factor).

It is thought that the dopamine system is responsible for drug addiction and the
development of drug abstinence syndrome. Those conclusions come from studies in
addiction to amphetamines and cocaine [129]. In depressed patients, a decreased activity
of the nigrostriatal pathway, responsible for motor skills and a part of the extrapyramidal
system, was found. Dopamine is degraded to biologically inactive homovanillic acid
by enzymes from the group of monoamine oxidases (MAO-A and MAO-B), as well as
catechol-O-methyltransferase [129]. BDNF has been shown to influence the release of
dopamine in the mesolimbic dopamine system [131].

5.1.2. Serotonin

Serotonin (5-hydroxytryptamine, 5-HT), commonly known as the “happiness hor-
mone”, is an important neurotransmitter of the central nervous system. It is involved
in mood, behavior, cognition, emotion, motor function, pain sensitivity regulation, and
neuroendocrine regulations related to appetite, reproduction, circadian rhythms, and sleep
since its metabolite is melatonin, the main regulator of sleep and rhythms [65,132]. Sero-
tonin is a derivative of the exogenous amino acid tryptophan and exerts its biological
effects through numerous receptors [132]. The antidepressant drug fluoxetine acts based
on MAO inhibition in the synaptic cleft and the reuptake of serotonin [65]. Serotonin is
the most essential factor involved in BDNF signaling, playing a very important role in
the central nervous system, whereas its dysregulation is associated with different mental
disorders [48,132].

Studies have shown that BDNF promotes the survival and morphological differen-
tiation of 5-HT neurons and improves the functioning, sprouting, and growth of 5-HT
neurons in various brain regions [133].

As indicated by Martinovich and Lu [65], serotonin stimulates the expression of the
BDNF gene. BDNF has also been found to regulate the survival, development and func-
tion of serotonergic neurons, demonstrating the correlation between the two substances.
Some authors have postulated synergy between BDNF and serotonin signaling systems
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and a feedback loop between BDNF and serotonin secretion [65,66,133]. In patients with
depression, lower serum BDNF concentrations correlated with the severity of depres-
sion [29,66,134]. In addition, the cAMP response element binding protein (CREB) may also
be involved in the loop between BDNF and serotonin. The role of CREB is important for
long-term plasticity of neurons and increases the synthesis of L-dihydroxyphenylalanine
(L-DOPA), a dopamine precursor [48]. CREB activity is serotonin dependent, while sero-
tonin secretion is light dependent and is greater over long days [58,135]. Activated CREB
stimulates BDNF expression, while BDNF promotes CREB activation through the TrkB
receptor [135]. CREB is believed to be one of the molecular mechanisms of circadian
rhythms that are dependent on light/dark rhythms [136–139].

5.2. Stress

Stress is one of the most important causes of depression. Mental stress (psychological
stress), different than imposed by physical stress (e.g., ET), increases the risk of depression
by several hormonal, biochemical, and immunological disturbances [140–144].

Studies suggest that both estrogen and testosterone play a significant role in pro-
tecting the nervous system and decreasing depression symptoms [142]. The release of
glucocorticoids in response to stress is involved in the pathological mechanism of depres-
sion. Glucocorticoids exert their biological effects on gene expression through specific
receptors [143]. Hippocampus and other cerebral areas express two adrenal steroid recep-
tors – the mineralocorticoid receptor (MR, type 1) and the glucocorticoid receptor (GR,
type 2) [144]. Stress stimulates the hypothalamic-pituitary-adrenal (HPA) axis and pro-
vokes the secretion by the hypothalamus of the corticotrophin-releasing hormone, which
promotes the secretion of adrenocorticotropic hormone by the pituitary gland.

Adrenocorticotropic hormone induces the secretion of glucocorticoids by the adrenal
glands and increases the concentration of these hormones in the blood and cerebrospinal
fluid [145]. Higher concentrations of glucocorticoids, including cortisol, cause the reverse
inhibition of corticotrophin-releasing factor secretion, which is called negative feedback.

Prolonged exposure to stress causes disturbances in the assessment of the HPA axis
by increasing the concentration of glucocorticosteroids/cortisol in the blood and exerting a
negative/destructive effect on the cells of the nervous system, which may stimulate the
onset or intensification of depression [141]. Disturbances in the HPA axis and elevated
cortisol levels have been observed in depressed patients [141,146,147]. As a result of the
latter, the volume of the hippocampus decreases, which also causes negative feedback
disturbance [7,141,148].

Many studies provide evidence of the relationship between stress, depression, im-
paired neurogenesis in the hippocampus, and the negative feedback between BDNF and
cortisol [76]. HPA axis hyperactivity is considered one of the crucial biological factors
of mood disorders, including depression [146–149]. Lower BDNF secretion in depressed
patients may partly underlie the pathological mechanism of depression. BDNF secretion
in the hippocampus is reduced in response to stress, while its concentration is increased
after the intake of antidepressant drugs. Data from animals showed that BDNF injections
improved their locomotor activity and temperature rhythm [150].

As mentioned earlier, the volume of the hippocampus is reduced in depressed pa-
tients [69]. The hippocampus is the part of the brain structure and limbic system that is
responsible for learning and memory. It is especially accountable for memory processes –
long-term and spatial memory, but also feeling emotions [141]. Its damage is possible in
response to a prolonged stress. Such conclusions were drawn based on observing patients
with Cushing syndrome, in which excess cortisol concentration is one of the symptoms [7].

It is believed that HPA axis disorders may lead to psychogenic depression. In men, this
axis regulates the release of the steroid hormones testosterone and estradiol by the testes
through a hormonal cascade involving the gonadotropin-releasing hormone, luteinizing
hormone, and follicle-stimulating hormone. In patients with depression, the follicle-
stimulating hormone and luteinizing hormone concentrations do not differ from those
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recorded in healthy men; estradiol concentration slightly increases, while testosterone
concentration is significantly lower. In men, a decrease in testosterone concentration causes
mood disorders, cognitive problems, or fatigue, because testosterone is a neuroactive
hormone and its deficiency promotes the development of depression symptoms. Sex
steroid hormones regulate neurogenesis in the hippocampus or the prefrontal cortex [151].

On the other hand, estrogen increased BDNF expression in different brain regions, e.g.,
olfactory bulb, hippocampus, cortex, or amygdala [142]. In ovariectomized female rats,
estrogen treatment increased BDNF in the entorhinal cortex [142]. 17β-estradiol (17β-E2),
a precursor of estrogen, has been shown to promote cell differentiation and survival in
the culture of the hypothalamic, amygdala, and neocortical neurons. Moreover, 17β-E2
protects neurons against cell death caused by oxidative stress. This hormone appears to
stimulate the same signaling pathways as BDNF [112]. The precursor of steroid hormone
dehydroepiandosterone (DHEA) and its sulphate ester (DHEA-S) also have neuroprotective
effects, interact with neurotrophins – BDNF, nerve growth factor, neurotrophin-3 – and,
thus, stimulate the axon growth. DHEA produces its biological effects by binding to the
tyrosine kinase A (TrkA) receptor and p75NTR in target cells. DHEA-S has been found to
stimulate the sympathetic nervous system by both inhibiting gamma-aminobutyric acid
and activating glutamate and N-methyl-D-aspartate receptor [152].

5.3. Stress, Neuroimmune Axis, and BDNF

In healthy individuals, hippocampus BDNF is very high, but stress significantly
reduces its secretion. Antidepressants, in turn, improve BDNF secretion and intensify
BDNF-dependent signaling pathways [39]. BDNF is one of the factors involved in the
inflammatory process. Together with cytokines and chemokines, it cooperates in the
regulation of the neuroimmune axis. According to Jin et al. [29], BDNF expression is
affected by immune cell cytokines. The dysregulation of cytokine secretion in the brain
intensifies inflammation and increases reactive oxygen species (ROS) production, which
disrupts neuronal homeostasis and neurogenesis [2,153]. In fact, an administration of
pro-inflammatory cytokines caused a significant reduction of BDNF gene expression [84].

Clinical observations showed that traumatic events, by activating the HPA axis, in-
duced a stress response, activating many physiological mechanisms and intracellular
pathways. Depression is usually a consequence of injuries, such as disturbances in the HPA
axis, elevated cortisol concentrations, inflammatory processes, and oxidative stress [146].

A prolonged exposure to stress can cause neuronal degradation in various parts of
the brain, especially in the limbic system. The interactions between the hippocampus and
the amygdala and their mutual projections to areas of the prefrontal cortex are essential
for effective emotional processes and the storage of important information in long-term
memory [154].

5.4. Cytokines, Inflammation, and Oxidative Stress

The etiology of depression is still an open issue. The contribution of inflammation
is obvious. Numerous studies reveal that depression is much more common among
people suffering from chronic diseases with an ongoing inflammatory process. There is a
close functional relationship between the brain and the endocrine and immune systems.
The cells of the immune system and of various brain areas are equipped with hormone
receptors through which hormones exert their biological effects. Moreover, the expression
of receptors for several interleukins (IL) is observed in various parts of the brain, especially
in the hippocampus and hypothalamus. In these areas, expression of IL-1, IL-2, IL-6, and
tumor necrosis factor α receptors was demonstrated [2].

The cytokine theory of depression is supported by numerous studies in which an
increase in the number of leukocytes, neutrophils, or macrophages. Pro-inflammatory
substances secreted by these cells was observed, as well as changes in the subpopulations
of T lymphocytes, an increase in the CD4/CD8+ lymphocyte ratio and concentration of
acute-phase proteins of metalloproteinases [2].
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Cytokines are thought to modulate neuroplasticity and alter the synthesis, reuptake,
and metabolism of mood-regulating neurotransmitters. The participation of the inflamma-
tory process in the development of mood disorders is also translated by cytokines into the
modulation of synaptic plasticity and changes in the synthesis, reuptake, and metabolism
of neurotransmitters involved in the regulation of mood [155].

Inflammatory cytokines have been proven to influence the synthesis and reuptake of
serotonin, noradrenaline, and dopamine, whose disturbances are observed in depression
156]. In turn, the dose of IL-1 and IL-6 increases the secretion of corticoliberin and activates
the HPA axis [2,155,156]. According to this theory, it is believed that the behavioral distur-
bances observed in depression, as well as disturbances in the secretion of neurotransmitters
or stimulation of the HPA axis, are a consequence of the secretion of pro-inflammatory
cytokines. An overproduction of cytokines or their dosing to animals causes behavioral
reactions and neurochemical changes characteristic of the stress response. In addition,
the overproduction of the corticotrophin-releasing hormone may secondarily increase
cytokine secretion, disrupting the balance of pro-inflammatory and anti-inflammatory
cytokines. These findings provide evidence that cytokines are involved in neurohormonal
(neuroimmune-axis) and behavioral responses in depression [66,140].

Oxidative stress and ROS may contribute to the damage of neurons and adversely
affect the synthesis of BDNF, because ROS cause oxidative modifications of proteins, lipids,
and nucleic acids [28]. They destroy cell membranes and cell receptors and modify the
activity of enzymes and genes. They disrupt the functions of cells and contribute to
their death. Therefore, it is believed that oxidative stress also causes neuroprogression
by interfering with neurotransmission, especially with regard to 5-HT signals [27]. In
depressed patients, a decreased sensitivity of 5-HT receptors has been observed as a result
of impaired neurogenesis of these neurons [28].

5.5. Neurotrophins

In depression, the variation of neurotrophins’ concentrations, especially BDNF, has
been reported [22,23]. According to current knowledge, there are also other biological fac-
tors associated with the development of depression that may be the target of the therapeutic
process [66]. Clinical studies show that depression may be associated with cell loss or atro-
phy, especially in the hippocampus and cortex [157]. The latest reports reveal relationships
of mood disorders with insufficient secretion of neurokines, i.e., protein substances that
act as growth factors stimulating neurons, e.g., for growth, differentiation, or production
of dendritic spines [62,65]. Disorders of their secretion constitute the basis of a theory
called the neurokine theory or neurotrophic theory, and the deficiency of neurokines can
be the reason for neuronal decline. The most researched and most important factor in this
theory is BDNF. It is essential for the growth, development, and survival of neurons. Brain
imaging studies of depressed patients show that, in addition to changes in the volume
of the limbic system area, the cell bodies of pyramidal neurons and glial cells are lost or
reduced [158].

It is believed that stress, especially chronic stress, through cortisol secretion due to dis-
ruption of the HPA axis, can cause neuronal loss in the hippocampus and impaired/reduced
production of neurons in the dentate gyrus, the main structure of the hippocampus re-
sponsible for neurogenesis [7]. More details on how antidepressants can act and influence
emotional state and mood through BDNF and in light of the theory of neurogenesis and
synaptic plasticity can be found in Harmer et al. [159].

5.6. Anandamide and 2-Arachidonoylglycerol

The human body produces molecules/chemicals with an effect similar to that of the
main psychoactive substance of marijuana, tetrahydrocannabinol, exerting its biological
influence through two main cannabinoid receptors: CB1 and CB2. These substances
are called endocannabinoids [160]. The CB1 receptor is located mainly in the central
nervous system in various structures: in the cortex, hippocampus, basal ganglia, amygdala,
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hypothalamus, cerebellum, and limbic system, regulating emotions, satisfaction, feelings
of pleasure, and fear [161]. This system is important in the process of remembering and
motivating. A large accumulation of CB1 was also found in the layer of pyramidal cells of
the hippocampus responsible for the processes of learning and memory, and in the nucleus
accumbens, which is part of the human reward system, the main system of behavior
motivation, at the same time, being the basis of such phenomena as addiction. In turn,
the CB2 receptor occurs mainly peripherally, also in the peripheral nervous system, but is
mainly expressed on immune cells and the spleen [160,162].

There are two endocannabinoids produced in the greatest amount:
N-arachidonoylethanolamine (AEA) (anandamide) and 2-arachidonoylglycerol (2-AG).
Anandamide is found in small amounts in chocolate, producing similar effects to marijuana
tetrahydrocannabinol [161,162]. Data from different studies showed that exercise activates
the endocannabinoid system [163–165].

The word Ananda comes from Sanskrit and means joy, delight, and bliss [163]. In a
study by Sparling et al. [163] that involved runners and cyclists, after a 50 min exercise with
an intensity of 70–80% HRmax, a significant increase in the concentration of anandamide
was noted in both groups. Raichlen et al. [165] received that the secretion of AEA is
dependent on intensity. According to their study the most effective response of AEA to
30 min of exercise also occurs at an intensity of about 70–80% of AAMHR (age-adjusted
maximum heart rate), accounted according to the Tanaka formula. Both teams believe
that anandamide may be responsible for the analgesia during exercise, for alleviating
pain, tension, and anxiety, and for well-being. Furthermore, it is anandamide rather
than endorphins that are considered as one of possible mechanisms responsible for the
phenomenon known in sports as “runner’s high”, i.e., a state of contentment, euphoria,
and increased resistance to pain and fatigue; the molecular mass of endorphins is too high
for them to freely cross the blood-brain barrier [162,164,165]. Anandamide and 2-AG are
produced in postsynaptic neurons. AEA is formed of membrane phospholipid. The 2-AG
precursor is diacylglycerol. As a result of its metabolism, under the influence of various
enzymes, other bioactive compounds may be formed. Both endocannabinoids are found in
the peripheral blood in equal concentrations, and the brain concentration of 2-AG is about
170 times higher [166]. Both AEA and 2-AG are synthesized “on-demand” from membrane
phospholipids and released immediately without vesicle storage [167].

2-AG is a very important signaling mediator responsible for brain homeostasis and
anti-inflammatory and neuroprotective effects [168]. Some of the neuroprotective effect
of BDNF is mediated by 2-AG [169]. Heyman et al. [72] reported that anandamide might
be one of the key elements that contribute to increase BDNF concentration during ET
and delaying its return to the pre-exercise level, both immediately after exercise and
during recovery, suggesting that anandamide produced during ET may be one of the
antidepressant mechanisms.

5.7. Tryptophan Pathway/Kynurenine

The levels of serotonin and melatonin in the brain are closely related to the amount
of tryptophan in the body. Serotonin is produced from tryptophan by hydroxylation and
decarboxylation and then converted to melatonin [170].

Tryptophan is an essential amino acid. Its content in the body depends on the diet
and lifestyle, especially stress exposure. Its main source is a diet rich in protein. Inducing a
long-term state of tryptophan deficiency in the body may lead to mood disorders [99]. In
the digestive tract it is absorbed and converted into serotonin; 95% of serotonin is thought
to be composed of tryptophan, although only 1–2% of tryptophan is used to synthesize
serotonin [170]. The second source of serotonin synthesis are neurons of the nerve plexuses,
from which about 5% of serotonin is derived [26].

Increased activity of the HPA axis and the inflammatory process caused by cytokine
synthesis disturb the metabolism of tryptophan and significantly reduce its concentration
in the blood [2]. It has been proven that inflammatory markers—IL-1, IL-2, interferon—
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increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO) and increase the
metabolism of tryptophan towards the formation of kynurenine and several of its metabo-
lites, commonly known as kynurenines, at the cost of synthesis serotonin and melatonin [2].
The enzyme is found in the cells of various tissues, including neurons and astrocytes,
as well as in the microglia. A significant correlation was found between IDO activity,
inflammatory markers and the severity of depression [171]. It has also been shown that
some metabolites of tryptophan, the kynurenine pathway, the concentration of which is
increased by IDO activation, have an adverse effect on behavioral processes, including
Kynurenine causes anxiety and depressive symptoms, and its metabolites exert neurotoxic
and neurodegenerative effects [26,147,151].

6. Light, Sleep, and BDNF

According to studies, the development of depression is influenced by the lack or
deficiency of daylight or insufficient exposure to the sun [172]. These factors can result in
decreased activity of the serotonergic system and disturbances of circadian rhythms and
sleep, which are often observed in people with depression [172,173]. Light therapy has
been shown to have a similar effect on neurotransmitters as antidepressants or serotonergic
stimulants and is widely used in clinical settings for the treatment of depression [174].
It seems that sleep disturbances associated with its elongation or shortening may be an
important factor contributing to the development of depression. Interesting research on
the circadian rhythm of BDNF secretion was presented by Begliuomini et al. [56]. In this
study, they reported that BDNF levels were higher in the morning (8:00) and much lower
at noon (lower than at 8:00), and lowest at midnight. Moreover, Molendijk et al. observed
seasonal variability in BDNF secretion [30] and found a strong relationship between BDNF
concentration and the amount of sunlight. The lowest BDNF concentrations were recorded
between January and March. After this period of the year, BDNF levels continued to rise
until August and then declined systematically. It should be noted that the levels observed
in the fall remained slightly higher than in the January-May period.
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A.; et al. Plasma brain-derived neurotrophic factor (pBDNF) and executive dysfunctions in patients with major depressive
disorder. World J. Biol. Psychiatry 2019, 20, 519–530. [CrossRef]

21. Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.M. Decreased serum brain-derived neurotrophic factor
levels in major depressed patients. Psychiatry Res. 2002, 109, 143–148. [CrossRef]

22. Laske, C.; Banschbach, S.; Stransky, E.; Bosch, S.; Straten, G.; Machann, J.; Fritsche, A.; Hipp, A.; Niess, A.; Eschweiler, G.W.
Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. Int.
J. Neuropsychopharmacol. 2010, 13, 595–602. [CrossRef]

23. Diniz, B.S.; Teixeira, A.L.; Talib, L.L.; Mendonça, V.A.; Gattaz, W.F.; Forlenza, O.V. Serum brain-derived neurotrophic factor
level is reduced in antidepressant-free patients with late-life depression. World J. Biol. Psychiatry 2010, 11, 550–555. [CrossRef]
[PubMed]

24. Bus, B.A.; Tendolkar, I.; Franke, B.; de Graaf, J.; den Heijer, M.; Buitelaar, J.K.; Oude Voshaar, R.C. Serum brain-derived
neurotrophic factor: Determinants and relationship with depressive symptoms in a community population of middle-aged and
elderly people. World J. Biol. Psychiatry 2012, 13, 39–47. [CrossRef]

25. Komulainen, P.; Pedersen, M.; Hänninen, T.; Bruunsgaard, H.; Lakka, T.A.; Kivipelto, M.; Hassinen, M.; Rauramaa, T.H.; Pedersen,
B.K.; Rauramaa, R. BDNF is a novel marker of cognitive function in ageing women: The DR’s EXTRA Study. Neurobiol. Learn
Mem. 2008, 90, 596–603. [CrossRef]

26. Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health.
Science 2017, 357, eaaf9794. [CrossRef] [PubMed]

27. Anderson, G.; Berk, M.; Dean, O.; Moylan, S.; Maes, M. Role of immune-inflammatory and oxidative and nitrosative stress
pathways in the etiology of depression: Therapeutic implications. CNS Drugs 2014, 28, 1–10. [CrossRef] [PubMed]
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