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Abstract: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are
currently administered in South Korea; however, vaccine supply is limited. Considering constraints
in vaccine supply and the emergence of variant strains, we evaluated the impact of coronavirus
disease (COVID-19) vaccination program in reducing incidence, ICU hospitalization, and deaths in
South Korea. We developed an age-structured model of SARS-CoV-2 transmission parameterized
with Korean demographics and age-specific COVID-19 outcomes. Using our model, we analyzed
the impact of the COVID-19 vaccination program during the fourth wave of the pandemic in South
Korea in reducing disease burden. We projected that the vaccination program can reduce the overall
attack rate to 3.9% from 6.9% without vaccination, over 150 days, starting from 5 July 2021. The
highest relative reduction (50%) was observed among individuals aged 50–59 years. Vaccination
markedly reduced adverse outcomes, such as ICU hospitalizations and deaths, decreasing them by
45% and 43%, respectively. In the presence of the Delta variant, vaccination is expected to reduce
the overall attack rate to 11.9% from 26.9%. Our results indicate that the impact of vaccination can
be substantially affected by the emergence of SARS-CoV-2 variants. Furthermore, herd immunity
is unlikely to be achieved with the potential emergence of the Delta variant, inconsistent with the
blueprint of the South Korean government.

Keywords: COVID-19; SARS-CoV-2; vaccine; Korea; vaccine allocation strategy; herd immunity;
mathematical model

1. Introduction

Despite unprecedented social distancing measures and vaccine development efforts,
the rapid spread of coronavirus disease (COVID-19) continues to impose a heavy burden
on healthcare at a global scale, resulting in 183 million reported cases and 3.9 million deaths
worldwide, as of 4 July 2021 [1]. Since the first case of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) was reported in January 2020, the virus has been constantly
evolving, and several variants have emerged with mutations that alter the receptor binding
domain of the spike protein [1,2]. Certain variants, called variants of concern (VOC), have
shown their rapid emergence within populations, with increased potential for transmission
or clinical implications, including the Alpha variant first identified in the United Kingdom
(UK), the Beta variant in South Africa, the Gamma variant in Brazil, and the Delta variant
in India [3]. Among these variants, the SARS-CoV-2 variant Alpha, also known as B.1.1.7,
is estimated to have emerged in the UK in September 2020 and has become the dominant
circulating SARS-CoV-2 variant in England [3]. The Alpha variant is found to have a
selective advantage over the other variants, being 56% more transmissible (95% confidence
interval (CI): 50–74%) across three regions, i.e., Denmark, Switzerland, and the United
States (US), compared to the pre-existing variants of SARS-CoV-2 [4–6]. Furthermore, the
Delta variant, also known as B.1.617.2, was first identified in India in December 2020 and
has now spread to South Korea. Data from the UK suggest that the Delta variant is 40–60%
more transmissible than the Alpha variant.
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In South Korea, the detection rate of major virus variants (Alpha, Beta, Gamma, and
Delta) in community transmission in June 2021 was over 30%; meanwhile, the cases of
Delta variant have surged [7]. Furthermore, on 7 July 2021, it was announced that the
fourth wave has hit South Korea, with more than 1200 new daily cases reported on average
in July. The Korea Disease Control and Prevention Agency (KDCA) announced that over
the first week of July 2021, 26.5% of newly confirmed COVID-19 patients in the capital area
were infected with the Delta variant, expressing concern that the Delta variant cases may
become prevalent in the country [7].

All authorized COVID-19 vaccines have demonstrated an efficacy of 65–95% against
symptomatic, laboratory-confirmed COVID-19 caused by the non-variant strain [2]. How-
ever, the efficacy of COVID-19 vaccines might be potentially affected by the emergence of
mutant SARS-CoV-2 variants, which are potentially more virulent and have increased infec-
tivity. It has been suggested that the currently authorized COVID-19 vaccines may provide
some protection against the various strains, including the Alpha variant [8]. However,
reduced antibody neutralization and efficacy have been observed for the Delta variant.

Specifically, there is no evidence that the efficacy of Moderna or Pfizer COVID-19
vaccines is reduced against the Alpha variant [8]. In the UK, when the Alpha variant was the
predominant circulating strain, two doses of the Pfizer COVID-19 vaccine demonstrated an
efficacy of 85–86% against SARS-CoV-2 infection and symptomatic COVID-19 [2]. Novavax
announced that its vaccine showed 85% efficacy against the Alpha variant versus 89%
with the non-variant strain, while the AstraZeneca-Oxford vaccine reportedly offered 74%
efficacy against the Alpha variant and 84% against the non-variant strain [6]. However, the
efficacy of vaccines against the Delta variant is potentially reduced. The clinical trials of the
Pfizer and AstraZeneca-Oxford COVID-19 vaccines showed reduced sera neutralization
for the Delta variant, with a protective efficacy of 79% and 60% against this variant,
respectively [8,9]. However, the protective efficacy of the Pfizer and AstraZeneca-Oxford
vaccine was lower with a single dose, with 36% and 30% efficacy against symptomatic
diseases by the Delta variant, respectively [10].

As SARS-CoV-2 variants continue to spread globally, it is imperative to assess their
impact on vaccination programs at the population level. In this study, we constructed
an age-structured, two-strain model of SARS-CoV-2 transmission and vaccination, and
applied our model to the South Korean population, where domestic transmission of the
Delta variant has been increasingly reported. We examined the impact of a novel variant
on vaccination campaigns at the population level during the fourth wave of the pandemic,
under various scenarios related to the transmission potential and the emergence of novel
variants. Based on our simulation results, we examined whether herd immunity could be
achieved with current vaccination programs in the presence of the Delta variant.

2. Materials and Methods
2.1. Model Structure

We developed an age-structured model of COVID-19 transmission and vaccination
considering two co-circulating strains (Figure 1). Our model assumed that the mutant
strain would be more transmissible on contact with an infectious person than the pre-
existing, wild-type strain, i.e., υ > 1. The model classified individuals according to
their vaccination status and the natural history of COVID-19, considering the two strains.
Additionally, as unvaccinated individuals are susceptible to both the wild and mutant
strains, they were classified as follows: susceptible (Sk); exposed (Ej,k), asymptomatic
(Aj,k); pre-symptomatic (Pj,k); mildly symptomatic (Mj,k); severely symptomatic (Ij,k); and
recovered (Rj,k). Similarly, partially (or fully) vaccinated individuals are divided into
susceptible (SVk or SWk), exposed (EVj,k or EWj,k), asymptomatic (AVj,k or AWj,k), pre-
symptomatic (PVj,k or PWj,k), mildly symptomatic (MVj,k or MWj,k), severely symptomatic
(IVj,k or IWj,k), and recovered (RVj,k or RWj,k) categories. Here, the subscript k refers to the
age group of individuals (k = 1, 2, . . . , 8), while the subscript j indicates the original strain
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(j = 1) or variant alpha (j = 2). Model population was stratified into eight age groups of 0–9,
10–19, 20–29, 30–39, 40–49, 50–59, 60–69, and 70+ years based on the Korean census data.
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Figure 1. Model diagram of COVID-19 transmission and vaccination with two co-circulating strains,
denoted by n (n = 1 or 2). All individuals are stratified by age, although age indices have been omitted
for clarity.

Vaccinated individuals followed the analogous natural history of COVID-19, although
they had a lower probability of both clinical and subclinical infection. However, it was
assumed that vaccinated individuals who develop clinical or subclinical infection would
be as infectious as unvaccinated individuals with clinical or subclinical infection. We
parameterized our model with daily contacts within and between age groups using syn-
thetic country-specific contact matrices that were constructed based on the POLYMOD
study [11,12]. Our simulations were run with and without the introduction of SARS-CoV-2
variants. For cases with SARS-CoV-2 variants, we assumed that Delta would be introduced
on day 25 (i.e., 30 July 2021), when school holidays and summer vacation would begin in
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South Korea. Our mathematical model with two strains of SARS-CoV-2 and vaccination is
given by the following equations:

Sk
′
=−(θk(t)+λ1,k(t)+λ2,k(t)) Sk,

E1,k
′
=λ1,k(t)Sk−γEE1,k,

A1,k
′
=(1−hk)γEE1,k−γAA1,k,

P1,k
′
=hkγEE1,k−γPP1,k,

M1,k
′
=ρkγPP1,k−γMM1,k,

I1,k
′
=(1−ρk)γPP1,k−γII1,k,

R1,k
′
=γAA1,k+γMM1,k+γII1,k−σλ2,k(t)R1,

E2,k
′
=λ2,kSk+σλ2,k(t)R1−γEE2,k,

A2,k
′
=(1−hk)γEE2,k−γAA2,k,

P2,k
′
=hkγEE2,k−γPP2,k,

M2,k
′
=ρkγPP2,k−γMM2,k,

I2,k
′
=(1−ρk)γPP2,k−γII2,k,

R2,k
′
=γAA2,k+γMM2,k+γII2,k,

SVk
′
=θk(t)Sk−{(1−η1,k)λ1,k(t)+(1−η2,k)λ2,k(t)}SVk−ψk(t) SVk,

EV1,k
′
=(1−η1,k)λ1,kSVk−{(1−hk)+(1−δ1,k)hk}γEEV1,k,

AV1,k
′
=(1−hk)γEEV1,k−γAAV1,k,

PV1,k
′
=(1−δ1,k)hkγEEV1,K−γPPV1,K,

MV1,k
′
=ρkγPPV1,k−γMMV1,k,

IV1,k
′
=(1−ρk)γPPV1,k−γIIV1,k,

RV1,k
′
=γAAV1,k+γMMV1,k+γIIV1,k,

EV2,k
′
=(1−η2,k)λ2,k(t)SVk−{(1−hk)+(1−δ1,k)hk}γEEV2,k,

AV2,k
′
=(1−hk)γEEV2,k−γAAV2,k,

PV2,k
′
=(1−δ2,k)hkγEEV2,k−γPPV2,k,

MV2,k
′
=ρkγPPV2,k−γMMV2,k,

IV2,k
′
=(1−ρk)γPPV2,k−γIIV2,k,

RV2,k
′
=γAAV2,k+γIIV2,k

SWk
′
=ψk(t) SVk−{(1−α1,k)λ1,k(t)+(1−α2,k)λ2,k(t)}SWk,

EW1,k
′
=(1−α1,k)λ1,kSWk−{(1−hk)+(1−χ1,k)hk}γEEW1,k,

AW1,k
′
=(1−hk)γEEW1,k−γAAW1,k,

PW1,k
′
=(1−χ1,k)hkγEEW1,K−γPPW1,K,

MW1,k
′
=ρkγPPW1,k−γMMW1,k,

IW1,k
′
=(1−ρk)γPPW1,k−γIIW1,k,

RW1,k
′
=γAAW1,k++γMMW1,k+γIIW1,k,

EW2,k
′
=(1−α2)λ2,kSWk−(1−χ2,k)γEEW2,k,

AW2,k
′
=(1−hk)γEEW2,k−γAAW2,k,

PW2,k
′
=(1−χ2,k)hkγEEW2,K−γPPW2,K,

MW2,k
′
=ρkγPPW2,k−γMMW2,k,

IW2,k
′
=(1−ρk)γPPW2,k−γIIW2,k,

RW2,k
′
=γAAW2,k++γMMW2,k+γIIW2,k,

where

λ1,k=βk∑16
j=1ckj(

qA(A1,j+AV1,j+AW1,j)+(P1,j+PV1,j+PW1,j)+qM(M1,j+MV1,j+MW1,j)+qI(I1,j+IV1,j+IW1,j)
Nj

)and λ2,k=υλ1,k.

2.2. Disease Dynamics

In our mathematical model, the risk of infection for people susceptible to COVID-19
depended on contact with individuals infected by pre-existing wild-type or mutant SARS-
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CoV-2 that could be in asymptomatic, pre-symptomatic, or symptomatic stages of the
disease. Our model assumes that individuals with clinical symptoms are more infectious
than asymptomatic individuals [13]. Specifically, it was assumed that the infectivity of
asymptomatic, mild symptomatic, and severely symptomatic individuals would be 26%,
22% and 44%, respectively, relative to the pre-symptomatic stage, considering the impact
of self-isolation of symptomatic patients (Table 1) [14–17]. For infected individuals, the
average incubation period was assumed to be 5.2 days, and an age-specific proportion
(hk) of infected individuals were assumed to develop symptomatic disease following a
pre-symptomatic stage [18,19]. The pre-symptomatic stage and infectious period were
assumed to be 2.3 days and 3.2 days on average, respectively [18,19]. Those who did
not develop symptomatic disease were assumed to remain asymptomatic until recovery,
with an average infectious period of 5 days [20,21]. Symptomatic cases would have an
age-specific probability of developing mild or severe illness. We assumed that individuals
who recovered from infection by pre-existing original strain of SARS-CoV-2 were partially
susceptible to infection by SARS-CoV-2 variant.

2.3. Vaccination

As of 5 July 2021, two COVID-19 vaccines (i.e., AstraZeneca-Oxford and Pfizer COVID-
19 vaccines) have been widely used in South Korea: a viral vector vaccine with lower
efficacy against symptomatic disease and an mRNA vaccine that demonstrated high
efficacy against symptomatic disease [22–24]. Specifically, as of 5 July 2021, 19,537,712
doses of approved COVID-19 vaccines have been administered in South Korea, including
11,366,200 (58.2%) doses of the AstraZeneca-Oxford vaccine and 7,002,955 (35.8%) doses of
the Pfizer vaccine [25].

Our simulation approach is modeled after the vaccination program in South Korea
(Table 2). Vaccines were modeled as a two-dose regimen with 19.5% and 10% of the popula-
tion being partially and fully vaccinated, respectively, on day 1 (5 July 2021) [25]. In baseline
vaccination scenarios, vaccination was assumed to continue according to the current rollout
plan, and we examined its potential impact on symptomatic disease, hospitalizations, and
deaths. Vaccine administration in South Korea is partly constrained due to the limited
vaccine supply and the capacity to administer doses. In addition, vaccination against
COVID-19 is performed in order of decreasing age, with the minimum age being 18. In
our model, vaccines were administered to all adults aged ≥20 years in descending order
of age group. As of 5 July 2021, 84% of individuals aged ≥60 years received at least one
dose of COVID-19 vaccine. Thus, in our model, unvaccinated individuals aged ≥60 years
were vaccinated with the first dose until the coverage level of 87% was reached, following
which vaccines were administered to individuals aged 40–59 years and then to those aged
20–39 years starting on August 1 and September 1, respectively. All susceptible individuals
were assumed to be eligible for vaccination. The detailed supply schedule used in this
analysis was based on public announcements [26]. Specifically, the constant daily rate
of vaccine administration in younger (aged 20–39) and older adults (aged 40–59) was
scaled to meet the target vaccine coverage levels of 86% and 76% by day 90 (25 September),
respectively. With this rollout plan, we predicted to achieve 70% coverage level of the
entire population by 25 September 2021. This rate corresponds to the goal of vaccination of
36 million individuals with the first dose by the end of September 2021, as outlined by the
KDCA [26]. In addition, we assumed that the vaccination campaign with the second dose
would start on day 95, 110, and 120 for individuals aged ≥60, 40–59 years, and 20–39 years,
respectively. The constant daily rate of vaccine administration was scaled to achieve 65%
of second-dose coverage level of the entire population by 30 November 2021. Infection
dynamics continued during the simulation, and outcomes were evaluated for 150 days.

We assumed “leaky” vaccine protection in which all vaccinated individuals were
partially protected against infection and subject to some residual risk of infection and
symptomatic disease. This contrasts with an “all-or-none” vaccine efficacy, in which a
proportion of vaccinated individuals would have complete protection. The baseline values
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of vaccine efficacy used in the model are listed in Table 1. The overall vaccine effectiveness
against disease (denoted by VE) was modeled as a function of the risk of infection and risk
of symptomatic disease, conditional to infection [27]. Specifically, the vaccine effectiveness
(VEj,k) against strain j (j = 1 for wild-type and j = 2 for SARS-CoV-2 variant) among age
group k is represented as

VEj,k=1−(1−ηj,k)(1−δj,k)

where ηj,k represents vaccine efficacy against infection and δj,k represents the efficacy
against symptomatic disease, conditional to infection. First-dose and second-dose effec-
tiveness values (Table 1) were based on estimates from prior studies where extended dose
interval strategy was employed [28,29]. We assumed that vaccine effectiveness after the
first and the second dose in preventing symptomatic disease due to infection with the
wild type, VE1,k (k = 3, . . . , 6), was 70% and 80%, respectively, reflecting the efficacy of the
AstraZeneca or Pfizer vaccine [22–24,28–30]. An additional scenario with the emergence
of the Delta variant was evaluated, considering the efficacy after receiving one dose and
two doses of the AstraZeneca or Pfizer vaccine (Table 1) [22,24]. Based on a prior study,
we assumed that the vaccine efficacy against the Delta variant, VE2,k (k = 3, . . . , 6), after
receiving a single dose and two doses of the AstraZeneca or Pfizer vaccine is 32% and 65%,
respectively (Table 1). For all scenarios, vaccine efficacy was assumed to be reduced by a
factor of 30% in vaccinated individuals aged≥60 years, based on observed reduction in vac-
cine effectiveness among older individuals [31]. In the absence of data for vaccine efficacy
against infection or transmission, we assumed that vaccination provides protection against
symptoms of both the pre-existing original strain and the Delta variant with 50% lower
efficacy than its efficacy against infection (Table 1). We assumed that the vaccine efficacy
would not wane during the relatively short time span used for this analysis (150 days).

Table 1. Description of the model parameters and their estimates.

Notation Description Estimates References

1/γE Incubation period (days) 5.2 days [18]
1/γA Asymptomatic period (days) 5.0 days [16,20,21]
1/γP Pre-symptomatic period (days) 2.3 days [14,16,19]
1/γM Infectious period from onset of mild symptoms (days) 3.2 days [16,20]
1/γS Infectious period from onset of severe symptoms (days) 3.2 days [16,20]
1− σ Reduction of infection by variant strain due to cross immunity 0.7 [32]

υ Relative transmission potential of strain 2 compared to strain 1 2 [10]

qA
Relative infectivity of asymptomatic individuals compared to the

pre-symptomatic stage 0.26 [15]

qM
Relative infectivity of mildly symptomatic individuals compared

to the pre-symptomatic stage, considering isolation 0.22 [14,17,33]

qI
Relative infectivity of severely symptomatic individuals

compared to the pre-symptomatic stage, considering isolation 0.44 [14,17,33]

hk Proportion of infections that are symptomatic

0.29 for k = 1; 0.21 for
k = 2;

0.27 for k = 3; 0.33 for
k = 4;

0.40 for k = 5; 0.49 for
k = 6;

0.63 for k = 7; 0.69 for
k = 8

[13]

ρk Proportion of symptomatic cases that exhibit mild symptoms

0.90 for k = 1 and 2;
0.85 for k = 3, 4, and 5;

0.60 for k = 6 and 7;
0.20 for k = 8

[34,35]

η1,k
Vaccine efficacy, after the first dose to before the second dose,

against infection by strain 1 among the age group k
0.53 for k = 1, 2, . . . , 6;

0.37 for k = 7 and 8 [22–24,31]

η2,k
Vaccine efficacy, after the first dose to before the second dose,

against infection by strain 2 among the age group k
0.21 for k = 1, 2, . . . , 6;

0.14 for k = 7 and 8 [10,29,36,37]
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Table 1. Cont.

Notation Description Estimates References

δ1,k
Vaccine efficacy, after the first dose to before the second dose,

against symptomatic disease by strain 1 among the age group k
0.58 for k = 1, 2, . . . , 6;

0.41 for k = 7 and 8 [22–24,31]

δ2,k
Vaccine efficacy, after the first dose to before the second dose,

against symptomatic disease by strain 2 among the age group k
0.14 for k = 1, 2, . . . , 6;

0.10 for k = 7 and 8 [10,29,36,37]

α1,k
Vaccine efficacy, after the second dose, against infection by strain

1 among the age group k
0.64 for k = 1, 2, . . . , 6;

0.37 for k = 7 and 8 [38,39]

α2,k
Vaccine efficacy, after the second dose, against infection by strain

2 among the age group k
0.48 for k = 1, 2, . . . , 6;

0.33 for k = 7 and 8 [8,9]

χ1,k
Vaccine efficacy, after the second dose, against symptomatic

disease by strain 1 among the age group k
0.37 for k = 1, 2, . . . , 6;

0.26 for k = 7 and 8 [22–24,31]

χ2,k
Vaccine efficacy, after the second dose, against symptomatic

disease by strain 2 among the age group k
0.33 for k = 1, 2, . . . , 6;

0.23 for k = 7 and 8 [8,9]

2.4. Model Implementation

For model calibration, an effective reproduction number of 1.2 was used to account for
the effect of current non-pharmaceutical COVID-19 interventions in South Korea [25]. To
incorporate the age distribution of pre-existing immunity in the population, the information
on case distribution as well as vaccinated proportions in age groups were used as the initial
conditions (Table 2). We simulated the model across a time span of 150 days, assuming
pre-existing natural and vaccine-induced immunity at the start of vaccination.

Table 2. Cumulative percentage of people who have received a COVID-19 vaccine in South Korea by
vaccination status and age group as of 5 July 2021 [25].

Partially Vaccinated (%) Fully Vaccinated (%)

Total 19.5 10.4

Age group

20–29 6.4 4.1
30–39 16.4 14.4
40–49 9.0 4.7
50–59 8.6 3.6
60–69 79.9 3.3

70 and above 33.6 51.1

3. Results

The transmission probability per contact was calibrated to an effective reproduction
number Re = 1.2. For the base-case scenario without the emergence of a SARS-CoV-2
variant, the attack rate was projected to be 6.9% on day 150 without further vaccination.

3.1. Attack Rates

Without the emergence of a SARS-CoV-2 variant, we found that the vaccination
program against COVID-19 in South Korea would avert 45% of symptomatic infections
with a baseline scenario (Figure 2). The highest relative reduction (55–56%) was observed
among individuals aged 40–59 years. We found that with an increased transmission
potential, i.e., Re = 1.3, the vaccination program would reduce the attack rate from 9.2% to
4.9%, averting 47% of symptomatic infections.

We found that, in the absence of vaccination and the emergence of the Delta variant,
the attack rate would be 26.9% over 150 days (Figure 3), compared to 6.9% in the absence of
a SARS-CoV-2 variant. Furthermore, the variant would become a dominant strain within
65 days after introduction. With the emergence of a SARS-CoV-2 variant in at the end
of July, assuming a baseline transmission potential of the Delta variant, the vaccination
program in South Korea would reduce cumulative symptomatic infections by 56% over
the same period. As vaccine coverage level increases over time, the larger benefits of a
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vaccination program in averting symptomatic infections would be achieved especially in
the presence a SARS-CoV-2 variant; however, herd immunity is unlikely to be achieved.
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vaccination over 150 days.
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υ = 1.8 and υ = 2.2, respectively (A) Projected cumulative attack rates over 150 days with and without further vaccination.
(B) Overall and age-specific relative reduction of attack rates with vaccination, as compared to the outbreak scenario without
further vaccination over 150 days.

3.2. Hospitalization and Deaths

In the absence of vaccination, total intensive care unit (ICU) hospitalizations and
deaths were projected to be 12.4 and 5.1 per 10,000 persons, respectively, on day 150
without the emergence of variant strains. Vaccination with reduced efficacy in elderly
individuals still markedly reduced hospitalizations and deaths (Figure 4). Vaccination
reduced infection outcomes, such as ICU hospitalizations and deaths, decreasing it by 45%
and 43%, respectively. When we consider the situation after emergence of the Delta variant,
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further reduction in hospitalizations and deaths can be expected. In this scenario, total ICU
hospitalizations and deaths were projected to be 77.6 and 35.1 per 10,000 persons, respec-
tively, on day 150 without vaccines. Vaccination would reduce total ICU hospitalizations
and deaths to 31.3 and 14.5 per 10,000 persons, respectively.
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4. Discussion

Vaccination is expected to have a substantial impact in mitigating COVID-19 out-
breaks [40]. However, owing to challenges such as vaccine supply and rollout, coupled
with the potential emergence of highly transmissible SARS-CoV-2 variants, it is debatable
whether the current vaccination strategy would generate herd immunity. It has been also
suggested that available vaccines should be used for a single-dose COVID-19 vaccination
strategy rather than a two-dose regimen, to double vaccine coverage. A few countries,
including the UK and Canada, have approved guidelines to defer the second dose by up
to 12 and 16 weeks, respectively [16]. The South Korean government announced plans to
defer the second dose by up to 12 weeks, and aimed to vaccinate 36 million people with
their first doses by September 2021. In this study, we evaluated the impact of COVID-19
vaccination program in South Korea considering the potential emergence of SARS-CoV-2
variants and its impact on the vaccination program.

Our results indicate that a SARS-CoV-2 variant with higher transmissibility compared
to the currently circulating strain would become dominant within two months of being
introduced. Our findings are consistent with prior studies that indicated that the variant al-
pha would become the predominant variant in the US, 2–3 months after introduction [3,41].
Even in the presence of SARS-CoV-2 variants, a vaccination program was shown to have
potential in significantly reducing the disease burden associated with COVID-19. We
project that fully vaccinating 33 million people against COVID-19 would avert at least 45%
of symptomatic infections, 45% of hospitalizations, and 43% of deaths. Nevertheless, we
found that herd immunity is unlikely to be achieved by the end of November 2021 with
the emergence of the Delta variant, in contrast to the country’s vaccination blueprint with
a goal to achieve herd immunity by November 2021.

Our study has some limitations. First, we did not explicitly model high-risk individu-
als including healthcare workers and comorbid individuals. Inclusion of those individuals
may improve the accuracy of model predictions. Second, our parameter values for trans-
missibility of SARS-CoV-2 variants and the vaccine efficacy against it are based on early
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reports of the Delta variant in the UK; however, these estimates may vary across different
populations or settings.

5. Conclusions

Our study unequivocally suggests a substantial impact of vaccination program on
mitigating the severity of COVID-19 infection at the population level in South Korea.
However, this strategy is unlikely to help achieve herd immunity with the potential
emergence of more contagious SARS-CoV-2 variants, as the current pace of vaccine rollout
is insufficient to prevent the exacerbation of cases, hospitalizations, and deaths expected.
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