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Abstract: Thinking in patient safety has evolved over time from more simplistic accident causation 

models to more robust frameworks of work system design. Throughout this evolution, less consid-

eration has been given to the role of the built environment in supporting safety. The aim of this 

paper is to theoretically explore how we think about harm as a systems problem by mitigating the 

risk of adverse events through proactive healthcare facility design. We review the evolution of 

thinking in safety as a safety science. Using falls as a case study topic, we use a previously published 

model (SCOPE: Safety as Complexity of the Organization, People, and Environment) to develop an 

expanded framework. The resulting theoretical model and matrix, DEEP SCOPE (DEsigning with 

Ergonomic Principles), provide a way to synthesize design interventions into a systems-based 

model for healthcare facility design using human factors/ergonomics (HF/E) design principles. The 

DEEP SCOPE matrix is proposed to highlight the design of safe healthcare facilities as an ergonomic 

problem of design that fits the environment to the user by understanding built environments that 

support the “human” factor. 
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1. Introduction 

Twenty years after the seminal Institute of Medicine (IOM) reports “To Err is Hu-

man” and “Crossing the Quality Chasm,” there continue to be questions about safety and 

the speed of progress (or lack thereof). According to some, we have investigated prevent-

able adverse healthcare events to make sense of the factors that contribute to error [1], but 

in too many evaluations of patient safety, the search for causation ends with a blame-and-

retrain mentality [2]. In fact, a key message in the IOM studies was emphasizing error as 

a systems problem and identifying human factors as an important component of patient 

safety [3]. Two decades later, there continue to be challenges in using human factors/er-

gonomics (HF/E) principles and understanding the latent conditions that underlie the 

safety problems that need to be solved. Designing a safe healthcare facility is no exception. 

1.1. The Challenges of Complexity 

Safety scientists have documented the movement from behavioral and linear New-

tonian thinking (representative of a complicated system) into newer views of complexity 

[4]. While the terms are sometimes used interchangeably, the difference between compli-

cated and complex systems is important. Complicated systems are described as stable, 

closed to the environment, knowable, and controllable with a pre-existing order of any 

outcome, whereas complex systems are more than a sum of the parts—always changing 

due to relationships and interactions between parts [4–6]. However, in past efforts to im-

prove safety, we have often searched for empirical research that supported an improved 

outcome for a specific intervention. By focusing on this limited view of complex systems 

(whether work systems, productions systems, or other), there may be a danger of missing 

the larger multi-factorial problems that exist. 
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Further, our understanding of the complexity in systems (such as the delivery of care) 

may be exacerbated by organizational silos, often departments or service lines that operate 

independently, avoid sharing information, and do not always recognize their potential 

role in upstream or downstream events. An incomplete understanding of a situation or 

problem may be equally prevalent in healthcare design, where both user input and tech-

nical expertise may be siloed. While not specific to facility design, the following sentiment 

may resonate with the healthcare design community: 

Although healthcare providers work together, they are trained in separate disciplines, where 

the primary emphasis is the mastery of the skills and knowledge to diagnose ailments and 

render care. In the pursuit of becoming as knowledgeable and skillful as possible in their in-

dividual disciplines, a challenge facing nursing, medicine, and the other care specialties is to 

be aware of the reality that they are but one component of a very intricate and fragmented 

web of interacting subsystems of care where no single person or entity is in charge [7] (p. 3). 

In a real-world context of limited time and financial pressures, it becomes tempting 

to focus on simple fixes—the low-hanging fruit—rather than address the fundamental 

underlying issues that take a more prolonged period to study [8]. Even the best-inten-

tioned architects and designers may seek evidence-based solutions only to end up asking 

about the elusive black and white answer to solve a problem. 

1.2. An Evolution in Conceptualizing Patient Safety 

In the past three decades, there has been an evolution in how we think about patient 

safety in healthcare, even though “patient safety” was first included as a MeSH (Medical 

Subject Heading) term in 2012 [9]. Whereas the field of human factors/ergonomics has 

largely influenced safety in other industries (e.g., nuclear power, aviation), its use in the 

complex arena of healthcare is more recent. 

One description of the evolution of systems approaches for patient safety [10] traced 

thinking back to Reason’s 1990 accident causation model [11], Vincent, Taylor-Adams, 

and Stanhope’s 1998 framework for analyzing risk and safety in medicine [12], the use of 

the Haddon matrix at the turn of the century [13], and the subsequent development of the 

Systems Engineering Initiative for Patient Safety (SEIPS) model of work system design for 

patient safety in 2006 [10]. 

1.2.1. Work System Design: Human Factors/Ergonomics for Safety in Healthcare 

The SEIPS model was originally developed as a result of the lack of models to guide 

studies to empirically examine work system design [10], and the model has continued to 

evolve to better incorporate patient activity [14] and the care processes across the patient 

journey [15]. SEIPS is based on the Donabedian structure–process–outcome framework 

[16,17], and the model categorizes the work system, process, and outcomes and includes 

technology and tools, tasks, the organization, the person, and the environment. The SEIPS 

model references the layout of the environment (e.g., visibility), noise, lighting, tempera-

ture, humidity and air quality, and workstation design, and proposes that plans are re-

viewed for workflow and questions are asked about the physical environment sources 

that promote error or safety. The original model promoted the structure of the work sys-

tem, building on prior research for balanced job design to reduce stress [18,19]. It was 

described for application both proactively and reactively by focusing on the design of 

work and has subsequently been revised to more clearly focus on patient work [14,15]. 

1.2.2. Resilience and Safety-II 

There has also been work [20] to track an evolution from “old” thinking about human 

error to “new” thinking in healthcare-based resilience engineering [21], in which the focus 

is not just on what went wrong (Safety-I) but better understanding the everyday perfor-

mance that usually succeeds (Safety-II). Safety-II considers the ability of systems to adapt 
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to variation, disruption, and degradation of expected conditions [22,23]. One can see the 

transition through papers about accident barrier classification and analysis [24], to a 

recognition that a reactive approach was insufficient, necessitating accident prevention 

and a proactive approach [25], to safety as a dynamic non-event (i.e., the absence of events) 

using a framework of resilience. Importantly, the reactive approach of Safety-I should be 

complemented (not replaced) by proactive Safety-II approaches that attempt to develop 

ways to support things that “go right” [21]. With calls for the recognition of patient safety 

science as a profession [26], recent advances include practical activities of a safety profes-

sional through the Safety-II lens [27]. 

From a resilience perspective, the built structure is one part of a functioning system, 

such that a hospital needs to adapt through continual rebuilding—both organizationally 

and physically [28]. Even so, the role of structures is not often described in Safety-II, and 

according to Hassler and Kohler [29], “the composition and dynamic of the built environment 

prove to be very complex and attempts at description remain very general.” Proponents have 

urged taking into account that those remote from the clinical frontline base solutions on 

“work as imagined”, rather than “work as done” [21], and there continues to be criticism 

about conceptualizing safety events in healthcare as a linear chain of events rather than 

drawing on a larger body of safety science [30]. 

2. Theoretical Underpinning 

A safety risk assessment (SRA) is a process that has been developed to proactively 

consider the influence of healthcare facility design in mitigating the risk of harm to users 

(e.g., patients, staff) [31,32], yet challenges remain. As previously described, safety is a 

systems problem. This section presents the theoretical underpinning of an expanded 

model for mitigating the risk of adverse events, furthering a HF/E systems approach. 

Based on earlier work, falls continue to be used as the “case study” example. 

2.1. Designing to Mitigate Risk 

Previous publications describe the development and testing of a safety risk assess-

ment for healthcare facility design to proactively consider six safety issues (i.e., falls, pa-

tient handling, infection prevention, medication safety, harm associated with behavioral 

health, and security) that may be influenced by the underlying conditions of the built en-

vironment: [31,33]. While testing the “Falls” module of the SRA toolkit, there were often 

difficulties in solving design problems [33]. For example, during hypothetical scenarios 

and pilot tests, participant discussions included bathroom location (proximity versus 

identification), floor transitions (shower curbs or smooth transitions), and existing stand-

ards. These were often tradeoff decisions, and supporting research was inadequate to ad-

dress the “lived-in” challenges raised by participants evaluating the tool. 

Because bathroom location influences the structural grid and overall unit size, a pri-

mary discussion for inpatient unit design was room layout: inboard (hallway side), out-

board (window side), or nested toilets (between rooms on hallway and window side), as 

well as whether the bathroom is located on the headwall or footwall [34]. One participant 

commented that there was an intuitive response to locate the bathroom as close as possible 

to the patient, without definitive research to support the decision. Visibility into the bath-

room may result in a loss of patient privacy, and, in many projects, the desire for an iden-

tifiable bathroom was sacrificed for proximity and privacy. 

Multiple views were also offered about bathroom/shower floor transitions and real-

world implications (e.g., wiping water from the floor). In the case of one pilot site, nursing 

leadership stated that clinical procedures would guide the decision of a curbless shower 

and nurses would wipe the floor, yet there was not a follow-on discussion of what design 

features would best support nurses in this task. The reverse was the case in the hypothet-

ical scenario test. Introducing a curb to eliminate the wet floors was not discussed with 

respect to facilitating patient movement into the shower. 
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Grab bars or emergency pull cords may be placed according to code or manufacturer 

recommendations for accessibility, but, without awareness of the physical limitations of 

movement or manipulation that might be experienced by an ill or aging patient, these may 

not be suitably located. Participants referenced this solely as a code issue. These examples 

illustrate that when framed as an environmental condition, the interaction of end-users in 

the system is often lost. Introducing HF/E design principles is proposed to reframe the 

conversation into a problem of design that fits the environment to the user [35]. 

2.2. The SCOPE Model 

As presented in a systematic mixed studies review for patient falls [36], safety can be 

conceptualized in a SCOPE model—the complexity of interactions with the organization, 

people, and environment (Safety = Complexity * (Organization + People + Environment)). 

The SCOPE model expanded Hignett’s [37] Dial-F systems model describing building de-

sign and stability at the core of mitigating the risk of falls. People (the primary “human” 

factor in design) possess an interrelated set of intrinsic conditions that both influence and 

are influenced by the built environment. The SCOPE framework was divided into three 

broad categories of organization (i.e., policies and procedures), people (i.e., patients, staff, 

caregivers), or environment (the physical setting in which activities take place) [36]. As 

the term environment can have different meanings, four subset “components” were used 

in the SCOPE framework: the workspace envelope as the wider workplace including the 

building characteristics, adjacencies, and space constraints; personal workspaces that in-

clude the layout of the staff or patient “workstation” or immediate area of use; products, 

such as the selection/specification of equipment, furniture, or controls; and the ambient 

environment—thermal, air, noise, and illumination considerations. While the categories 

of organization, people, and environment have the potential to address a systems ap-

proach, they are potentially discrete units [38] that may benefit from additional integra-

tion. This paper reframes the SCOPE framework for safety more definitively as an ergo-

nomic design problem, continuing to use falls as an example. 

2.3. HF/E Design Principles 

To understand fit, it is important to understand the active participants (patients and 

staff). Designing for an unknown future user in a HC facility is complex and must consider 

the general conditions of human performance, behavior, and user characteristics. Five 

HF/E healthcare design principles have been adapted from pre-SEIPS work [39] to re-es-

tablish a foundation of HF/E design principles to address user fit. These principles, origi-

nally proposed for manufacturing [40] and office environments [41,42], include: 

 Optimizing opportunities for movement; 

 Minimizing manipulation time; 

 Minimizing the need for human strength; 

 Minimizing perception time, and 

 Minimizing decision-making time. 

2.3.1. Optimizing Opportunity for Movement (Mv) 

The human body is not built to stay in the same position for lengthy periods and 

optimal design must balance the need for movement in patient care duties and sitting or 

standing for charting or other stationary activities [39,41,42]. Equipment and materials 

should be conveniently located and easily accessible, with technology (e.g., cell phones, 

laptops) allowing for freedom of movement from workstations 39,41,42]. In some in-

stances, the speed of movement needs to be considered. According to Sanders and McCor-

mick [43], response time is considered as a combination of reaction time (i.e., from signal 

onset to the beginning response) and movement time (i.e., the beginning response through 

to the completion of the response). This aspect of movement can also be related to deci-

sion-making. Accordingly, designers should: 
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 support healthy/neutral postures that provide comfort without annoyance, allowing 

flexibility in furniture (e.g., chairs, standing workstations, resilient flooring) 

[39,41,42,44]; 

 place all things that a user must operate with their hands in front of the user, at elbow 

height, and within reach [39,41,42,44]; and 

 locate visual displays within a normal line of sight and cone of easy eye rotation [45]. 

2.3.2. Minimizing Manipulation Time (Ma) 

Manipulation includes physical affordances and constraints to optimize use. Wick-

ens [44] posits that structural (static) and functional (dynamic) anthropometric data can 

help designers prevent awkward positions (i.e., heights, reach, grip, clearances) while rec-

ognizing human variability (i.e., age, gender, ethnicity, occupation). However, dimen-

sional characteristics (e.g., reach) do not guarantee the ability to lift or manipulate an ob-

ject, and mechanical forces also must be taken into consideration [44]. 

With respect to design, parts or equipment should be easy to move, easy to 

grip/grasp, and should not tangle, while materials should not be weak, easy to bend (un-

less intended), or likely to chip or crack [39–41]. In addition, the transfer of training (e.g., 

how to use equipment) should be considered so that previously acquired skills can be 

applied to new products or workstation layout to avoid confusion and loss of efficiency 

[39,40]. Identified options [44] for design consideration include: 

 designing for the extreme (e.g., clearance for the largest, reach for the smallest); 

 designing for adjustability (e.g., seats); 

 designing for the average (e.g., a registration counter); or 

 designing for a percentile (e.g., the 5th or 95th to define upper and lower limits). 

2.3.3. Minimizing the Need for Human Strength (St) 

Strength is influenced by motivation and will [45], and is most often associated with 

muscles in the arm, leg, or back and can be dynamic (e.g., lifting) or static (e.g., holding, 

gripping) [43]. A lack of strength can result in musculoskeletal injury or whole-body fa-

tigue [44]. Biomechanical analysis is one approach for assessing dynamic capacity for in-

frequent manual handling tasks, while physiological approaches are often used for fre-

quent tasks done over a period of time [43]. Psychophysical approaches take into account 

biomechanical and physiological stresses but also consider perceived stress [43,45]. Stud-

ies have shown that strength exhibits an accelerated decline starting at age 51-55 (an 80% 

decrease from peak strength), with a 60% strength capacity (as compared to peaks) by 

ages 71-75 [43]. This has implications for both patients and an aging healthcare workforce. 

As a result, designers should incorporate mechanical devices to reduce or eliminate the 

need for human strength [39,41,42]. 

2.3.4. Minimizing Perception Time (Pe) 

Information is collected by the senses (a bottom-up process of what is there through 

visual legibility, audibility, familiar representations) and is influenced by expectations 

that are a result of short- and long-term memory, a top-down process of what should be 

there through discriminating features, context, and redundancy [44,46]. Research in this 

area [39,40] suggests that designers should: 

 Understand that hidden or invisible parts are sometimes forgotten (e.g., small fonts 

on display monitors); 

 Use visual discrimination such as size or color coding to form families of parts that 

belong together and enhance stimulus response for reduced reaction time (e.g., red 

for alarms); and 

 Recognize that touch (texture and size) can be a discriminating factor (e.g., sanded 

door knob finish to indicate no entry). 
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2.3.5. Minimizing Decision-Making Time (Dm) 

Decision-making is influenced by mental effort and attentiveness: selective, focused, 

and divided [44,47]. Researchers have described the decision-making task as choosing 

from more than one alternative through information available relative to the options, and 

choice may be associated with uncertainty and no clear best option [44]. Decision-making 

follows the delivery of perceptual information, which is interpreted through the working 

memory (impacted by capacity and time) [44,47]. While decision-making in situ varies 

from decision theory and choice behavior in controlled settings, some cognitive task anal-

ysis methods, inclusive of those individuals performing the work, have been developed 

to bridge this gap (e.g., field observations, work domain analysis, goal-directed task anal-

ysis, critical decision methods) [48]. As mental models help organize the execution of a 

task, and task visibility is important in creating a mental model, researchers [39,40] sug-

gests that designers should: 

 Consider the user’s mental model and recognize that diverse tasks result in different 

mental models to achieve different things with differing priorities (e.g., visibility, dif-

ferent alarm sounds); 

 Minimize the number of (or co-locate) components and related tools (also saving 

space) to reduce choice reaction time (e.g., code button at the bed); 

 Locate work elements in sequential order with task items that belong together in 

close physical proximity (e.g., crash carts) to improve spatial compatibility and im-

prove stimulus response; 

 Incorporate visual, tactile, or auditory feedback to indicate that the task was com-

pleted (e.g., electronic sound for touchscreen functions). 

3. Results: An Expanded Model for Safety 

The addition of these design principles results in an expanded framework for safety: 

DEEP SCOPE (DEsigning with Ergonomic Principles). 

3.1. The Development of DEEP SCOPE 

The DEEP SCOPE model is proposed by integrating the relationships of the organi-

zation, people, and environment previously set forth in the SCOPE model for falls [36]. 

The expanded thinking provides a way to synthesize findings for safety into a systems-

based model for building. By better understanding building design as a systems problem, 

architects and designers can be better positioned to define the problem to address appro-

priate fit for an evidence-based and human-centered design. 

Numerous interventions were categorized according to layers of stability across the 

categories of organization, people, and environment in the original SCOPE model for falls. 

These design conditions are now further categorized according to the principles of ergo-

nomic design. For example, the principle of movement related to falls would include 

walking surfaces (floor materials and transitions, weather/contamination protection), trip-

ping hazards (clutter, cords, equipment), understanding organizational policies for sur-

face maintenance (cleaning, repair, accessibility of supplies), recognizing necessary move-

ment aids for people (walking aids, bedside commodes), and facilitating the reach of per-

sonal items. Transfer assistance to prevent falls could be categorized as manipulation 

(“manipulating” people as compared to inanimate objects), and this would include 

providing necessary space to support organizational policies of patient handling, along 

with wide doors to allow assisted ambulation (which could also be movement, highlight-

ing that not every intervention exists as a one-to-one relationship). Other considerations 

would include the manipulation of objects: call systems, doors (while the patient is at-

tached to an IV or using a walking aid), and grab bars placed within a suitable reach. 

Strength, in the context of the SCOPE model for falls, would include the room/bathroom 

configuration, toilet location in the bathroom, the use of grab bars to support weaker pa-

tients (also in manipulation for reachability), and the use of patent lifts to aid both patients 
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(ambulation) and staff (at risk of falling from reflex reactions during assistance). Organi-

zational policies for mobilization programs (and where this takes place) could influence 

design decisions (e.g., activities on unit hallways or in patient rooms, versus an occupa-

tional/physiotherapy area). 

As it pertains to mitigating the risk of falls, perception in the expanded model would 

include fall alert visual cues inside and outside the patient room, the ability to leave doors 

open, lighting, decisions for technology to reduce noise (e.g., alarms, paging), and a recog-

nition of patient conditions of care (e.g., medications) that result in an overestimation of 

abilities or other changes in perception. Lastly, the model suggests that decision-making 

to mitigate the risk of falls would most likely include considerations in an organizational 

context. From a design perspective, this would necessitate an awareness of organizational 

policies that may result in spatial or other design considerations. For example, the use of 

patient sitters and facilitation of family presence may require space for furniture; video 

monitoring may require space for monitors at a centralized location, as well as the neces-

sary infrastructure for technology; fall documentation may require space at the bedside 

and/or another location; universal versus customized protocols may require storage 

space; segregation of populations and intent for patient placement may influence unit size 

and configuration, and access to patient education materials may need to be considered 

in the context of technology, whiteboards, or placement of other written materials. Design 

also should take into account unit layout and surveillance options as needed, especially 

as they pertain to the general workflow of care (fitting the environment to the user). Re-

searchers found that the physical environment was one of four work process constraints 

contributing to the risk of falls as a result of workarounds that included written and men-

tal chunking schemas, bed alarms, informal querying of the previous care nurse, and in-

formal video and audio surveillance [49]. Such workarounds have been called “first order 

problem solving that adapts work to cope with inefficiencies” [50] (p. 140). 

3.1.1. The DEEP SCOPE Model 

The resulting DEEP SCOPE model (Figure 1) builds on the SCOPE systems model by 

incorporating the HF/E design principles. The updated model adds a color-coded design 

principle that supplements the three categories of organization, people, and environment. 
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Figure 1. DEEP SCOPE: Designing with Ergonomic principles—Expansion of the SCOPE model 

(Safety = Complexity * (Organization + People + Environment)) [36]. 

As shown, there is a range of interventions that cross all of the HF/E design princi-

ples, as well as the subcomponents of the physical environment. The organizational con-

siderations are marked by a prevalence of decision-making interventions, whether asso-

ciated with communication, culture, patient assessment, or patient-based interventions. 

People-based interventions focus primarily on the patient and span a range of the HF/E 

design principles. Figure 2 illustrates the evolution of the SCOPE framework. 
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Figure 2. The evolution of the SCOPE and DEEP SCOPE model. 

3.1.2. The DEEP SCOPE Matrix 

A second visualization takes the form of a matrix (Figure 3), furthering the frame-

work for design considerations. The DEEP SCOPE matrix includes the correlates of falls 

and suggests the alignment of interventions that have been tested or used as part of a 

multifactorial bundle. It allows for interventions to be placed with more than one principle 

(e.g., grab bars support weak patients and are placed within reach.) 
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Figure 3. The DEEP SCOPE Matrix for Falls. (C: Correlated for falls). 

4. Discussion 

The understanding of falls is complex. The aim of this paper was to theoretically ex-

plore how we think about the challenge of safety in healthcare facility design rather than 

to experimentally quantify the effect of specific interventions. When design teams are as-

sembled, HF/E experts are typically not considered as a necessary or value-adding mem-

ber. Further, experts in HF/E may not be well versed in the process for designing built 

environments (although the lack of experience in designing a building project is not re-

stricted to the discipline of HF/E). The proposed DEEP SCOPE model presents the oppor-

tunity to frame safe building design as an HF/E problem, not just an architectural problem 

of structure, space, and articulated function. The model offers a way to incorporate design 
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principles used in HF/E with evidence-based design strategies. The blended approach can 

be used by the team as part of a systems approach to mitigating risk. In this paper, the 

model has been populated using the case study example from the previously published 

SCOPE model. As a bridge integrating HF/E and evidence-based design, the DEEP SCOPE 

model advances a systems-based process, purposefully developed to address the design 

of the built environment, to more fully address the complexity of safety and falls in 

healthcare. As a result, it is important to frame this approach within the context of prior 

models. 

4.1. The Proposed Model in Context 

The literature surrounding thinking for patient safety has evolved since the develop-

ment of Reason’s [11] accident causation model, often used as a basis for the role of the 

environment as a barrier to errors. However, while this model recognizes system influ-

ences, Reason posits a sequential approach that originates in imperfect decisions and line 

management deficiencies, further hampered by preconditions and unsafe acts that pass 

through a limited window of accident opportunity [11]. 

The strength of sequential thinking for accident causation is the etiology of accidents 

and adverse events with descriptions of contributing factors, while the lack of discussion 

of processes and guidance for system redesign is a weakness [10]. As a result, guidance 

for system redesign was addressed through the SEIPS models [10,14], where the work 

systems (including the internal and external environment) influence processes that subse-

quently influence outcomes. While the benefit of the SEIPS is the focus on the system de-

sign and description and the resulting effect on processes and outcomes, its authors stated 

that its weaknesses included its framework—a descriptive model with no specific guid-

ance as to the critical elements [10]. The original SEIPS model referenced the use of plans 

and questions to determine the contribution of the environment to patient safety; many 

papers that have cited the model as a framework in the study design have offered little 

detail on the influence of the built environment in their results. 

4.2. Designing Safe Facilities—An HF/E Problem 

Several recent studies have incorporated the SEIPS model to frame how the built en-

vironment supports safe and effective workflow as part of a complex system [51–54], but 

the framework of the most recent SEIPS model maintains its focus on work systems, albeit 

temporal and across settings. The physical environment is still shown in the SEIPS 3.0 

model, but it seems to become lost across the outlined journey. However, the design of 

the environment may take on an even more important role, as the design of each 

healthcare workplace becomes the stage for each process [55]. In contrast, Hignett’s Dial-

F model proposes that safety includes layers of permanence, with the patient being the 

most transient and the built environment being most stable [37]. The permanence of the 

built environment results from the significant financial investment required to renovate 

or build new facilities. A design that tries to fit the user to the environment, rather than 

designing the environment to support the use, can thus continue to negatively influence 

safety over time [37]. Dial-F makes a leap to highlight the prominent role of the environ-

ment, but was not intended as a tool for healthcare facility design. 

While the evolution of safety models offers significant contributions in delivering 

healthcare, and each model is logical in the context of an intended audience, the intended 

audience has never included architects or designers. As a result, the built environment is 

too often considered the existing condition. With few avenues for recourse, users develop 

workarounds, fitting themselves to the environment. What is missing from these prior 

approaches is both a hierarchy of decision-making for interactions with the environment 

(which we have addressed through HF/E design principles) and guidance for proactive 

design (the conditions and built environment interventions to be considered during an 

evidence-based design process for healthcare facilities). The DEEP SCOPE theoretical 
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framework furthers our understanding of safety, establishing building design as an HF/E 

problem by: 

 establishing the stability of the built environment and identifying HF/E environment 

categories (workplace envelope, personal workspace, products, and ambient envi-

ronment); 

 categorizing design interventions into three interacting categories (organization, peo-

ple, and environment); and 

 creating connections across the organization, people, and environment through five 

HF/E design principles (manipulation, strength, movement, perception, decision-

making). 

4.3. Strengths, Limitations, and Future Research 

As discussed throughout the paper, there is no shortage of safety models, but no 

model has been developed to address the specific concerns of designing built environ-

ments for the safe delivery of care. This model may challenge design teams to think dif-

ferently, and may require additional expertise on the team, but the DEEP SCOPE matrix 

creates a novel approach and visual roadmap for teams to consider established HF/E de-

sign principles alongside evidence-based organizational strategies, strategies that may fa-

cilitate tasks and activities for staff and patients, as well as built environment strategies 

across a range of permanence within a facility. The theoretical framework is an integrated 

approach for proactively considering the opportunities for safer building design. 

There are limitations with the proposed model, as the case study example only ad-

dresses patient falls. As previously discussed, the Safety Risk Assessment process for 

healthcare settings considers other areas of safety, as well. There is an opportunity to de-

velop the evidence-based strategies within this model to include issues such as infection 

prevention, medication safety, and others. The benefit of continuing the development of 

the framework for specific topics is that the approach allows the integration of HF/E de-

sign principles across multiple issues, again advancing a systems approach for designing 

safe healthcare facilities. 

Additionally, this paper only presents the theoretical approach and does not present 

an example fusing a specific facility design project. However, another paper incorporates 

the theoretical framework and DEEP SCOPE matrix for the analysis of data collected as 

part of a project to proactively design a patient room for stability as a fall-reduction strat-

egy [56]. The DEEP SCOPE framework will continue to be used as the room design devel-

ops, and this may serve as an example of how teams can use the matrix to inform design 

decisions in projects, whether addressing a specific room type (e.g., a medication prep 

room) or an overall unit layout (e.g., designing a medical–surgical unit to mitigate risk). 

5. Conclusions 

The DEEP SCOPE model is intended to proactively advance safer healthcare facility 

design. There is significant worth in discussing evidence-based design in healthcare facil-

ities as a HF/E problem. This goes beyond “work as imagined” (which is often what is 

provided in the project brief) and offers opportunities to address “work as done”—what 

may promote or impede desired behaviors for safety, rather than trying to modify behav-

ior (or environments) after the fact. The proposed model offers a framework that has been 

purposively developed as a proactive approach for safety in facility design that serves as 

a bridge for the domains of EBD and HF/E. In summary, an understanding of HF/E con-

ditions through the SCOPE and DEEP SCOPE models can advance a framework for more 

fully considering the ongoing problems that we face with improving safety by under-

standing built environment solutions that support the “human” factor. 
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