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Abstract: Anthropogenic developments in coastal watersheds cause significant ecological changes 

to estuaries. Since estuaries respond to inputs on relatively long time scales, robust analyses of long-

term data should be employed to account for seasonality, internal cycling, and climatological cycles. 

This study characterizes the water quality of a highly managed coastal basin, the St. Lucie Estuary 

Basin, FL, USA, from 1999 to 2019 to detect spatiotemporal differences in the estuary’s water quality 

and its tributaries. The estuary is artificially connected to Lake Okeechobee, so it receives fresh water 

from an external basin. Monthly water samples collected from November 1999 to October 2019 were 

assessed using principal component analysis, correlation analysis, and the Seasonal Kendall trend 

test. Nitrogen, phosphorus, color, total suspended solids, and turbidity concentrations varied sea-

sonally and spatially. Inflows from Lake Okeechobee were characterized by high turbidity, while 

higher phosphorus concentrations characterized inflows from tributaries within the basin. Differ-

ences among tributaries within the basin may be attributed to flow regimes (e.g., significant releases 

vs. steady flow) and land use (e.g., pasture vs. row crops). Decreasing trends for orthophosphate, 

total phosphorus, and color and increasing trends for dissolved oxygen were found over the long 

term. Decreases in nutrient concentrations over time could be due to local mitigation efforts. Un-

derstanding the differences in water quality between the tributaries of the St. Lucie Estuary is es-

sential for the overall water quality management of the estuary.   

Keywords: nutrients; statistical analysis; St. Lucie Estuary Basin; spatiotemporal trend; water  

quality; water pollution; dimensionality reduction 

 

1. Introduction 

The water quality of coastal areas is vital for maintaining ecosystem functions and 

services on which our society relies [1,2]. Yet, our use and development of coastal water-

sheds continue to cause significant ecological changes [3–5]. Losses of natural habitats due 

to increases in urban populations, drainage canals, and agricultural activities have im-

pacted the quality, quantity, timing, and distribution of freshwater inputs to estuaries [6–

8]. Furthermore, modified water inputs to estuaries have triggered the loss of seagrasses, 

hypoxia, fish kills, and algal blooms [9,10]. 

Resource management agencies continue to develop restoration and management 

plans to improve the quantity and quality of freshwater inputs to coastal zones to mitigate 

anthropogenic impacts. Assessments of the effectiveness of these plans and continuous 

monitoring are necessary [11,12]. The robust datasets produced by continuous monitoring 

contain vital information for identifying water quality variability and improving local 

management plans. The use of multivariate statistical analyses on local continuous sam-

pling data has proven effective in characterizing the water quality of coastal systems [13–

16]. Since water quality is influenced by geographic region and local anthropogenic 
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activities [17], the robust analysis of regional data can detect unique characteristics to be 

considered in tailored management plans [18,19].  

Multi-year water quality data from water bodies across the US and elsewhere have 

been valuable for a better understanding of regional systems [20–23]. Multivariate statis-

tical analyses and nonparametric tests are effective at summarizing robust datasets. For 

example, Stets et al. (2015) [20] used correlation analysis and principal component analysis 

to analyze 63 years of nitrate data from 22 sites across the US. They found nitrate was 

strongly related to agriculture, and it was higher in the mid-west and less so in the east 

and west. Similarly, Boyer et al. (1999) [21] characterized the water quality of three distinct 

zones of Florida Bay using a 6-year dataset and found that turbidity increased by a factor 

of 20 at one of the bay areas. 

Furthermore, a 20-year water quality dataset from various Texas Gulf coastal sites 

analyzed by Bugica et al. (2020) [22] revealed two waterbodies showed signs of eutrophi-

cation throughout the study period even though river inputs did not influence them. They 

concluded that non-point and point-source loads and residence time were the main factors 

driving eutrophication at those sites. Romero et al. (2016) [23] used a 40-year water quality 

dataset of the lower Seine River, France, and found a turning point in the 1990s when 

decreases in ammonium and phosphate were due to the ban of phosphates and 

wastewater treatment, whereas nitrate inputs increased due to agricultural practices. 

These findings exemplify the effectiveness of applying statistical analyses to multi-year 

datasets, especially in those areas showing water quality deterioration. 

The St. Lucie Estuary, in east-central Florida, is one of many coastal areas displaying 

undesirable ecological shifts due to anthropogenic eutrophication and modified freshwa-

ter regimes [24,25]. Currently, the St. Lucie Estuary is a phytoplankton-based system that 

no longer supports permanent or extensive populations of oysters and seagrass [26,27]. 

The St. Lucie Estuary receives freshwater inputs from canals, precipitation, and ground-

water, but 70% of its freshwater inputs are from drainage canals [28], including an artifi-

cial connection to Lake Okeechobee. Thus, characterizing the water quality of the canals 

that discharge into the St. Lucie Estuary is essential for management purposes.  

Ecological, biochemical, and flow regime studies of the St. Lucie Estuary Basin have 

improved the knowledge base of best management practices [25,29–31] and eutrophica-

tion science [32–35]. Studies by Doering (1996) [29] and Chamberlain and Hayward (1996) 

[26] recommended a more stable, lower flow from canals to improve water quality and 

attain resource management goals. Qian et al. (2007) [30] assessed long-term data (1979 to 

2004) of water quality constituents in major canals and found that almost all nutrient spe-

cies had significantly higher concentrations in the wet than in the dry season. Studies by 

Hampel et al. (2020) [32], Kramer et al. (2018) [33], and Oehrle et al. (2017) [35] demon-

strated the key role of nitrogen species and salinity in toxic Microcystis blooms in the lake–

estuary continuum. The South Florida Water Management District (SFWMD) and the 

Florida Department of Environmental Protection (FDEP) continuously assess the water 

quality of the estuary and the lake. The latest publicly available document by the FDEP, 

the updated 2020 St. Lucie River and Estuary Basin Management Action Plan [25], as-

sessed nutrient loadings after the implementation of total maximum daily loads (TMDL) 

in 2013 [36] and summarized the current standing of management plans.  

The water quality of this basin has been continuously monitored since the 1970s by 

the SFWMD, which has generated a robust historical dataset from which long-term pat-

terns can be extracted. While these studies have established essential characteristics of the 

St. Lucie Estuary Basin using various statistical techniques, there are no published statis-

tical approaches that reduce the dimensionality of the data to distinguish the main phys-

icochemical variables characterizing the water quality of the tributaries and the estuary. 

Long-term relationships among the physicochemical variables from 1999 to 2019 of water 

quality have not been explored either. The general objective of this study was to charac-

terize the water quality of the St. Lucie Estuary Basin, with particular attention to the sur-

face tributaries from 1999 to 2019. Three specific objectives were framed: (1) characterize 
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the seasonality of flow values of the major surface tributaries; (2) identify the principal 

water quality constituents; and (3) evaluate monotonic trends of all physicochemical var-

iables for 20 years. Multivariate statistical approaches, nonparametric tests, and trends 

were used in this study. 

2. Materials and Methods 

2.1. Study Setting 

The St. Lucie Estuary is in the southern tip of the Indian River Lagoon, on the eastern 

coast of the Florida Peninsula, USA (Figure 1). The 28 km2 estuary is in the tidewater area 

at the junction of the North and South Forks of St. Lucie River and the Indian River La-

goon. The two forks converge along US-1, and the estuary extends another 9.7 km down-

stream to the Indian River Lagoon, which is connected to the Atlantic Ocean through the 

St. Lucie Inlet. A humid, subtropical climate prevails in this area, which is characterized 

by warm, wet summers (May to October) and mild, relatively dry winters (November to 

April) [29]. The annual atmospheric temperature ranges between 19 °C and 29 °C. The 

long-term total rainfall to the basin is 1234 mm per year, with 78% in the wet season and 

22% in the dry season [37]. 

 

Figure 1. The St. Lucie Estuary Basin in the eastern Florida Peninsula, USA, the eleven water moni-

toring stations for water quality, the sub-basins, and the major canals draining to the estuary. 

2.1.1. Estuary 

The St. Lucie Estuary has four main geographical sections: the North Fork, the South 

Fork, the Mid-Estuary, and the Lower Estuary (Figure 2), where salinity has intra-annual 

fluctuations. Salinity patterns affect productivity, population distribution, community 

composition, and food web structure in the estuary. In shallow and highly managed estu-

aries, such as the St. Lucie Estuary, salinity is driven mainly by hydrologic events and 

water management practices and can range from <1 to >35 parts per thousand [38,39]. 

Vertical stratification generally happens during large water releases from Lake Okeecho-

bee. The Lower Estuary, the area closest to the ocean inlet, generally has the highest me-

dian salinity and the lowest salinity values are in the North and South Forks, which are 

furthest from the ocean inlet [40]. 
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Figure 2. The four geographical sections of the St. Lucie Estuary, Florida, USA. 

2.1.2. Land Cover 

The St. Lucie Estuary receives approximately 70% of its freshwater from four surface 

tributaries [41]: the Ten Mile Creek, Canal-24 (C-24), Canal-23 (C-23), and Canal-44 (C-44) 

(Figure 1). Water inputs from the Ten Mile Creek, C-24, and C-23 are solely from within 

the estuary’s drainage basin [42], while those from C-44 include periodic releases from 

Lake Okeechobee. The major land cover classes for the St. Lucie Estuary Basin are culti-

vated crops, hay/pasture, and wetlands [43]. The Ten Mile Creek sub-basin is 158 km2, and 

its major land-cover classes are cultivated crops (50%), hay/pasture cover (34%), devel-

oped-open space (6%), woody wetlands (5%), and developed-low intensity (2%). Sub-ba-

sin C-23 is 448 km2, and its major land cover classes are hay/pasture (38%), cultivated 

crops (24%), woody wetlands (23%), emergent herbaceous wetlands (4%), and developed 

open space (3%). Similar to C-23, sub-basin C-24 is 425 km2, and its major land cover clas-

ses are hay/pasture (38%), woody wetlands (26%), cultivated crops (17%), developed open 

space (4%), and developed low intensity (3%) [43]. C-44 combines basin runoff from sub-

basin C-44 with Lake Okeechobee releases. This artificial connection with Lake Okeecho-

bee brings in water from a 14,000 km2 area where 36% are improved pastures, 21% wet-

lands/water bodies, 16% rangeland/unimproved, pasture, 10% forested uplands, 5% cit-

rus, and 3% urban. 

2.2. Data 

2.2.1. Rainfall and Flow 

Rainfall (mm day−1) and canal flow (m3/s) for the 20 years of November 1999 to Octo-

ber 2019 were queried from the SFWMD’s publicly available repositories. Rainfall was 

obtained from the NEXRAD repository [44] using the polygon selection tool of the same 

extent as the estuary basin. The flow was gathered from the hydrogeologic database 

DBHYDRO [45] for stations named by the SFWMD as GORDYRD, C23S48, C24S49, and 

C44S80 (Figure 1). 
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2.2.2. Water Quality Data 

Physicochemical data for 20 years (November 1999–October 2019) from ten water 

monitoring stations were also obtained from the SFWMD’s publicly available repository 

DBHYDRO [46]. The monitoring stations were selected based on data continuity over the 

20 years and their distribution throughout the basin. Stations named C23S48, C24S49, 

GORDYRD, and C44S80 (Figure 1) by the SFWMD represent the freshwater tributaries C-

23, C-24, Ten Mile Creek, and C-44, respectively. Stations C23S48, C24S49, and GORDYRD 

are on canals that drain from within the basin of the estuary, while station C44S80 is down-

stream of Lake Okeechobee. Stations named by the SFWMD as SE 01, SE 02, SE 03, SE 06, 

SE 09, and SE 11 are in different regions of the St. Lucie Estuary (Figure 1). Station SE 06 

is in the North Fork, SE 09 is in the South Fork, SE 02 and SE 03 are in the Mid-Estuary, 

and SE 01 and SE 11 are in the Lower Estuary (Table 1). 

Table 1. Location of water monitoring stations. 

Monitoring 

Stations 
Location Latitude (N) Longitude (W) 

C23S48 C-23 27.2019 80.2992 

C24S49 C-24 27.2614 80.3593 

C44S80 C-44 27.1116 80.2850 

GORDYRD Ten Mile Creek 27.4030 80.3990 

SE 01 Lower Estuary 27.1803 80.1939 

SE 02 Mid-Estuary 27.2137 80.2148 

SE 03 Mid-Estuary 27.2028 80.2592 

SE 06 
North Fork 

Estuary 
27.2717 80.3220 

SE 09 
South Fork 

Estuary 
27.1237 80.2625 

SE 11 Lower Estuary 27.1653 80.1694 

Values for eleven physicochemical variables were used: ammonia (NH3), color, dis-

solved oxygen (DO), nitrate + nitrite (N+N), pH, orthophosphate (OP), total phosphorus 

(TP), specific conductivity, total nitrogen (TN), total suspended solids (TSS), turbidity, 

and surface water temperature (SWT). Water samples were collected monthly by the 

SFWMD and analyzed in their analytical laboratory. The SFWMD followed either the 

Standard Methods [47], the United States Environmental Protection Agency (1987, 1979), 

or the SFWMD’s field sampling quality manual (SFWMD-FSQM) depending on the meas-

ured variable (Table 2). The samples from canals were collected at 0.5 m below the water 

surface, and those at the estuary were from the middle of the total depth of the water 

column at the time of collection. The mean depth of the estuary is 2.4 m [28]. 

Table 2. Water quality variables. Abbreviations are those used in this paper and not by the manage-

ment agency. Test methods are the methods used by the chemistry laboratory to obtain the values 

for each variable. 

Variables 
Abbrevia-

tions 

Reporting 

Units 
Test Methods 

Minimum 

Detection Limit 

Ammonia NH3 mg/L SM * 4500-NH3 H 
0.009 (1999–2007); 

0.005 (2007–2019) 

Color Color PCU ** SM 2120 C 1 

Dissolved  

oxygen 
DO mg/L SFWMD-FSQM NA 

Nitrate + nitrite N+N mg/L SM 4500-NO3-F 0.004 (1999–2004); 
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0.006 (2004–2007); 

0.005 (2007–2019) 

pH, field pH NA SFWMD-FSQM NA 

Orthophos-

phate 
OP mg/L SM 4500-P F 

0.004 (1999–2007); 

0.002 (2007–2019) 

Total  

phosphorus 
TP mg/L SM 4500-P F 

0.004 (1999–2007); 

0.002 (2007–2019) 

Specific  

conductivity 

Specific  

conductivity 
mS/cm SFWMD-FSQM NA 

Total nitrogen TN mg/L 

Total Kjeldahl nitro-

gen (EPA 351.2) + ni-

trate + nitrite (1999-

2014); 

Modified SM 4500-

NC (2014-2019) 

0.05 (1999–2014); 

0.02 (2014–2019) 

Total sus-

pended solids 
TSS mg/L 

EPA 160.2 (1999–

2007); 

SM 2540 D (2007–

2019) 

3 

Surface water 

temperature 
SWT Celsius SFWMD-FSQM NA 

Turbidity Turbidity NTU SM 2130 B 0.1 

* SM = standard method by EPA; ** PCU = platinum cobalt unit. 

TN values from November 1999 to September 2014 were unavailable from the 

SFWMD’s repository, but total Kjeldahl Nitrogen (TKN) and N+N were. Therefore, for 

that period, TN was calculated by the authors by adding the TKN and N+N values avail-

able from the repository. This procedure was consistent with that followed by the SFWMD 

[48]. TN values from 2014 to 2019 were downloaded from the repository. For the most 

part, SFWMD collected one sample a month from each station from November 1999 to 

October 2019. 

The SFWMD staff uses the Data Collection/Validation Preprocessing (DCVP) system 

to perform quality assurance/quality control (QA/QC) on instrument readings before ar-

chiving the data. Preliminary time-series data are extracted from the DCVP and subjected 

to an initial QA/QC check to ascertain or improve data quality through the Graphical Ver-

ification Analysis (GVA) Program. The GVA application is used for the validation of the 

data. Data are uploaded into the DBHYDRO database after the GVA analysis [49]. 

The sample sizes of the physicochemical variables differed among stations. Supple-

mental Table S1 details the sample size for each variable at each station. There were some 

prolonged gaps in collection for certain stations, which spanned several months. These 

gaps caused some stations to have smaller sample sizes. The largest gap in the collection 

was at station SE 06 from July 2012 to March 2015. As a result, the sample size for NH3 

was 173 versus a sample size of 242 at GORDYRD for the same variable.  

Some datasets had values below the detection limit (BDL), also called nondetects (Ta-

ble S1). The substitution of values BDL was based on the percent contained in each dataset. 

Simple substitution to half the minimum detection limit value was used where nondetects 

comprised 10% or less of the dataset. The values used for simple substitution are specified 

in Table 2. For datasets containing over 10% of nondetects, robust regression on order 

statistics (ROS) was used. The robust ROS uses the sample data that are not BDL to assume 

the distribution and to assign values to those non-detects as described and suggested by 

Helsel and Cohn (1988) [50] and Helsel et al. (2012) [51].  
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2.3. Statistical Methods 

2.3.1. Assessment of Rainfall and Flow Data  

All statistical analyses were done using R Version 3.5.2. Descriptive statistics of rain-

fall and flow were calculated for the 20 years, and the intra-annual variability of flow for 

each canal was assessed visually using time-series charts. The correlation between canal 

flow and rainfall was assessed with Kendall’s tau correlation coefficient (τ) [52]. Kendall’s 

tau correlation coefficient indicated the strength of monotonic correlations (linear and 

nonlinear) between rainfall and flow. Tau is commonly used in water quality data anal-

yses because it is resistant to data skewness and outliers [53–55]. Kendall’s tau (τ) corre-

lation coefficient is a rank-based procedure where the test statistic (S) is calculated by sub-

tracting discordant pairs from the number of concordant pairs. S is then divided by the 

number of possible comparisons to be made among the n data pairs as detailed in Equa-

tion (1): Kendall’s tau correlation coefficient 

τ = S/(n(n − 1)/2) (1)

where a τ value close to −1 or 1 indicates strong negative or strong positive monotonic 

relationships between the variables, respectively, and τ values close to or equal to 0 indi-

cate no relationship between them. However, due to its ranking nature, τ coefficients are 

smaller than those of the more commonly applied linear correlation coefficients such as 

Pearson’s R. A strong linear correlation of 0.9 or above corresponds to τ values of about 

0.7 or above [56]. In this study, when τ is between 0.7 and 1, it is considered a strong 

correlation; between 0.4 and 0.7 a moderate correlation; and between 0.2 and 0.4 a weak 

correlation. 

2.3.2. Assessment of Physicochemical Variables 

Histograms were used to explore the distribution of the values of each physicochem-

ical variable at each station when selecting the appropriate statistical analyses. The sum-

mary statistics for the physicochemical variables were reported separately for the wet 

(May–Oct) and dry (Nov–Apr) seasons for each station (Table S2). The arithmetic mean, 

the standard deviation, the median, and the interquartile range were reported for each 

water quality variable for the 20 years. The mean and interquartile range (IQR) for pH 

were determined as the negative logarithm of the average hydrogen ion concentration. 

2.3.3. Principal Component Analysis (PCA) 

PCA has proven to reduce the redundancy of large multivariate water quality da-

tasets for identifying and summarizing patterns [39,57]. By transforming the original var-

iables into new uncorrelated variables, called principal components or dimensions, the 

noise is reduced while preserving as much of the data’s variation as possible [58]. Each 

monthly water sample was a variable in this study, and each physicochemical variable 

was a factor. PCAs were done separately for tributary samples and estuary samples to 

identify the principal variables that characterize the water in these different areas. The 

physicochemical variables used in the PCA were NH3, N+N, TN, OP, TP, color, TSS, tur-

bidity, DO, and pH. 

2.3.4. Correlation and Trend Analyses 

The correlation and trend tests performed were selected based on the nonparametric 

nature of the datasets. The strength of monotonic correlations between the physicochem-

ical variables and flow was measured using Kendall’s tau correlation coefficient (τ). The 

R script for the pair plots was modified from Ryberg (2017) [59]. The Kendall’s tau corre-

lation and significance were assessed for the physicochemical variables from tributary 

samples. Only tributary samples were chosen because they presented stronger associa-

tions in the PCA than samples from the estuary and greater applicability in water man-

agement as these inputs are important drivers of the estuary’s water quality. NH3, color, 
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DO, pH, TP, specific conductivity, SWT, TN, turbidity, and flow were assessed for the 20 

years.  

The monotonic trends of variables for the 20 years were assessed using the Seasonal 

Kendall trend test (Sk) [60], which accounts for seasonality by calculating the Mann–Ken-

dall [61] test for each month separately and then combining the results. The Mann–Ken-

dall follows the same principle as Kendall’s tau but with time as the x-variable. The Mann–

Kendall determines whether the central value (median) changes over time. The S statistic, 

Si, for each month are summed to form the overall statistic Sk as in Equation (2): 

�� = � ��

�

���

 (2)

The equation was applied to data collected monthly. For example, all data obtained 

in May were compared to similar data collected in May throughout the 20-year study pe-

riod. The process was repeated for data collected in June and so on for all the months. 

Since this method works best with no missing data, missing values were filled in using a 

predictive mean matching (PMM) imputation approach. This imputation method fills the 

values using a simulated regression model [62].  

The magnitude of the trend was evaluated by calculating Sen’s slope [63] for those 

variables showing significant Sk. The nonparametric Sen’s method estimates the slope for 

the sets of pairs (i, xi), where xi is a time series. The Sen slope is calculated by: 

� = ������ �
��  − ��

� −  �
� , � > � (3)

where xj and xi are the data values at times j and i, respectively. 

The β is the median of all the slopes calculated for the selected time series. For this 

study, the period for each slope was one year. The Sen’s slope represents the median 

change per year for the 20-year study period. β > 0 indicates an upward trend.  

3. Results 

3.1. Assessment of Rainfall and Flow Data 

The summary statistics (Table 3) showed higher rainfall values from May to October, 

with August having the highest mean of 194 mm and median of 179 mm. Lower rainfall 

values were from November to April, with February having the lowest mean rainfall of 

43.6 mm and median of 42.2 mm. Mean monthly flow values for June to October at C-23, 

C-24, and Ten Mile Creek were higher than the remaining months. In the wettest months, 

flow values at C-23 and C-24 were two to five times greater than their dry-month flow 

values. However, flow at Ten Mile Creek did not display such intra-annual differences. 

The Ten Mile Creek station displayed a steady flow with few peaks and zero no-flow con-

ditions. At C-44, the mean monthly flow was highest from July to August, with some 

monthly values two- or three-fold higher than those of the other tributaries. C-44 had long 

periods of no-flow combined with abrupt spikes of very high flow (150 m3/s) compared to 

the other tributaries. Moreover, most of the observed peaks at C-44 coincided with the 

end of the wet season (October) and reflected large sporadic releases from Lake Okeecho-

bee.  

Rainfall and flow were strongly correlated at tributaries C-23 and C-24 and weakly 

correlated at the Ten Mile Creek. Rainfall and flow had a τ of 0.53 for C-24, 0.51 for C-23, 

and 0.37 for Ten Mile Creek at α = 0.001. C-44 flow had a negligible τ of 0.15, α = 0.01.  
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Table 3. The monthly mean (�̅) standard deviation (SD), median (Med), and minimum (Min), and maximum (Max) for 

rainfall and canal flow values for the period of November 1999–October 2019. 

 
Wet Season Dry Season 

May June July August September October November December January February March April 

Rain 

(mm) 

�̅ 109 175 165 194 178 95.3 48.3 46.7 47.7 43.6 63.7 61.5 

SD 83.8 55.4 46.6 79.2 87.6 79.7 38.1 33.4 56.4 27.0 49.4 28.7 

Med 83.6 160 152 179 157 77.0 30.1 39.4 29.1 42.2 50.7 53.7 

Min 25.0 112 82.9 91.8 87.9 9.50 7.10 5.50 3.00 3.70 9.80 0.0 

Max 407 324 246 421 416 268 147 140 231 97.2 180 117 

Ten Mile 

Creek 

Flow (m3/s) 

�̅ 3.6 5.4 5.9 7.1 7.8 6.3 4.6 4.3 4.5 4.1 3.2 3.4 

SD 3.6 3.4 3.1 5.8 7.3 4.4 3.7 3.7 4.1 3.2 2.8 2.8 

M 2.5 3.9 4.9 4.9 5.5 4.7 2.8 3.2 2.5 3.6 2.2 2.0 

Min 0.1 1.3 2.3 2.0 2.7 1.1 0.6 0.7 1.4 0.8 0.9 1.2 

Max 14 13 15 28 35 15 13 15 14 12 11 10 

C-24 

Flow (m3/s) 

�̅ 2.1 6.3 8.7 11 14 8.3 3.6 2.0 1.6 1.6 1.3 0.8 

SD 4.5 6.2 7.4 8.5 13 9.3 6.5 2.9 3.9 2.7 2.9 1.5 

M 0.6 4.4 6.7 9.0 10 5.5 1.2 0.6 0.2 0.1 0.1 0.0 

Min 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Max 19 24 25 34 61 29 27 11 17 11 9.6 5.5 

C-23 

Flow (m3/s) 

�̅ 1.5 5.6 6.5 9.8 13 7.9 3.4 1.3 1.4 1.4 1.3 0.7 

SD 3.8 6.6 6.6 7.0 14 9.3 7.4 1.6 3.2 2.3 2.7 1.1 

M 0.2 3.2 3.8 6.9 11 4.9 1.0 0.7 0.5 0.3 0.3 0.1 

Min 0.0 0.0 0.4 2.4 2.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Max 17 27 22 31 65 35 33 5.3 14 9.7 11 4.4 

C-44 

Flow (m3/s) 

�̅ 10 12 17 19 26 24 18 9.0 4.7 9.1 7.5 5.9 

SD 15 18 32 32 27 39 33 17 8.1 25 13 10 

M 0.2 0.1 5.8 4.4 19 5.1 1.2 0.6 0.6 0.4 0.0 0.0 

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Max 43 52 128 122 99 144 104 69 32 112 52 32 

3.2. Assessment of Physicochemical Variables 

The values of the physicochemical variables conformed to various distribution types, 

but for most stations, nutrient species, TSS, and turbidity values conformed to log-normal 

and exponential distributions while DO and pH values were normally distributed. At trib-

utary stations, specific conductivity values were right-skewed for some stations and nor-

mally distributed for others while left-skewed at all estuary stations. The summary statis-

tics for physicochemical variables were reported based on the intra-annual analysis of 

rainfall by separately evaluating the wet and dry seasons’ values (Supplementary Table 

S2).  

Nutrient concentrations were higher at the tributaries than at the estuary, and values 

were higher in the wet season, except for N+N, which was higher in the dry season for 

most stations. Nutrient species concentrations differed among the tributaries. Basin trib-

utaries (C-23, C-24, and Ten Mile Creek) displayed higher nutrient concentrations than C-

44 (influenced by Lake Okeechobee releases) except for N+N, which was highest at C-44. 

C-24 and C-23 had the highest concentrations of NH3 and TN of all stations; the mean 

value for NH3 was 0.1 mg/L at both stations, and the medians were 0.08 mg/L and 0.09 

mg/L at C-24 and C-23, respectively. Similarly, the mean concentration of TN was 1.4 

mg/L, and the median was 1.5 mg/L at both stations. C-23 and Ten Mile Creek had the 

highest OP and TP mean concentrations of 0.28 mg/L and 0.35 mg/L, respectively, but C-

23 had the highest medians of 0.26 mg/L for OP, and 0.33 mg/L for TP C-44 had the highest 

N+N concentration with the same value of 0.3 mg/L for the mean and median. The lowest 

NH3 (0.03 mg/L), OP (0.062 mg/L), and TP (0.13 mg/L) mean concentrations were in the 

dry season at C-44. The lowest N+N (0.05 mg/L) mean concentration was at C-24 in the 

wet season. TN (0.81 mg/L) was lowest at Ten Mile Creek in the dry season.  

Nutrient concentrations in the estuary generally decreased with proximity to the 

ocean inlet as specific conductivity increased. Accordingly, the Lower Estuary had the 

lowest nutrient concentrations. NH3 was highest in the wet season at both the Mid-Estuary 
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and South Fork with a mean concentration of 0.09 mg/L and median of 0.07 mg/L. N+N 

and TN were highest at the South Fork with a mean of 0.1 mg/L and median of 0.07 mg/L 

for N+N and a mean and median of 1.3 mg/L for TN; OP and TP were highest at the North 

Fork with a mean of 0.20 mg/L and median of 0.18 mg/L for OP and mean of 0.27 mg/L, 

and median of 0.26 mg/L for TP.  

Color values were highest at the tributaries and decreased with proximity to the 

ocean inlet. The highest color values were at C-23 and C-24 in the wet season, with a mean 

of 150 PCU and 149 PCU, respectively. TSS and turbidity were generally higher at the 

estuary than at the tributaries; however, tributary C-44 had substantially higher values 

than other areas. In the wet season, the mean values of TSS at C-44 were 13 mg/L and the 

median was 8 mg/L, while at the other tributaries, the mean values were between 3–5 

mg/L and median values were between 1–4 mg/L. The highest mean turbidity value was 

also at C-44 (17 NTU); however, it was in the dry season while it was higher in the wet 

season in most stations. The mean turbidity at the other tributaries ranged between 2.8 

and 4.4 NTU, with median values between 2.3 and 3.8 NTU. In the estuary, color and 

turbidity values were highest at the South Fork, but the highest mean color values (103 

PCU) were in the wet season, while the highest turbidity values (10 NTU) were in the dry 

season. The lowest color values were at the Lower Estuary, with a mean of 7.8 PCU. TSS 

values were lowest at Ten Mile Creek, with a mean value of 3 mg/L and a median value 

of 1 mg/L.   

DO, pH, and specific conductivity values were generally higher in the dry season 

and at the estuary compared to the tributaries. The DO and pH values had lower variances 

at the estuary than at the tributaries. The highest DO and pH mean values were at C-23 

and the Lower Estuary, with a mean of 7.0 mg/L for DO and 7.9 for pH in the dry season. 

DO and pH were lowest at Ten Mile Creek, with a mean of 3 mg/L for DO and 7.1 for pH 

in the wet season. Specific conductivity was highest at the Lower Estuary in the dry season 

with a mean value of 49 mS/cm and median of 51 mS/cm, and lowest at C-44 in the wet 

season with a mean of 0.66 mS/cm and median of 0.56 mS/cm. The SWT did not vary 

significantly across the tributaries nor the estuary, ranging between 21.1 and 22.4 °C in 

the dry season and 28.0 and 29 °C in the wet season.  

3.3. Principal Component Analysis (PCA) 

The PCA biplots (Figure 3a,b) display the transformed data on the first two dimen-

sions. The scree plots showed the percentage of variance accounted for by each dimension 

(Figure 4) and the loadings to each of the dimensions are shown in Table 4. The variables 

with more weight on the dimension were depicted with longer arrows than those with 

less weight on the biplots. Small angles between vectors represented a positive correla-

tion, while those close to 180° were negatively correlated. The scree plots (Figure 4) 

showed that the first three dimensions of the tributaries accounted for 79.3% of the total 

variance, and the first three dimensions of the estuary accounted for 76.8%. However, for 

general characterization purposes, the first two dimensions were examined in more detail 

because they explained close to 70% of the variance, and the eigenvalue of dimension 3 

was lower than 1 for both the tributaries and estuary samples. 
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Table 4. Variable loadings to the first three dimensions. 

Variables 
Tributaries Estuary 

Dim1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3 

NH3+ 0.383 −0.046 −0.094 −0.340 0.132 0.208 

N+N 0.047 0.424 −0.264 −0.245 −0.322 0.481 

TN 0.327 0.338 −0.345 −0.373 −0.157 0.152 

OP 0.423 −0.068 −0.022 −0.410 0.147 0.051 

TP 0.427 0.008 0.009 −0.422 0.030 −0.034 

DO −0.324 0.132 −0.554 0.248 −0.322 0.463 

Color 0.377 −0.009 −0.414 −0.398 0.071 0.063 

TSS −0.011 0.564 0.307 −0.029 −0.542 −0.543 

Turbidity −0.022 0.600 0.240 −0.153 −0.603 −0.131 

pH −0.367 0.068 −0.415 0.308 −0.119 0.410 

 

 

 
(a) 
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(b) 

Figure 3. (a). Biplot of PCA of samples taken from the four main surface tributaries. (b). Biplot of 

PCA of samples taken from the St. Lucie Estuary. 

 

Figure 4. The scree plots of the PCA of samples from the tributaries (left) and those from the estuary 

(right) indicate the percent variance explained by each dimension. 

The PCA biplot of the tributaries (Figure 3a) showed a pronounced difference be-

tween basin runoff (C-23, C-24, and Ten Mile Creek) and Lake Okeechobee inputs (C-44). 

Overall, Dimension 1 (Dim1) explained 44.9% of the variance (Figure 4 left). The highest 

positive loads for Dim1 of the tributaries (Table 4) were TP (0.43), OP (0.42), color (0.38), 
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and NH3 (0.38), and the greatest negative loads were pH (−0.37) and DO (−0.32). Dimen-

sion 2 (Dim2) explained 24.4% of the variance among tributary samples (Table 3) with 

turbidity (0.60), TSS (0.56), and N+N (0.42) contributing the largest loads (Table 4). Sam-

ples from tributaries draining the basin were spread throughout the Dim1 axis but stayed 

close to zero on the Dim2 axis (Figure 3a). This distribution indicated a large variance in 

phosphorus, color, and NH3 values and a relatively small variance in turbidity and TSS. 

Inversely, the samples from C-44, influenced by lake releases, varied more across the 

Dim2 axis while tightly grouping in quadrant II. The spread across axis Dim2 of the C-44 

samples indicated a large variance in turbidity, TSS, and N+N and comparatively low 

variance and values for TP, PO, color, and NH3. 

The biplot of the estuary (Figure 3b) showed the North Fork (SE 06) to be influenced 

by high values and variance in phosphorus, color, TN, and NH3, and low variance in tur-

bidity and TSS values. The Mid-Estuary (SE 03 and SE 02) also showed more variance in 

Dim1 than Dim2; however, notable outliers were driven by turbidity and TSS. The Lower 

Estuary samples are most tightly grouped to the right of Dim1 origin and have low vari-

ance in both dimensions. Samples from the Lower Estuary were tightly grouped on Dim1, 

where pH and DO have the greatest loading. The South Fork (SE 09), downstream of lake 

inflows, showed high variances for all variables. However, samples mainly were distrib-

uted to the left of Dim1′s origin, indicating a higher influence from phosphorus and its 

related variables than pH and DO. There were notable outliers driven by phosphorus and 

its associated variables and outliers driven by turbidity and TSS. For the PCA of the estu-

ary, Dim1 explained 47.1% (Figure 3b) of the variance with TP (−0.42), OP (−0.41), color 

(−0.40), and TN (−0.37) the greatest negative loads and pH (0.31) and DO (0.25) the only 

positive loads. Dim2 explained 21.1% of the variance, with turbidity (−0.60) and TSS 

(−0.54) contributing the highest loadings (Figure 4 and Table 4).  

An inverse relationship between phosphorus and the variables pH and DO was ob-

served on the PCAs of the tributaries and the estuary. The relationships between those 

dimensions characterizing the estuary were like those of the tributaries, with the differ-

ence that the correlations were more pronounced in the tributary dataset.  

3.4. Correlation of Physicochemical Variables 

Kendall’s tau coefficient’s strongest significant positive correlation was between DO 

and pH (0.73) with a linear relationship (Figure 5). The next greatest positive tau coeffi-

cients were between NH3 and color (0.67), TP (0.63), and TN (0.55). The relationships 

among these variables were nonlinear. Moderate positive relationships (τ > 0.55) were in-

dicated among color, TP, and TN with nonlinear relationships. TP and TN had a weak 

positive association with SWT and a moderate negative relationship with pH and DO. 

Strong negative correlations were found between pH and TP (−0.60) and between pH and 

color (−0.51), both with nonlinear relationships. Specific conductivity was moderately 

negatively related with both color (−0.46) and TN (−0.55). The relationships among the 

other variables were weak (τ < 0.5). 
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Figure 5. Pairs plot displaying Kendall’s tau correlation coefficient and p-value between water qual-

ity variables from 1999 to 2019. Central diagonal: variable names and histograms with a density line. 

Upper right half: Kendall’s tau correlation coefficient and p-value. Lower left half: scatter plots with 

loess smoothing. For *** p < 0.001, ** p < 0.01, * p < 0.05. 

3.5. Trend Analysis 

The Seasonal Mann–Kendall and Sen’s slope tests were mostly insignificant except at 

Ten Mile Creek and SE 06, both located in the North Fork (Table 5). Significant trends 

were weak, with only one moderate coefficient observed for OP at Ten Mile Creek. Other 

areas of the estuary basin showed significant but weak trends for certain variables. 
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Table 5. The Seasonal Mann–Kendall test and the Sen’s slope were performed for the twenty years for each variable in 

each station to test for the significance, direction, and magnitude of non-seasonal trends. 

 South Fork Tributaries North Fork Mid-Estuary Lower Estuary 

 C-44 SE 09 C-23 C-24 
Ten Mile 

Creek 
SE 06 SE 03 SE 02 SE 01 SE 11 

NH3 

τ 

slope 

NT 

▵ 

0.14 

−5 *10�� 

NT NT NT 

▼ * 

−0.27 

−5 * 10�� 

NT NT NT NT 

N+N 

τ 

Slope 

NT NT NT NT 

▽ 

−0.10 

−1 * 10�� 

▼ 

−0.18 

−2 * 10�� 

NT 

▿ 

−0.14 

−5 * 10�� 

▼ 

−0.22 

−6 * 10�� 

▼ 

−0.25 

−6 * 10�� 

TN 

τ 

Slope 

▼ 

−0.16 

−1 * 10�� 

NT NT 

▿ 

−0.09 

−6 * 10�� 

▼ 

−0.19 

−1 * 10�� 

NT 

▽ 

−0.14 

−8 * 10�� 

▽ 

−0.14 

−9 * 10�� 

▼ 

−0.16 

−1 * 10�� 

▼ 

−0.21 

−2 * 10�� 

OP 

τ 

Slope 

▽ 

−0.14 

1 * 10�� 

NT 

▿ 

−0.11 

−2 * 10�� 

▽ 

−0.15 

−2 * 10�� 

▼ 

−0.45 

−8 * 10�� 

▼ 

−0.30 

−4 * 10�� 

NT NT NT NT 

TP 

τ 

Slope 

NT NT 

▿ 

−0.11 

−2 * 10�� 

▽ 

−0.15 

−3 * 10�� 

▼ 

−0.36 

−8 * 10�� 

▼ 

−0.27 

−4 * 10�� 

▽ 

−0.13 

−1 * 10�� 

NT NT 

▿ 

−0.11 

−7 * 10�� 

Color 

τ 

slope 

NT NT NT NT 

▼ 

−0.22 

−0.820 

NT 

▿ 

−0.10 

−0.330 

▿ 

−0.10 

−0.390 

▽ 

−0.14 

−0.330 

▼ 

−0.17 

−0.090 

DO 

τ 

Slope 

NT NT NT NT 

▲ 

0.19 

0.073 

△ 

0.13 

0.047 

▵ 

0.12 

0.023 

△ 

0.13 

0.027 

▲ 

0.19 

0.030 

NT 

pH 

τ 

Slope 

NT 

▵ 

0.11 

4 * 10�� 

NT 

▵ 

0.09 

7 * 10�� 

▲ 

0.25 

8 * 10�� 

▲ 

0.34 

2 * 10�� 

NT NT NT NT 

Temp. 

τ 

Slope 

NT 

▵ 

0.11 

0.04 

NT 

△ 

0.13 

0.03 

▲ 

0.28 

0.08 

▵ 

0.12 

0.05 

NT NT NT 

△ 

0.15 

0.05 

Sp. Con  

τ 

slope 

NT NT 

▲ 
0.28 

12.4 

▿ 

−0.10 

−7.0 

▲ 
0.25 

30.5 

NT NT NT NT NT 

Turb. 

τ 

Slope 

NT NT NT NT 

▲ 

0.31 

0.10 

▵ 

0.12 

0.00 

NT NT 

▼ 

−0.16 

−0.08 

▽ 

−0.14 

−0.07 

TSS 

τ 

Slope 

NT NT NT NT NT NT NT NT NT NT 

* The Kendall’s tau statistic (τ) is the number on top, and Sen’s slope is the bottom one. Symbols ▲▼ indicate an increasing 

or decreasing trend, respectively, at significance p < 0.001. Symbols ▽△ represent p < 0.01, and ▵▿ represent p < 0.05. NT 

indicates no significant (p < 0.05) monotonic trend. 

The Ten Mile Creek had moderate (−0.45) decreasing trends in OP values and weak 

decreasing trends in TP (−0.36) and color (−0.22) values. The estimated Sen’s slope for OP 

and TP at this station showed a monthly decrease of 0.008 mg/L per month. This tributary 

also had increasing trends in DO (0.19), pH (0.25), SWT (0.28), and turbidity (0.31) values. 

The physicochemical variables at SE 06 typically showed the same trends as the Ten Mile 

Creek except for some variables which did not have significant trends. 

Weak decreasing trends of TN concentration were detected at all sections of the ba-

sin. The Lower Estuary had the strongest decreasing coefficients for TN (−0.21), and N+N 

(−0.25), with Sen’s slopes, indicated a decrease of 0.02 mg/L and 0.0006 mg/L per month, 

respectively.   
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4. Discussion 

4.1. Seasonality of Freshwater Inputs 

Rainfall is one of the main factors influencing temporal variability in water quality in 

the St. Lucie Estuary. Rainy months increase runoff and leachates, coinciding with higher 

temperatures and lower salinity upstream [26,29,30,64]. Thus, the assessment of rainfall 

allowed for the differentiation of variable concentrations for the wet and dry seasons. In-

tra-annual rainfall values for the selected period are consistent with a study by Qian et al. 

in 2007 [30], where the wet season was defined from 27 May to 7 November and the dry 

season from 8 November to 26 May. However, between 1979 and 2004, June had the high-

est mean monthly rainfall (192 mm) and December the lowest (49 mm). Our study (1999–

2019) found that August had the highest mean monthly rainfall (193.6 mm) and February 

had the lowest (43.6 mm). Our results suggest a shift of two months in the wettest and 

driest months since Qian et al. (2007) [30]. 

While these differences in monthly rainfall could be explained by different sample 

sizes or regular multidecadal oceanic and atmospheric patterns [65,66], they can also be 

explained by a shift in precipitation patterns observed in Florida. A late onset of the wet 

season has been reported for some areas in the state, with a decrease in mean precipitation 

in May [67,68]. Moreover, statistically significant increases in rainfall for June and August 

were reported for South Florida by Abiy et al. (2019) [69] from 1906 to 2016. Their study 

coincides with our observed highest rainfall in August and the lowest rainfall month (Feb-

ruary) to be later in the water year than previously reported. 

At the St. Lucie Estuary Basin, rainfall was highly correlated with the flow of tribu-

taries C-23 and C-24 but weakly associated with the flow at Ten Mile Creek and C-44. The 

differences in flow among the tributaries could be due to varying physical structures and 

management schemes. Canals C-23 and C-24 were constructed mainly to remove excess 

water from the basin. These linear canals are responsive to rainfall events and efficient at 

discharging runoff [24,70]. The C-44 canal is structurally similar to C-23 and C-24; how-

ever, its functions include discharging water from Lake Okeechobee and providing a nav-

igable waterway from the lake to the coast. Thus, the C-44 is larger with a greater flow 

and water-holding capacity. For C-44 to sustain a navigable waterway, it has months with 

no-flow values to maintain the stage level. Different from the previously discussed tribu-

taries, Ten Mile Creek is a more natural watercourse, for the most part, with a riparian 

buffer and some channelized sections. The lack of channelization may explain the weaker 

correlation with rainfall and low monthly flow variance observed for the Ten Mile Creek 

since channelization generally increases flood peaks and diminishes low flow values [71] 

as observed with the canals. 

4.2. Seasonality of Water Quality 

Seasonality was evident in the values of the physicochemical variables and their cor-

relations. Mean and median concentrations of NH3, TN, N+N, OP, TP, color, TSS, and 

turbidity were generally higher in the wet season, while mean and median values for DO, 

pH, specific conductivity, and SWT were higher in the dry season. Seasonality was also 

evident in the correlation analysis among these variables; NH3, TP, TN, and color values 

were positively correlated with each other and negatively correlated with DO and pH. 

Higher concentrations of color and nutrients in the wet season are consistent with the 

results of previous studies done in the surface water of the St. Lucie Estuary Basin. A 

multiple regression that included freshwater discharge, water quality constituents, and 

salinity in seasonal time scales (wet and dry seasons) by Doering (1996) [29] explained up 

to 93% of the variation in estuarine water quality, suggesting that transport processes and 

mixing with ocean were relatively less important on seasonal than on monthly time scales 

in the St. Lucie Estuary.  

Previous studies have proposed multiple factors affecting the water quality of the 

estuary to explain the higher concentrations of nutrients in the wet season. Higher rainfall 
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can lead to increased infiltration through soils in the basin, thereby mobilizing nutrients 

from fertilizers placed in the soils and increasing the groundwater table to compromise 

shallow septic tank systems [72–76]. Li et al. (2016; 2017) [72,73] measured different phos-

phorus and nitrogen species across the basin and found them to be positively correlated 

with rainfall. They also found phosphorus concentration was highest after the first runoff 

events following the application of fertilizers. Millie et al. 2004 [74] found higher nutrient 

enrichment in the wet season at the North Fork and attributed it to the releases of runoff 

from drainage canals into the estuary during periods of high rainfall. In addition to sur-

face water discharges, groundwater seepage from septic systems in the St. Lucie Estuary 

Basin is a significant nutrient loading source that varies seasonally [34,75]. Lapointe et al. 

(2017) [34] and Barile (2018) [75] attributed an increased mobilization of ammonia in the 

wet season to a decrease in retention time due to higher water tables. This decrease in 

retention time was also associated with higher N+N concentrations during the dry season 

at the tributaries. Higher retention rates in the dry season at the septic systems allow for 

nitrification and the conversion of ammonia to N+N. Additionally, Li et al. (2016) [72] 

associated higher nitrate leaching in the dry season with minimal plant uptake in agricul-

tural areas and a slower nitrification rate due to higher soil moisture in the wet season.  

Increased inputs from Lake Okeechobee in the wet season and resuspension of 

sediment and non-point source runoff from agricultural fields and point sources from 

stormwater, wastewater, and aquaculture are also considered sources of nutrients to the 

St. Lucie Estuary [76,77]. Lapointe et al. (2012) [76] found higher turbidity, nitrate, and 

dissolved inorganic nitrogen values at the South Fork than at the North Fork and Mid-

Estuary after large discharges from the lake in the wet season. Additionally, Buzzelli et al. 

(2013) [64] found that when flushing times of the St. Lucie Estuary were lower than ten 

days, which is especially common in the wet season with increased discharges, resulted 

in a spike in autotrophy and increased N₂ fixation, which could further increase nitrogen 

concentrations. 

DO, pH, specific conductivity, and SWT values were generally higher in the dry sea-

son at most sites and were negatively correlated with nutrients. Lower DO and pH values 

in the wet season could be attributed to higher SWT and higher dissolved organic matter 

content in the water column [78–80]. Warmer water has a lower capacity of maintaining 

dissolved oxygen than colder water, and a high content of dissolved organic matter may 

increase microbial activity and lower DO concentration. An elevated amount of humic 

acid, fulvic acid, and tannins, which are weak acids, from dissolved organic matter have 

been documented to lower the pH in mangrove areas such as the North and South Forks 

of the estuary [78–80]. The negative correlations between nutrient concentrations with pH 

and DO indicate that the nutrients are more labile under lower redox conditions. 

4.3. Spatial Variability of Physicochemical Variables 

The physicochemical variables differed among the sampling stations. Mean and me-

dian phosphorus concentrations, nitrogen, color, TSS, and turbidity were higher in the 

tributaries and decreased downstream, while DO, pH, and specific conductivity were 

higher in the estuary and were negatively correlated with nutrients. Differences in nutri-

ent concentrations and DO between the tributaries and the lower estuary may be at-

tributed to dilution, tidal mixing, internal nutrient cycling, and settlement of suspended 

solids, among other processes [81]. Specific conductivity and pH were greatest in the 

Lower Estuary. A pH value of 8 and specific conductivity between 30–50 mS/cm were 

consistent with values typically observed in ocean water [82]. 

Runoff from the basin tributaries (Ten Mile Creek, C-23, and C-24) had higher TP, 

OP, NH3, and TN, while lake inflows (C-44) had higher turbidity, TSS, and N+N. Phos-

phorus concentrations at basin tributaries and high turbidity at C-44 were the principal 

factors distinguishing basin and lake inflows by the PCA. Mean TP at the basin tributaries 

was double that of C-44 in the wet season, while turbidity at C-44 was two- to three-fold 

that of basin tributaries.  
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Differences among the tributaries may reflect the land-cover types and the agricul-

tural practices of their respective sub-basins [79,83,84]. Higher phosphorus from basin 

tributaries compared to lake inflows is in line with findings by Zheng et al. (2016) [85], 

where the mass ratio of TN:TP indicated that water from the St. Lucie Basin tributaries 

was relatively enriched with TP compared to that from Lake Okeechobee. Lapointe et al. 

2012 [76] found phosphorus was higher at the North Fork than the South Fork during 

large discharges from the lake, attributing it to fertilizer applications from golf courses, 

citrus, and row crops adjacent to C-23 and C-24. The main spatial differences among the 

basin tributaries were higher OP and TP at Ten Mile Creek and C-23, and higher TN, NH3, 

and color at C-23 and C-24. Graves et al. (2004) [78] found row cropland contained signif-

icantly higher phosphorus than other land uses, which is in line with higher OP and TP 

at Ten Mile Creek, where cultivated crops make up the largest cover-type (50%), followed 

by hay/pasture (34%). C-23 and C-24 basins did not have such a dominating land-cover 

type, but their largest cover type was hay/pasture with 38%, followed by cultivated crops 

at 25%. A larger hay/pasture area could explain higher TN and NH3 concentrations at C-

23 and C-24. Graves et al. (2004) [78] found runoff from hay/pasture contained twice the 

nitrogen of runoff from cropland and had higher leaching of humic and tannic acids re-

lated to color. Similarly, the highest N+N values observed at C-44 may be related to the 

back-pumping of agricultural runoff into the lake, where 36% are improved pastures and 

16% are range land/unimproved pastures [77,86,87]. Yang et al. (2013) [83] also attributed 

variations in dissolved nitrogen to the application of fertilizers, tillage management, and 

crop types.  

Within the estuary, the North Fork had the lowest mean and median concentrations 

of DO, reflecting the values of its tributary, Ten Mile Creek, and the estuarine circulation. 

Ten Mile Creek had the lowest DO values of all sites, with a mean of 3 mg/L and a median 

of 2.6 mg/L in the wet season. The low DO in this tributary may be related to enhanced 

primary productivity due to high phosphorus concentrations or low wind-induced mix-

ing. Wan et al. (2012) [84] estimated low DO conditions in the North Fork during large 

discharges from both the basin and the lake, attributing them to a complex circulation 

pattern where large inflows from the lake combined with the tide and push water into the 

North Fork, thereby affecting vertical mixing.  

Of all sites, C-44 had the highest turbidity and TSS values. High turbidity in inflows 

from Lake Okeechobee was documented by James et al. (2009) [88] and Wang et al. (2012) 

[87] and was explained as a result of the resuspension of sediments in the lake water col-

umn due to wind-driven waves. Highly turbid inflows from the lake have been deemed 

undesirable in this estuary because they decrease light penetration to the bottom and im-

pact submerged aquatic vegetation and bottom dwellers [87], thereby affecting biogeo-

chemical feedbacks at the sediment-water interface [64].  

The North Fork had the highest TP and OP concentrations and the lowest DO and 

color values among the estuary sites. The high phosphorus concentrations at the North 

Fork may be due to its upstream tributary, Ten Mile Creek, and groundwater seepage 

from adjacent urban areas. Seepage of reactive phosphorus from septic systems that are 

either existing or removed is an important source of reactive phosphorus in the North 

Fork [34,89]. Lapointe et al. (2017) [34] found reactive phosphorus was significantly higher 

in residential sites than non-residential sites due to septic systems. Their study sites were 

located adjacent to the St. Lucie Estuary. Ye et al. (2017) [89] found that the proximity 

(length of flow path) of the septic systems to the estuary was determinant in the loading 

potential. The proximity and high phosphorus seepage from septic systems may play an 

important role in phosphorus concentrations in the North Fork. A final source of phos-

phorus in the St. Lucie estuary could be the resuspension of sediments from the bottom 

of the estuary, which have high concentrations of water-soluble phosphorus within the 

upper 1 m [90].  

The concentrations of NH3, N+N, and TN were highest at the South Fork and the 

Mid-Estuary. These high concentrations coincide with high concentrations from 
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tributaries draining upstream, but also with adjacent septic systems, previously men-

tioned, which are also significant sources of nitrogen in this area [34,41,89]. Lapointe et al. 

(2017) [34] observed nitrogen was also seeping predominantly from residential sites. Ye 

et al. (2017) [89] also found septic systems a significant source of nitrogen loading relative 

to other agricultural and natural lands. The spatial variance of different nitrogen forms in 

this estuary is important in mitigating harmful algal blooms. Nitrogen is the element most 

capable of promoting cyanobacterial blooms in the lake and the estuary. Levels of TN, 

microcystin, and toxic Microcystis strains are highly and significantly correlated across the 

lake and estuary gradient. In addition, the competition between cyanobacteria and nitri-

fiers for ammonium impacts the capacity for denitrification in the system [32,33]. 

The FDEP set Total Maximum Daily Loads (TMDL) as water quality targets for both 

TN (0.720 mg/L) and TP (0.081 mg/L) in the St. Lucie Estuary [36]. The mean and median 

concentrations for TN computed for this study for 1999 to 2019 exceeded the TMDL year-

round at all tributaries and the North Fork (SE 09) and South Fork (SE 06) of the estuary. 

Mean and median TN concentrations were also exceeded the Mid-Estuary stations (SE 03, 

SE 02) and the Lower Estuary (SE 01) but only in the wet season. Mean values of TN at the 

most downstream Lower Estuary (SE 11) remained below the TMDL. The mean and 

median concentrations of TP also exceeded the TMDL year-round at all tributaries, the 

South Fork, the North Fork, and the Mid-Estuary. TP TMDL concentrations at the Lower 

Estuary (SE 01 and SE 11) were only exceeded in the wet season. Our observations of mean 

seasonal TP being consistently higher than the TMDL for all stations upstream of the 

Lower Estuary indicates that releasing phosphorus into the estuary is a concern year-

round. 

4.4. Monotonic Trends 

The observed monotonic decreases of NH3+, N+N, N, OP, TP, and color at various 

sections of the St. Lucie Estuary, particularly in the North Fork basin, could be due to 

shifts in flow management and the implementation of the St. Lucie River and Estuary 

Basin Management Action Plan (BMAP) [91] by the FDEP. Best management practices for 

decreasing nutrient loading and changes in hydrology have been effective methods for 

improving water quality at the Chesapeake Bay [92] and the Kissimmee River [93,94]. The 

observed decreasing trends in TP at the North Fork in this study were also reported in the 

5-Year Review of the St. Lucie BMAP [95]. Their analysis of the Seasonal Kendall test for 

2008 to 2017 showed a tau of −0.255 (p < 0.05) for TP in station SE 06. However, the 5-Year 

Review did not find significant increasing or decreasing trends in the values of any of the 

variables at the tributaries. The difference between this study’s findings and that of the 

SFWMD may be due to sample sizes. The FDEP assessed trends for a 9-year dataset while 

this study analyzed 20 years. Future research should implement change point detection 

methods to identify if significant decreases or increases in values of the physicochemical 

variables happen at one point in time. 

The monotonic increase of pH and DO values at Ten Mile Creek and North Fork 

could be due to an increase in tidal mixing with seawater which is characterized by higher 

pH and DO values. Another factor explaining higher pH and DO could be increased sub-

merged aquatic vegetation or algae in the North Fork. While there are no recent studies 

on submerged aquatic vegetation that we could find at the North Fork, there have been 

reports of moderately dense beds from the 1940s to the 1960s and unconfirmed reports of 

dense growths upstream of the estuary [96]. Increases in photosynthetic activity in the 

water column could lead to increases in pH and DO due to the removal of carbon dioxide 

[97], and it would also coincide with the monotonic decreases in nutrients concentrations 

in this same area.  

5. Conclusions 

Shifts in rainfall and flow have implications for water quality and should be consid-

ered in long-term water quality analyses. Spatial differences in the flow and water quality 
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constituents were observed across the St. Lucie Estuary Basin. Seasonality was evident in 

canal flow and for most water quality constituents. Flow values of basin-only canals were 

correlated with rainfall but flow at canal C-44, which connects to Lake Okeechobee, was 

not. Most water quality constituents were higher in the wet season than the dry season, 

likely due to increased infiltration, groundwater levels, and runoff. There were distinct 

spatial differences in water quality constituents across the tributaries, which could be ex-

plained by land cover and the different management regimes of the tributaries. The prin-

cipal variables driving the water quality at the basin tributaries were OP, TP, color, and 

NH3+, while those driving Lake Okeechobee’s discharges were TSS and turbidity. Mean 

concentrations of TSS and turbidity on C-44 were two- or three-fold of those from basin 

runoff canals. Canals draining the central basins had the highest nitrogen and color mean 

values, while Ten Mile Creek had the highest OP and TP values. Nutrients were nega-

tively correlated with pH and DO, possibly due to the seasonality of water temperature, 

dissolved organic matter, and microbial activity. OP, TP, and TN had moderate decreas-

ing trends at the Ten Mile Creek and the North Fork, while DO and pH had moderately 

increasing trends due to changes in estuarine circulation, restoration efforts, and increased 

submerged aquatic vegetation at these sites.  

Multivariate data analysis tools such as PCA and nonparametric tests for monthly 

water quality data are important tools that should be more broadly applied in robust da-

tasets. Results from PCA and trend analyses provide water managers with more infor-

mation for guiding management plans. However, monthly data and data with minimum 

detection limits have limitations and bring challenges for analysis as these can be mislead-

ing or special cases. Studying the data distributions and the correct interpretations of non-

parametric tests is important. 
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